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The pebble tree automaton and the pebble tree transducer are enhanced by additionally 
allowing an unbounded number of “invisible” pebbles (as opposed to the usual “visible” 
ones). The resulting pebble tree automata recognize the regular tree languages (i.e., can 
validate all generalized DTD’s) and hence can find all matches of MSO definable patterns. 
Moreover, when viewed as a navigational device, they lead to an XPath-like formalism 
that has a path expression for every MSO definable binary pattern. The resulting pebble 
tree transducers can apply arbitrary MSO definable tests to (the observable part of) their 
configurations, they (still) have a decidable typechecking problem, and they can model 
the recursion mechanism of XSLT. The time complexity of the typechecking problem for 
conjunctive queries that use MSO definable patterns can often be reduced through the use 
of invisible pebbles.
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1. Introduction

Pebble tree transducers, as introduced by Milo, Suciu, and Vianu [41], are a formal model of XML navigation and trans-
formation for which typechecking is decidable. The pebble tree transducer is a tree-walking tree transducer with nested 
pebbles, i.e., it walks on the input tree, dropping and lifting a bounded number of pebbles that have nested life times, 
whereas it produces the output tree in a parallel top-down fashion. We enhance the power of the pebble tree transducer 
by allowing an unbounded number of (coloured) pebbles, still with nested life times, i.e., organized as a stack. However, 
apart from a bounded number, the pebbles are “invisible”, which means that they can be observed by the transducer only 
when they are on top of the stack (and thus the number of observable pebbles is bounded at each moment in time). We 
will call v-ptt the pebble tree transducer of [41] (or rather, the one in [20]: an obvious definitional variant), and vi-ptt the 
enhanced pebble tree transducer. Moreover, i-ptt refers to the vi-ptt that does not use visible pebbles, which can be viewed 
as a generalization of the indexed tree transducer of [23]. And tt refers to the pebble tree transducer without pebbles, i.e., 
to the tree-walking tree transducer, cf. [14] and [10, Section 8]. Tree-walking transducers were introduced in [2], where they 
translate trees into strings.1

The navigational part of the v-ptt, i.e., the behaviour of the transducer when no output is produced, is the pebble tree 
automaton (v-pta), introduced in [15], which is a tree-walking automaton with nested pebbles. It was shown in [15] that the
v-pta recognizes regular tree languages only. In [8] the important result was proved that not all regular tree languages can 
be recognized by the v-pta, and thus [11,54] the navigational power of the v-ptt is below Monadic Second Order (mso) logic, 
which is undesirable for a formal model of XML transformation (see, e.g., [46]). One of the reasons for introducing invisible 
pebbles is that the vi-pta, and even the i-pta, recognizes exactly the regular tree languages (Theorem 11). Thus, since 
the regular tree grammar is a formal model of DTD (Document Type Definition) in XML, the vi-pta can validate arbitrary 
generalized DTD’s. We note that the i-pta is a straightforward generalization of the two-way backtracking pushdown tree 
automaton of Slutzki [51].

Surveys on the use of tree-walking automata and transducers for XML can be found in [45,50]. For a survey on tree-
walking automata see [7].

It is easy to show that every regular tree language can be recognized by an i-pta, just simulating a bottom-up finite-
state tree automaton. The proof that all vi-pta tree languages are regular, is based on a decomposition of the vi-ptt into tt’s 
(Theorem 5), similar to the one for the v-ptt in [20]. Since the inverse type inference problem is solvable for tt’s (where a 
“type” is a regular tree language), this shows that the domain of a vi-ptt is regular, and so even the alternating vi-pta tree 
languages are regular. It also shows that the typechecking problem is decidable for vi-ptt’s, by the same arguments as used 
in [41] for v-ptt’s. More precisely, we prove (Theorem 8, based on [14, Theorem 3]) that a vi-ptt with k visible pebbles 
can be typechecked in (k + 3)-fold exponential time. For varying k the complexity is non-elementary (as in [41]), but it is 
observed in [42] that “non-elementary algorithms on tree automata have previously been seen to be feasible in practice”.

Generalizing the fact that the i-pta can recognize the regular tree languages, we prove that the vi-pta and the vi-ptt

can perform mso tests on the observable part of their configuration, i.e., they can check whether or not the observable 
pebbles on the input tree (i.e., the visible ones, plus the top pebble on the stack) satisfy certain mso requirements with 
respect to the current position of the reading head (Theorem 16). If all the observable pebbles are visible this is obvious 
(drop an additional visible pebble, simulate an i-pta that recognizes the regular tree language corresponding to the mso

requirements, return to the pebble and lift it), but if the top pebble is invisible (or if there is no visible pebble left) that 
does not work and a more complicated technique must be used. Consequently, the vi-pta can match arbitrary mso definable 
n-ary patterns, using n visible pebbles to find all candidate matches as in [41, Example 3.5], and using invisible pebbles to 
perform the mso test; the vi-ptt can also output the matches. In fact, instead of the n visible pebbles the vi-pta can use 
n − 2 visible pebbles, one invisible pebble (on top of the stack), and the reading head (Theorem 29).

As the navigational part of the vi-ptt, the vi-pta in fact computes a binary pattern on trees, i.e., a binary relation 
between two nodes of a tree: the position of the reading head of the vi-ptt before and after navigation. We prove that also 
as a navigational device the vi-pta and the i-pta have the same power as mso logic: they compute exactly the mso definable 
binary patterns (Theorem 15). This improves the result in [17] (where binary patterns are called “trips”), because the i-pta

is a more natural automaton than the one considered in [17].
One of the research goals of Marx and ten Cate (see [30,39,52,53] and the entertaining [40]) has been to combine Core 

XPath of [31] which models the navigational part of XPath 1.0, with regular path expressions [1] (or caterpillar expressions 
[9]) which naturally correspond to tree-walking automata. An important feature of XPath is the “predicate”: it allows to test 
the context node for the existence of at least one other node that matches a given path expression. Thus, the path expression 
α1[β]/α2 takes an α1-walk from the context node to the new context node v , checks whether there exists a β-walk from v
to some other node, and then takes an α2-walk from v to the match node. For tree automata this corresponds to the notion 
of “look-ahead” (cf. [23, Definition 6.5]). We prove (Theorem 19) that an i-pta A can use another i-pta B as look-ahead test, 
i.e., A can test whether or not B has a successful computation when started in the current configuration of A (and similarly 
for vi-pta and vi-ptt). Since XPath expressions can be nested arbitrarily, we even allow B to use yet another i-pta as look-
ahead test, etcetera (Theorem 20). Due to this “iterated look-ahead” feature, we can use Kleene’s classical construction to 

1 In [10, Section 8] the tt is called tree-walking transducer and the transducer of [2] is called tree-walking tree-to-word transducer.
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translate the i-pta into an XPath-like algebraic formalism, which we call Pebble XPath, with the same expressive power as
mso logic for defining binary patterns (Theorem 21). In fact, Pebble XPath is the extension of Regular XPath [39,52] with a 
stack of invisible pebbles. It is proved in [53] that Regular XPath is not mso complete (see also [40]).2 Other mso complete 
extensions of Regular XPath are considered in [30,52].

To explain another reason for introducing invisible pebbles we consider XQuery-like conjunctive queries of the form

for x1, . . . , xn where ϕ1 ∧ · · · ∧ ϕm return r,

where x1, . . . , xn are variables, each ϕ� (with 1 ≤ � ≤ m) is an mso formula with two free variables xi and x j , and r is an 
output tree with variables at the leaves. As observed above, such pattern matching queries can be evaluated by a vi-ptt

with n − 2 visible pebbles, even if the where-clause contains an arbitrary mso formula. In many cases, however, a much 
smaller number of visible pebbles suffices (Theorem 31). This is an enormous advantage when typechecking the query, as 
for the time complexity every visible pebble counts (viz. it counts as an exponential). For instance if j = i + 1 for every ϕ� , 
then no visible pebbles are needed, i.e., the query can be evaluated by an i-ptt: we use invisible pebbles p1, . . . , pn on 
the stack (in that order), representing the variables, and move them through the input tree in document order, in a nested 
fashion; just before dropping pebble pi+1, each formula ϕ�(xi, xi+1) can be verified by an MSO test on the observable part 
of the configuration (which consists of the top pebble pi and the reading head position).

The pebble tree transducer transforms ranked trees. However, an XML document is not ranked; it is a forest: a sequence 
of unranked trees. To model XML transformation by ptt’s, forests are encoded as binary trees in the usual way. For the 
input, it does not make much of a difference whether the ptt walks on a binary tree or a forest. However, as opposed to 
what is suggested in [41], for the output it does make a difference, as pointed out in [47] for macro tree transducers. For 
that reason we also consider pebble forest transducers (abbreviated with pft instead of ptt) that walk on encoded forests, 
but construct forests directly, using forest concatenation as basic operation. As in [47], pft are more powerful than ptt, but 
the complexity of the typechecking problem is the same, i.e., vi-pft with k visible pebbles can be typechecked in (k +3)-fold 
exponential time (Theorem 34). In fact, pft have all the properties mentioned before for ptt.

The document transformation languages dtl and tl were introduced in [38] and [37], respectively, as a formal model of 
the recursion mechanism in the template rules of XSLT, with mso logic rather than XPath to specify matching and selection. 
Documents are modeled as forests. The language dtl has no variables or parameters, and its only instruction is apply-
templates. The language tl is the extension of dtl with accumulating parameters, i.e., the parameters of XSLT 1.0 whose 
values are “result tree fragments” (and on which no operations are allowed). We prove that every dtl program can be 
simulated, with forests encoded as binary trees, by an i-ptt (Theorem 37). More importantly, we prove that tl and i-pft

have the same expressive power (Theorem 46). Thus, in its forest version, our new model the vi-pft can be viewed as the 
natural combination of the pebble tree transducer of [41] (v-ptt) and the tl program of [37] (i-pft). Note that v-ptt and tl

have incomparable expressive power. As claimed by [37], tl can “describe many real-world XML transformations”. We show 
that it contains all deterministic vi-pft transformations for which the size of the output document is linear in the size of 
the input document (Theorem 57). However, the visible pebbles seem to be a requisite for the XQuery-like queries discussed 
above, and we conjecture that not all such queries can be programmed in tl (though they can, e.g., in the case that j = i +1
for every �). As shown in [4] (for a subset of mso), these queries can be programmed in XSLT 1.0 using parameters that 
have input nodes as values; however, with such parameters even v-ptt’s with nonnested pebbles can be simulated, and 
typechecking is no longer decidable. In XSLT 2.0 all (computable) queries can be programmed [33]. The main result of [37]
is that typechecking is decidable for tl programs. Assuming that mso formulas are represented by deterministic bottom-
up finite-state tree automata, the above relationship between tl and i-pft allows us to prove that tl programs can be 
typechecked in 4-fold exponential time (Theorem 41), which seems to be one exponential better than the algorithm in [37].

In addition to the time complexity of typechecking a vi-ptt, also the time complexity of evaluating the queries realized 
by a vi-pta or a vi-ptt is of importance. The binary pattern (or “trip”) computed by a vi-pta, i.e., the binary relation between 
two nodes of the input tree, can be evaluated in polynomial time. The same is true for every (fixed) expression of Pebble 
XPath (see the last two paragraphs of Section 9). Deterministic vi-ptt’s have exponential time data complexity, provided 
that the output tree can be represented by a DAG (directed acyclic graph). To be precise, for every deterministic vi-ptt there 
is an exponential time algorithm that transforms any input tree of that vi-ptt into a DAG that represents the corresponding 
output tree (Theorem 47). For the vi-ptt’s that match mso definable n-ary patterns (as discussed above) the algorithm is 
polynomial time (Theorem 48). Note that v-ptt’s have polynomial time data complexity [41, Proposition 3.8].

Apart from the above results that are motivated by XML navigation and transformation, we also prove some more theo-
retical results. We show that (as opposed to the v-ptt) the i-ptt can simulate the bottom-up tree transducer (Theorem 18). 
We show that the composition of two deterministic tt’s can be simulated by a deterministic i-ptt (Theorem 17). This even 
holds when the tt’s are allowed to perform mso tests on their configuration, and then also vice versa, every deterministic
i-ptt can be decomposed into two such extended tt’s (Theorem 53).

We show that every deterministic vi-ptt can be decomposed into deterministic tt’s (Theorem 55) and that, for the 
deterministic vi-ptt, k + 1 visible pebbles are more powerful than k visible pebbles (Theorem 56). Pebbles have to be lifted 

2 To be precise, it is proved in [53] that Regular XPath with “subtree relativisation” is not mso complete and has the same power as first-order logic with 
monadic transitive closure.
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Fig. 1. Picture of the forest σ(a, τ (b, a), b) τ (σ (a), b). Formal at the left, with dotted lines for the horizontal edges and solid lines for the vertical edges, and 
informal at the right.

from the position where they were dropped; however, in [16] it was convenient to consider a stronger type of pebbles that 
can also be retrieved from a distance. Whereas i-ptt’s with strong invisible pebbles can recognize nonregular tree languages, 
we show that vi-ptt’s with strong visible pebbles can still be decomposed into tt’s (Theorems 60 and 64) and hence their 
typechecking is decidable (as already proved for v-ptt’s with strong pebbles in [27]). Similarly, deterministic vi-ptt’s with 
strong visible pebbles can be decomposed into deterministic tt’s (Theorems 62 and 65).

Some of these theoretical results can be viewed as (slight) generalizations of existing results for formal models of com-
piler construction (in particular attribute grammars), such as attributed tree transducers [25], macro tree transducers [22], 
and macro attributed tree transducers [35], see also [26]. As explained in [20, Section 3.2], attributed tree transducers are
tt’s that satisfy an additional requirement of “noncircularity”. Similarly, as observed in [37], macro attributed tree trans-
ducers (that generalize both attributed tree transducers and macro tree transducers) are closely related to tl programs, and 
hence to i-ptt’s by Theorem 46. For instance, Theorem 17 slightly generalizes the fact that the composition of two attributed 
tree transducers can be simulated by a macro attributed tree transducer, as shown in [35].

Most of the results of this paper were announced in the PODS’07 conference [18]. The remaining results are based on 
technical notes of the authors from the years 2004–2008. This paper has not been updated with the literature of later years 
(with the exception of [10,14,53]).

2. Preliminaries

Sets, strings, and relations. The set of natural numbers is N = {0, 1, 2, . . . }. For m, n ∈ N , we denote the interval {k ∈ N |
m ≤ k ≤ n} by [m, n]. The cardinality or size of a set A is denoted by #(A), and its powerset, i.e., the set of all its subsets, 
by 2A . The set of strings over A is denoted by A∗ . It consists of all sequences w = a1 · · ·am with m ∈ N and ai ∈ A for 
every i ∈ [1, m]. The length m of w is denoted by |w|. The empty string (of length 0) is denoted by ε. The concatenation 
of two strings v and w is denoted by v · w or just v w . Moreover, w0 = ε and wn+1 = w · wn for n ∈N . The composition 
of two binary relations R ⊆ A × B and S ⊆ B × C is R ◦ S = {(a, c) | ∃ b ∈ B : (a, b) ∈ R, (b, c) ∈ S}. The inverse of R is 
R−1 = {(b, a) | (a, b) ∈ R}, and if A = B then the transitive-reflexive closure of R is R∗ = ⋃

n∈N Rn where R0 = {(a, a) | a ∈ A}
and Rn+1 = R ◦ Rn . The composition of two classes of binary relations R and S is R ◦S = {R ◦ S | R ∈R, S ∈ S}. Moreover, 
R1 =R and Rn+1 =R ◦Rn for n ≥ 1.

Trees and forests. An alphabet is a finite set of symbols. Let 	 be an alphabet, or an arbitrary set. Unranked trees and forests 
over 	 are recursively defined to be strings over the set 	 ∪ {(, )} consisting of the elements of 	, the left parenthesis, and 
the right parenthesis, as follows. If σ ∈ 	 and t1, . . . , tm are unranked trees, with m ∈ N , then their concatenation t1 · · · tm

is a forest, and σ(t1 · · · tm) is an unranked tree. For m = 0, t1 · · · tm is the empty forest ε. For readability we also write the 
tree σ(t1 · · · tm) as σ(t1, . . . , tm), and even as σ when m = 0. Obviously, the concatenation of two forests is again a forest. 
It should also be noted that every nonempty forest can be written uniquely as σ( f1) f2 where σ is in 	 and f1 and f2 are 
forests. The set of forests over 	 is denoted F	 . For an arbitrary set A, disjoint with 	, we denote by F	(A) the set of all 
forests f over 	 ∪ A such that every node of f that is labeled by an element of A, is a leaf.

As usual trees and forests are viewed as directed labeled graphs. Here we distinguish between two types of edges: 
“vertical” and “horizontal” ones. The root of the tree t = σ(t1, . . . , tm) is labeled by σ . It has vertical edges to the roots of 
subtrees t1, . . . , tm , which are the children of the root of t and have child number 1 to m. The root of t is their parent. The 
roots of t1, . . . , tm are siblings, also in the case of the forest t1 · · · tm . There is a horizontal edge from each sibling to the next, 
i.e., from the root of ti to the root of ti+1 for every i ∈ [1, m − 1]. Thus, the vertical edges represent the usual parent/child 
relationship, whereas the horizontal edges represent the linear order between children (and between the roots in a forest), 
see Fig. 1.3 For a tree t , its root is denoted by roott , which is given child number 0 for technical convenience. Its set of 
nodes is denoted by N(t). For a forest f = t1 · · · tm , the set of nodes N( f ) is the disjoint union of the sets N(ti), i ∈ [1, m]. 
For a node u of a tree t the subtree of t with root u is denoted t|u , and the i-th child of u is denoted ui (and similarly for 
a forest f instead of t). The nodes of a tree t correspond one-to-one to the positions of the elements of 	 in the string t , 
i.e., for every σ ∈ 	, each occurrence of σ in t corresponds to a node of t with label σ . Since the positions of string t are 

3 In informal pictures the horizontal edges are usually omitted because they are implicit in the left-to-right orientation of the page. Similarly, the arrows 
of the vertical edges are omitted because of the top-down orientation of the page.
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Fig. 2. Encoding of the forest of Fig. 1 by enc (at the left) and by enc′ (at the right).

naturally ordered from left to right, this induces an order on the nodes of t , which is called pre-order (or document order, 
when viewing t as an XML document). For example, the tree σ(τ (α, β), γ )) has five nodes which have the labels σ , τ , α, 
β , and γ in pre-order.

A ranked alphabet (or set) 	 has an associated mapping rank	 : 	 →N . The maximal rank of elements of 	 is denoted 
mx	 . By 	(m) we denote the elements of 	 with rank m. Ranked trees over 	 are recursively defined as above with the 
requirement that m = rank	(σ ). The set of ranked trees over 	 is denoted T	 . For an arbitrary set A, disjoint with 	, we 
denote by T	(A) the set T	∪A where each element of A has rank 0. We will not consider ranked forests.

Forests over an alphabet 	 can be encoded as binary trees, in the usual way: each node has a label in 	, a “vertical” 
pointer to its first child, and a “horizontal” pointer to its next sibling; the pointer is nil if there is no such child or sibling. 
Such a binary tree can be modeled as a ranked tree over the ranked alphabet 	 ∪ {e} where every σ ∈ 	 has rank 2 
and e is a symbol of rank 0 that represents the empty forest ε (or nil). Formally, the encoding of the empty forest equals 
enc(ε) = e, and recursively, the encoding enc( f ) of a forest f = σ( f1) f2 equals σ(enc( f1), enc( f2)). Obviously, enc is a 
bijection between forests over 	 and ranked trees over 	 ∪ {e}. The decoding which is its inverse will be denoted by dec. 
For an example of enc( f ) see Fig. 2 at the left.

The disadvantage of this encoding is that the tree enc( f ) has more nodes than the forest f , viz. all nodes with label e. 
That is inconvenient when comparing the behaviour of tree-walking automata on f and enc( f ). Thus, we will also use 
an encoding that preserves the number of nodes (and thus cannot encode the empty forest). For this we use the ranked 
alphabet 	′ consisting, for every σ ∈ 	, of the symbols σ 11 of rank 2 (for a binary node without nil-pointers), σ 01 and σ 10

of rank 1 (for a binary node with vertical or horizontal nil-pointer, respectively), and σ 00 of rank 0 (for a binary node with 
two nil-pointers). The encoding enc′( f ) of a nonempty forest f = σ( f1) f2 equals σ 11(enc′( f1), enc′( f2)) or σ 01(enc′( f2))

or σ 10(enc′( f1)) or σ 00, where the first (second) superscript of σ equals 0 if and only if f1 = e ( f2 = e). Now, enc′ is a 
bijection between nonempty forests over 	 and ranked trees over 	′ . The decoding which is its inverse will be denoted by 
dec′ . For an example of enc′( f ) see Fig. 2 at the right. From the point of view of graphs, we assume that enc′( f ) has the 
same nodes as f , i.e., N(enc′( f )) = N( f ). The label of a node u of f is changed from σ to σ i j where i = 1 if and only if 
u has at least one child, and j = 1 if and only if u has a next sibling. If u has children, then its first child in enc′( f ) is its 
first child in f , and its second child in enc′( f ) is its next sibling (if it has one). If u has no children, then its only child in 
enc′( f ) is its next sibling (if it has one). Although this encoding is intuitively clear, it is technically less attractive. We will 
use enc′ for the input forest of automata and transducers, and enc for the output forest of the transducers.

We assume the reader to be familiar with the notion of a regular tree grammar. It is a context-free grammar G of which 
every rule is of the form X0 → σ(X1 · · · Xm) where Xi is a nonterminal and σ is a terminal symbol of rank m. Thus, G
generates a set L(G) of ranked trees, which is called a regular tree language. The class of regular tree languages will be 
denoted REGT. We define a regular forest grammar to be a context-free grammar G of which every rule is of the form 
X0 → σ(X1)X2 or X → ε, where σ is from an unranked alphabet. It generates a set L(G) of (unranked) forests, which is 
called a regular forest language. Obviously, L is a regular forest language if and only if enc(L) is a regular tree language, 
and, as one can easily prove, if and only if enc′(L) is a regular tree language. The regular tree/forest grammar is a formal 
model of DTD (Document Type Definition) in XML.4

Monadic second-order logic (abbreviated as mso logic) is used to describe properties of forests and trees. It views each 
forest or tree as a logical structure that has the set of nodes as domain. As basic properties of a forest over alphabet 	 it 
uses the atomic formulas labσ (x), down(x, y), and next(x, y), meaning that node x has label σ ∈ 	, that y is a child of x, 
and that y is the next sibling of x, respectively. Thus, down(x, y) and next(x, y) represent the vertical and horizontal edges 

4 In the literature regular forest languages are usually defined in a different way, after which it is proved that L is a regular forest language if and only 
if enc(L) is a regular tree language, thus showing the equivalence with our definition, see, e.g., [45, Proposition 1].
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of the graph representation of the forest. For a ranked tree over ranked alphabet 	 we could use the same atomic formulas, 
but it is customary to replace down(x, y) and next(x, y) by the atomic formulas downi(x, y), for every i ∈ [1, mx	], meaning 
that y is the i-th child of x. Additionally, mso logic has the atomic formulas x = y and x ∈ X , where X is a set of nodes. 
The formulas are built with the usual connectives ¬, ∧, ∨, and →; both node variables x, y, . . . and node-set variables 
X, Y , . . . can be quantified with ∃ and ∀. For a forest (or ranked tree) f over 	 and a formula ϕ(x1, . . . , xn) with n free 
node variables x1, . . . , xn , we write f |= ϕ(u1, . . . , un) to mean that ϕ holds in f for the nodes u1, . . . , un of f (as values of 
the variables x1, . . . , xn respectively).

We will occasionally use the following formulas: root(x) and leaf(x) test whether node x is a root or a leaf, and first(x)
and last(x) test whether x is a first or a last sibling. Also, childi(x) tests whether x is an i-th child, up(x, y) expresses that 
y is the parent of x, and stay(x, y) expresses that y equals x. Thus, we define stay(x, y) ≡ x = y and

root(x) ≡ ¬∃z(down(z, x)), leaf(x) ≡ ¬∃z(down(x, z)),

first(x) ≡ ¬∃z(next(z, x)), last(x) ≡ ¬∃z(next(x, z)),

childi(x) ≡ ∃z(downi(z, x)), up(x, y) ≡ down(y, x).

Patterns. Let 	 be a ranked alphabet and n ≥ 0. An n-ary pattern (or n-ary query) over 	 is a set T ⊆ {(t, u1, . . . , un) | t ∈
T	, u1, . . . , un ∈ N(t)}. For n = 0 this is a tree language, for n = 1 it is a site (trees with a distinguished node), for n = 2 it 
is a trip [17] (or a binary tree-node relation [5]).

We introduce a new ranked alphabet 	 × {0, 1}n , the rank of (σ , �) equals that of σ in 	. For a tree t over 	 and n
nodes u1, . . . , un we define mark(t, u1, . . . , un) to be the tree over 	 × {0, 1}n that is obtained by adding to the label of 
each node u in t a vector � ∈ {0, 1}n such that the i-th component of � equals 1 if and only if u = ui . The n-ary pattern T
is regular if its marked representation is a regular tree language, i.e., mark(T ) ∈ REGT.

An mso formula ϕ(x1, . . . , xn) over 	, with n free node variables x1, . . . , xn , defines the n-ary pattern T (ϕ) =
{(t, u1, . . . , un) | t |= ϕ(u1, . . . , un)}. Note that T (ϕ) also depends on the order x1, . . . , xn of the free variables of ϕ . It easily 
follows from the result of Doner, Thatcher and Wright [11,54] that a pattern is mso definable if and only if it is regular 
(see [5, Lemma 7]).

We will also consider patterns on forests. For an unranked alphabet 	, a (forest) pattern over 	 is a subset of 
{( f , u1, . . . , un) | f ∈ F	, u1, . . . , un ∈ N( f )}. As for ranked trees, an mso formula ϕ(x1, . . . , xn) over 	, defines the n-ary 
(forest) pattern {( f , u1, . . . , un) | f |= ϕ(u1, . . . , un)}.

3. Automata and transducers

In this section we define tree-walking automata and transducers with pebbles, and discuss some of their properties.

Automata. A tree-walking automaton with nested pebbles (pebble tree automaton for short, abbreviated pta) is a finite state 
device with one reading head that walks from node to node over its ranked input tree following the vertical edges in either 
direction. Additionally it has a supply of pebbles that can be used to mark the nodes of the tree. The automaton may drop 
a pebble on the node currently visited by the reading head, but it may only lift any pebble from the current node if that 
pebble was the last one dropped during the computation. Thus, the life times of the pebbles on the tree are nested. Here 
we consider two types of pebbles. First there are a finite number of “classical” pebbles, which we here call visible pebbles. 
Each of these has a distinct colour, and at most k visible pebbles (each with a different colour) can be present on the input 
tree during any computation, where k is fixed. Second there are invisible pebbles. Again, these pebbles have a finite number 
of colours (distinct from those of the visible pebbles), but for each colour there is an unlimited supply of pebbles that can 
be present on the input tree. Visible pebbles can be observed by the automaton at any moment when it visits the node 
where they were dropped. An invisible pebble can only be observed when it was the last pebble dropped on the tree during 
the computation.

The possible actions of the automaton are determined by its state, the label of the current node, the child number of the 
node, and the set of observable pebbles on the current node, that is, visible pebbles and an invisible pebble when it was the 
last pebble dropped on the tree. Unlike the pta from [41], our automata do not branch (i.e., are not alternating).

The pta is specified as a tuple A = (	, Q , Q 0, F , C, Cv, C i, R, k), where 	 is a ranked alphabet of input symbols, Q is 
a finite set of states, Q 0 ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, Cv and C i are the finite sets 
of visible and invisible colours, C = Cv ∪ C i , Cv ∩ C i = ∅, R is a finite set of rules, and k ∈ N . Each rule is of the form 
〈q, σ , j, b〉 → 〈q′, α〉 such that q, q′ ∈ Q , σ ∈ 	, j ∈ [0, mx	], b ⊆ C with #(b ∩ Cv) ≤ k and #(b ∩ C i) ≤ 1, and α is one of 
the following instructions:

stay,

up provided j �= 0,

downi with 1 ≤ i ≤ rank	(σ ),

dropc with c ∈ C, and

lift with c ∈ b,
c
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where the first three are move instructions and the last two are pebble instructions. Note that, due to the nested life times of 
the pebbles, at most one pebble c in b can actually be lifted; however, the subscript c of liftc often increases the readability 
of a pta.

A situation 〈u, π〉 of the pta A on ranked tree t over 	 is given by the position u of the head of A on t , and the 
stack π containing the positions and colours of the pebbles on the tree in the order in which they were dropped. Formally, 
u ∈ N(t) and π ∈ (N(t) × C)∗ . The last element of π represents the top of the stack. The set of all situations of A on t
is denoted Sit(t), i.e., Sit(t) = N(t) × (N(t) × C)∗; note that it only depends on C . A configuration 〈q, u, π〉 of A on t
additionally contains the state q of A, q ∈ Q . It is final when q ∈ F . An initial configuration is of the form 〈q0, roott , ε〉
where q0 ∈ Q 0, roott is the root of t , and ε is the empty stack. The set of all configurations of A on t is denoted Con(t), 
i.e., Con(t) = Q × N(t) × (N(t) × C)∗ .

We now define the computation steps of the pta A, which lead from one configuration to another. For a given input 
tree t they form a binary relation on Con(t). A rule 〈q, σ , j, b〉 → 〈q′, α〉 is relevant to every configuration 〈q, u, π〉 with 
state q and with a situation 〈u, π〉 that satisfies the tests σ , j, and b, i.e., σ and j are the label and child number of node u, 
and b is the set of colours of the observable pebbles dropped on the node u. More precisely, b consists of all c ∈ Cv such that 
(u, c) occurs in π , plus c ∈ C i if (u, c) is the topmost (i.e., last) element of π . Application of the rule to such a configuration 
possibly leads to a new configuration 〈q′, u′, π ′〉, in which case we write 〈q, u, π〉 ⇒t,A 〈q′, u′, π ′〉. The new state is q′ and 
the new situation 〈u′, π ′〉 is obtained from the situation 〈u, π〉 by the instruction α. For the move instructions α = stay, 
α = up, and α = downi the pebble stack does not change, i.e., π ′ = π , and the new node u′ equals u, is the parent of u, 
or is the i-th child of u, respectively. For the pebble instructions the node does not change, i.e., u′ = u. When α = dropc , 
A drops a pebble with colour c on the current node, thus the node-colour pair (u, c) is pushed onto the pebble stack π , i.e., 
π ′ = π(u, c), unless c is a visible colour and the stack already contains a pebble of that colour or already contains k visible 
pebbles, in which case the rule is not applicable.5 When α = liftc , A lifts a pebble with colour c from the current node, 
only allowed if the topmost element of the pebble stack is the pair (u, c), which is subsequently popped from the stack, i.e., 
π = π ′(u, c); otherwise this rule is not applicable. We will also allow instructions like liftc ; up with the obvious meaning 
(first lift the pebble, then move up). In this way we have defined the binary relation ⇒t,A on Con(t), which represents 
the computation steps of M. We will say informally that a computation step of M halts successfully if it leads to a final 
configuration.

The tree language L(A) accepted by pta A consists of all ranked trees t over 	 such that A has a successful computation 
on t that starts in an initial configuration. Formally, L(A) = {t ∈ T	 | ∃ q0 ∈ Q 0, q∞ ∈ F , 〈u, π〉 ∈ Sit(t) : 〈q0, roott , ε〉 ⇒∗

t,A〈q∞, u, π〉}. Note that pebbles may remain in the final configuration and that the head need not return to the root. Two
pta’s A and B are equivalent if L(A) = L(B).

By vki-pta we denote a pta with last component k, i.e., that uses at most k visible pebbles in its computations, and an 
unbounded number of invisible pebbles, and by Vk I-PTA we denote the class of tree languages accepted by vki-pta’s. For 
k = 0, an automaton that only uses invisible pebbles, we also use the notation i-pta, and for an automaton that only uses k
visible pebbles we use vk-pta. Moreover, ta is used for a tree-walking automaton without pebbles, i.e., a v0-pta. The lower 
case d or d is added when we only consider deterministic automata, which have a unique initial state, no final state in the 
left-hand side of a rule, and no two rules with the same left-hand side. Thus we have vki-dpta, Vk I-dPTA, and variants.

Properties of automata. It is natural, and sometimes useful, to extend the vki-pta with the facility to test whether its pebble 
stack is nonempty, and if so, to test the colour of the topmost pebble. Thus, we define a pta with stack tests in the same 
way as an ordinary pta except that its rules are of the form 〈q, σ , j, b, γ 〉 → 〈q′, α〉 with γ ∈ C ∪ {ε}. Such a rule is relevant 
to a configuration 〈q, u, π〉 if, in addition, the pebble stack π is empty if γ = ε, and the topmost pebble of π has colour γ
if γ ∈ C .6 All other definitions are the same. Note that, obviously, we may require for the above rule that γ = c if α = liftc , 
which ensures that relevant rules with a lift-instruction are always applicable.7

It is not difficult to see that these new tests do not extend the expressive power of the pta. Informally we will say that 
the vki-pta can perform stack tests.

Lemma 1. Let k ≥ 0. For every vki-pta with stack tests A an equivalent (ordinary) vki-pta A′ can be constructed in polynomial time. 
The construction preserves determinism and the absence of invisible pebbles.8

Proof. Let A = (	, Q , Q 0, F , C, Cv, C i, R, k). The new automaton A′ stepwise simulates A and, additionally, stores in its 
finite state whether or not the pebble stack is nonempty, and if so, what is the colour in C of the topmost pebble. Thus, 
Q ′ = Q × (C ∪ {ε}), Q ′

0 = Q 0 × {ε}, and F ′ = F × (C ∪ {ε}). Moreover, the colour sets of A′ are C ′
v = Cv × (C ∪ {ε}) and 

C ′
i = C i × (C ∪{ε}). In fact, if the pebble stack of A is π = (u1, c1)(u2, c2) · · · (un, cn), with (un, cn) being the topmost pebble, 

then the stack of A′ is π ′ = (u1, (c1, ε))(u2, (c2, c1)) · · · (un, (cn, cn−1)), where ε is viewed as a bottom symbol. Thus, the 

5 To be precise, the rule is not applicable if c ∈ Cv, π = (u1, c1) · · · (un, cn), and there exists i ∈ [1, n] such that c = ci , or #({i ∈ [1, n] | ci ∈ Cv}) = k.
6 To be precise, for π = (u1, c1) · · · (un, cn) the requirements are the following: If γ = ε then n = 0, i.e., π = ε. If γ ∈ C then n ≥ 1 and cn = γ .
7 Additionally, we can require the following: If γ = ε then b =∅. If b ∩ Ci = {c} then γ = c.
8 In other words, the statement of the lemma also holds for vk i-dpta, vk-pta and vk-dpta.
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new colour of a pebble contains its old colour together with the old colour of the previously dropped pebble (or ε if there 
is none). This allows A′ to update its additional finite state component when A lifts a pebble. More precisely, when A is in 
configuration 〈q, u, π〉, the automaton A′ is in configuration 〈(q, γ ), u, π ′〉, where γ = cn if n ≥ 1 and γ = ε otherwise.

The rules of A′ are defined as follows. Let 〈q, σ , j, b, γ 〉 → 〈q′, α〉 be a rule of A, and let b′ be (the graph of) a mapping 
from b to C ∪ {ε}. If α is a move instruction, then A′ has the rule 〈(q, γ ), σ , j, b′〉 → 〈(q′, γ ), α〉. If α = dropc , then A′ has 
the rule 〈(q, γ ), σ , j, b′〉 → 〈(q′, c), drop(c,γ )〉. If α = liftc , γ = c, and (c, γ ′) ∈ b′ , then A′ has the rule 〈(q, γ ), σ , j, b′〉 →
〈(q′, γ ′), lift(c,γ ′)〉.

It should be clear that the construction of A′ takes polynomial time. Note that k is fixed and #(b) ≤ k +1 in the left-hand 
side of the rule 〈q, σ , j, b, γ 〉 → 〈q′, α〉 of A. �

pta’s with stack tests will only be used in Sections 8 and 15. The next two properties of pta’s will not be used in later 
sections, but are meant to clarify some of the details in the semantics of the pta.

A rule of a vki-pta A is progressive if it is applicable to every reachable configuration9 to which it is relevant. The vki-pta

A is progressive if all its rules are progressive. Intuitively this means that A knows that its instructions can always be 
executed. Clearly, according to the syntax of a pta, every rule with a move instruction is progressive. The same is true for 
rules with a pebble instruction dropc or liftc with c ∈ C i: an invisible pebble can always be dropped and an observable 
invisible pebble can always be lifted. Thus, only the dropping and lifting of visible pebbles is problematic. It is easy to see 
that, for the vki-pta A′ constructed in the proof of Lemma 1, every rule with a lift-instruction is progressive.

A vki-pta A is counting if Cv = [1, k] and, in each reachable configuration, the colours of the visible pebbles on the 
tree are 1, . . . , � for some � ∈ [0, k], in the order in which they were dropped.10 Note that in the literature vk-pta’s are 
usually counting. We have chosen to allow arbitrarily many visible colours in a vki-pta because we want to be able to 
store information in the pebbles, as in the proof of Lemma 1. It is straightforward to construct an equivalent counting vki-

pta A′ for a given vki-pta A (preserving determinism and the absence of invisible pebbles). The automaton A′ stepwise 
simulates A and, additionally, stores in its finite state the colours of the visible pebbles that are dropped on the tree, in the 
order in which they were dropped. Thus, the states of A′ are of the form (q, ϕ) where q is a state of A and ϕ is a string 
over Cv without repetitions, of length at most k. The state (q, ϕ) is final if q is final. The initial states are (q, ε) where q
is an initial state of A. The rules of A′ are defined as follows. Let 〈q, σ , j, b〉 → 〈q′, α〉 be a rule of A and let (q, ϕ) be 
a state of A′ such that every c ∈ b ∩ Cv occurs in ϕ . Moreover, let b′ ⊆ [1, k] ∪ C i be obtained from b by changing every 
c ∈ Cv into i, if c is the i-th element of ϕ . If α is a move instruction, or a pebble instruction dropc or liftc with c ∈ C i
then A′ has the rule 〈(q, ϕ), σ , j, b′〉 → 〈(q′, ϕ), α〉. If α = dropc with c ∈ Cv, c does not occur in ϕ , and |ϕ| < k, then A′
has the rule 〈(q, ϕ), σ , j, b′〉 → 〈(q′, ϕc), drop|ϕ|+1〉. Finally, if α = liftc with c ∈ Cv, and ϕ = ϕ′c for some ϕ′ ∈ C∗

v , then A′
has the rule 〈(q, ϕ), σ , j, b′〉 → 〈(q′, ϕ′), lift|ϕ|〉. It should be clear that A′ is counting. Note also that all rules of A′ with a 
drop-instruction are progressive. Thus, if we first apply the construction in the proof of Lemma 1 and then the one above, 
we obtain an equivalent progressive vki-pta. Obviously, every progressive vki-pta can be turned into an equivalent vk+1i-pta

by simply changing its last component k into k + 1, and hence Vk I-PTA ⊆ Vk+1I-PTA and Vk I-dPTA ⊆ Vk+1I-dPTA.11

Transducers. A tree-walking tree transducer with nested pebbles (abbreviated ptt) is a pta without final states that ad-
ditionally produces an output tree over a ranked alphabet �. Thus, omitting F , it is specified as a tuple M =
(	, �, Q , Q 0, C, Cv, C i, R, k), where 	, Q , Q 0, C , Cv, C i , and k are as for the pta. The rules of M in the finite set R are of the 
same form as for the pta, except that M additionally has output rules of the form 〈q, σ , j, b〉 → δ( 〈q1, stay〉, . . . , 〈qm, stay〉 )
with δ ∈ �, and q1, . . . , qm ∈ Q , where m is the rank of δ. Intuitively, the output tree is produced recursively. In other words, 
in a configuration to which the above output rule is relevant (defined as for the pta) the ptt M outputs δ, and for each 
child 〈qi, stay〉 branches into a new process, a copy of itself started in state qi at the current node, retaining the same stack 
of pebbles; thus, the stack is copied m times. Note that a relevant output rule is always applicable. As a shortcut we may 
replace the stay-instruction in any 〈qi, stay〉 by another move instruction or a pebble instruction, with obvious semantics.

An output form of the ptt M on ranked tree t over 	 is a tree in T�(Con(t)), where Con(t) is defined as for the pta. 
Intuitively, such an output form consists on the one hand of �-labeled nodes that were produced by M previously in the 
computation, using output rules, and on the other hand of leaves that represent the independent copies of M into which 
the computation has branched previously, due to those output rules, where each leaf is labeled by the current configuration 
of that copy. Note that Con(t) ⊆ T�(Con(t)), i.e., every configuration of M is an output form.

The computation steps of the ptt M lead from one output form to another. Let s be an output form and let v be 
a leaf of s with label 〈q, u, π〉 ∈ Con(t). If 〈q, u, π〉 ⇒t,M 〈q′, u′, π ′〉, where the binary relation ⇒t,M on Con(t) is de-
fined as for the pta (disregarding the output rules of M), then we write s ⇒t,M s′ where s′ is obtained from s by 
changing the label of v into 〈q′, u′, π ′〉. Moreover, for every output rule 〈q, σ , j, b〉 → δ( 〈q1, stay〉, . . . , 〈qm, stay〉 ) that is 
relevant to configuration 〈q, u, π〉, we write s ⇒t,M s′ where s′ is obtained from s by replacing the node v by the subtree 

9 The configuration 〈q, u, π 〉 on the tree t is reachable if 〈q0, roott , ε〉 ⇒∗
t,A 〈q, u, π 〉 for some q0 ∈ Q 0.

10 To be precise, for π = (u1, c1) · · · (un, cn) we require that there exists � ∈ [0, k] such that (ci1 , . . . , cim ) = (1, . . . , �) where {i1, . . . , im} = {i ∈ [1, n] | ci ∈
Cv} and i1 < · · · < im .
11 In fact, these four classes are equal, as will be shown in Theorem 11.
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δ(〈q1, u, π〉, . . . , 〈qm, u, π〉). In the particular case that m = 0, s′ is obtained from s by changing the label of v into δ. In 
that case we will say informally that M halts successfully, meaning that the copy of M corresponding to the node v of s
disappears. In this way we have extended ⇒t,M to a binary relation on T�(Con(t)).

The transduction τM realized by M consists of all pairs of trees t over 	 and s over � such that M has a (successful) 
computation on t that starts in an initial configuration and ends with s. Formally, we define τM = {(t, s) ∈ T	 × T� | ∃ q0 ∈
Q 0 : 〈q0, roott , ε〉 ⇒∗

t,M s}. Two ptt’s M and N are equivalent if τM = τN .
The domain of M is defined to be the domain of τM , i.e., the tree language L(M) = {t ∈ T	 | ∃ s ∈ T� : (t, s) ∈ τM}. 

When M is viewed as a recognizer of its domain, it is actually the same as an alternating pta. Existential states in the 
alternation correspond to the nondeterminism of the ptt, universal states correspond to the recursive way in which output 
trees are generated. More precisely, an output rule 〈q, σ , j, b〉 → δ( 〈q1, stay〉, . . . , 〈qm, stay〉 ) corresponds to a universal 
state q that requires every state qi to have a successful computation (and the output symbol δ is irrelevant). An ordinary 
(non-alternating) pta then corresponds to a ptt for which every output symbol has rank 0; for m = 0 the above output rule 
means that the pta halts in a final state. We say that the ptt M is total if L(M) = T	 , i.e., τM(t) �= ∅ for every input tree t .

Similar to the notation Vk I-PTA for tree languages, we use the notation Vk I-PTT for the class of transductions defined 
by tree-walking tree transducers with k visible nested pebbles and an unbounded number of invisible pebbles, as well as 
the obvious variants Vk-PTT, and I-PTT. Additionally TT denotes the class of transductions realized by tree-walking tree 
transducers without pebbles, i.e., V0-PTT. Such a transducer is specified as a tuple M = (	, �, Q , Q 0, R), and the left-hand 
sides of its rules are written 〈q, σ , j〉, omitting b = ∅. As for pta’s, lower case d is added for deterministic transducers, 
which have a unique initial state and no two rules with the same left-hand side. Moreover, lower case td is used for total 
deterministic transducers, i.e., transducers that are both total and deterministic. Note that a deterministic ptt realizes a 
function, and a total deterministic ptt a total function from T	 to T� .

Properties of transducers. Stack tests are defined for the ptt as for the pta, and Lemma 1 and its proof carry over to ptt’s. 
If a given ptt M with stack tests has the output rule 〈q, σ , j, b, γ 〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉), and b′ is (the graph of) a 
mapping from b to C ∪{ε}, then the constructed ptt M′ has the rule 〈(q, γ ), σ , j, b′〉 → δ(〈(q1, γ ), stay〉, . . . , 〈(qm, γ ), stay〉).

Progressive ptt’s can be defined as for pta’s, based on the notion of a reachable configuration, cf. footnote 9. An output 
form s of the ptt M on the input tree t is reachable if 〈q0, roott , ε〉 ⇒∗

t,M s for some q0 ∈ Q 0. A configuration of M on t is 
reachable if it occurs in some reachable output form of M on t . Note that every i-ptt is progressive.

Also, counting ptt’s can be defined as for pta’s. For every vki-ptt M an equivalent counting vki-ptt M′ can be con-
structed, just as for pta’s. If 〈q, σ , j, b, γ 〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉) is an output rule of M, and ϕ and b′ are as in the 
proof for pta’s, then M′ has the rule 〈(q, ϕ), σ , j, b′〉 → δ(〈(q1, ϕ), stay〉, . . . , 〈(qm, ϕ), stay〉). Thus, as for pta’s, every vki-ptt

can be turned into an equivalent progressive vki-ptt, with determinism and the absence of invisible pebbles preserved. That 
implies that Vk I-PTT ⊆ Vk+1I-PTT and Vk I-dPTT ⊆ Vk+1I-dPTT.

We end this section with an example of an i-ptt.

Example 2. We want to generate itineraries for a trip along the Trans-Siberian Railway, starting in Moscow and ending in 
Vladivostok, and optionally visiting some cities along the way. An XML document lists all the stops:

<stop name="Moscow" large="1" initial="1">
...
<stop name="Birobidzhan" large="0">
...
<stop name="Vladivostok" large="1" final="1" />
...
</stop>

...
</stop>

The initial and final stops are marked, and for every stop the large attribute indicates whether or not the stop is in a 
large city. We want to generate a list

<result>it-1
<result>it-2

...
<result>it-n

<endofresults />
</result>

...
</result>

</result>

where it-1,it-2,...,it-n are all itineraries (i.e., lists of stops) that satisfy the constraint that one does not visit a small 
city twice in a row. An example input XML document, with the corresponding output XML document is given in Tables 1
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Table 1
Input.
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="transsiberie.xsl"?>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 2" large="0">

<stop name="Stop 3" large="0">
<stop name="LargeStop 4" large="1">

<stop name="Stop 5" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^5

and 2 (where, e.g., </stop>^3 abbreviates </stop></stop></stop>). A deterministic i-ptt Msib is able to perform this 
XML transformation by systematically enumerating all possible lists of stops, marking each stop in the list (except the initial 
and final stop) by a pebble. Since the pebbles are invisible, Msib constructs a possible list of stops on the pebble stack in 
reverse, so that the stops will appear in the output tree in the correct order.

Since in this example the XML tags are ranked, there is no need for a binary encoding of the XML documents. The 
input alphabet 	 of Msib consists of all <stop at> where at is a possible value of the attributes. The rank of <stop at>
is 0 if final="1" and 1 otherwise. The output alphabet � consists of 	, the tag r = <result> of rank 2, and the tag 
e = <endofresults> of rank 0. The set of pebble colours is C = C i = {0, 1}, with Cv = ∅. The transducer Msib will not use 
the attribute initial, as it can recognize the root by its child number 0. Also, it will disregard the attribute large of the 
initial and the final stop, and always consider them as large cities. The set of states of Msib is Q = {qstart, q1, q0, qout, qnext}
with Q 0 = {qstart}.

In the rules below the variables range over the following values: σ0 ∈ 	(0) , σ1 ∈ 	(1) , j, c ∈ {0,1}, and, for i ∈ {0, 1}, 
λi ∈ {<stop at> ∈ 	 | large="i"}. The i-ptt Msib first walks from Moscow to Vladivostok in state qstart:

〈qstart,σ1, j,∅〉 → 〈qstart,down1〉
〈qstart,σ0,1,∅〉 → 〈q1,up〉

State qc remembers whether the most recently marked city is small or large; when a new city is marked with a pebble, it 
gets the colour c. In states q0 and q1 as many cities are marked as possible (in the second rule, c = 1 or i = 1):

〈q0, λ0,1,∅〉 → 〈q0,up〉
〈qc, λi,1,∅〉 → 〈qi,dropc;up〉
〈qc,σ1,0,∅〉 → r(〈qout, stay〉, 〈qnext,down1〉)

In state qout an itinerary is generated as output, while state qnext continues the search for itineraries by unmarking the most 
recently marked city:

〈qout,σ1,0,∅〉 → σ1(〈qout,down1〉)
〈qout,σ1,1,∅〉 → 〈qout,down1〉
〈qout,σ1,1, {c}〉 → σ1(〈qout, liftc;down1〉)
〈qout,σ0,1,∅〉 → σ0

〈qnext,σ1,1,∅〉 → 〈qnext,down1〉
〈qnext,σ1,1, {c}〉 → 〈qc, liftc;up〉
〈qnext,σ0,1,∅〉 → e

Note that this XML transformation cannot be realized by a v-ptt, because the height of the output tree is, in general, 
exponential in the size of the input tree, whereas it is polynomial for v-ptt’s (cf. [20, Lemma 7]). �
4. Decomposition

In this section we decompose every ptt into a sequence of tt’s, i.e., transducers without pebbles. This is useful as it will 
give us information on the domain of a ptt, see Theorem 11, and on the complexity of typechecking the ptt, see Theorem 8.

It is possible to reduce the number of visible pebbles used, by preprocessing the input tree with a total deterministic tt. 
This was shown in [20, Lemma 9] for transducers with only visible pebbles. The basic idea of that proof can be extended to 
include invisible pebbles.
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Table 2
Output.
<result>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 3" large="0">
<stop name="LargeStop 4" large="1">
<stop name="Stop 5" large="0">

<stop name="Vladivostok" large="1" final="1"/>
</stop>^4
<result>
<stop name="Moscow" large="1" initial="1">
<stop name="Stop 2" large="0">
<stop name="LargeStop 4" large="1">

<stop name="Stop 5" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^4
<result>
<stop name="Moscow" large="1" initial="1">
<stop name="LargeStop 4" large="1">

<stop name="Stop 5" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^3
<result>
<stop name="Moscow" large="1" initial="1">

<stop name="Stop 5" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^2
<result>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 3" large="0">
<stop name="LargeStop 4" large="1">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^3
<result>
<stop name="Moscow" large="1" initial="1">
<stop name="Stop 2" large="0">
<stop name="LargeStop 4" large="1">

<stop name="Vladivostok" large="1" final="1"/>
</stop>^3
<result>
<stop name="Moscow" large="1" initial="1">
<stop name="LargeStop 4" large="1">

<stop name="Vladivostok" large="1" final="1"/>
</stop>^2
<result>
<stop name="Moscow" large="1" initial="1">

<stop name="Stop 3" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^2
<result>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 2" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^2
<result>
<stop name="Moscow" large="1" initial="1">
<stop name="Vladivostok" large="1" final="1"/>

</stop>
<endofresults/>

</result>
</result>

</result>^8

Lemma 3. Let k ≥ 1. For every vki-ptt M a total deterministic tt N and a vk−1i-ptt M′ can be constructed in polynomial time such 
that τN ◦ τM′ = τM . If M is deterministic, then so is M′. Hence, for every k ≥ 1,

VkI-PTT ⊆ tdTT ◦ Vk−1I-PTT and VkI-dPTT ⊆ tdTT ◦ Vk−1I-dPTT.

Proof. Let M = (	, �, Q , Q 0, C, Cv, C i, R, k) be a ptt with k visible pebbles. The construction of the tt N and the ptt M′
with k − 1 visible pebbles is a straightforward extension of the one in [14, Theorem 5], which slightly differs from the one 
in the proof of [20, Lemma 9], but uses the same basic idea. For completeness sake we repeat a large part of the proof of 
[14, Theorem 5], adapted to the current formalism. The simple idea of the proof is to preprocess the input tree t ∈ T	 in 
such a way that the dropping and lifting of the first visible pebble can be simulated by walking into and out of specific 
areas of the preprocessed input tree pp(t). This preprocessing is independent of the given pebble tree transducer M. More 
precisely, pp(t) is obtained from t by attaching to each node u of t , as an additional (last) subtree, a fresh copy of t in 
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Fig. 3. Output tree pp(t) of the tt N of Lemma 3 for input tree t .

which (the copy of) node u is marked; let us denote this subtree by tu . Thus, if t has n nodes, then pp(t) has n + n2 nodes. 
The subtrees tu of pp(t) are the “specific areas” mentioned above. As long as there are no visible pebbles on t , M′ stepwise 
simulates M on the original nodes of t , which form the “top level” of pp(t). When M drops the first visible pebble c on 
node u, M′ enters tu and walks to the marked node, storing c in its finite state. As long as M keeps pebble c on the tree, 
M′ stays in tu , stepwise simulating M on tu rather than t . Since u is marked in tu , M’s pebble c at u is visible to the 
transducer M′ , not as a pebble but as a marked node. Thus, during this time, M′ only uses k − 1 visible pebbles. When M
lifts pebble c from u (and hence all visible pebbles are lifted), M′ walks from the copy of u out of tu , back to the original 
node u, and continues simulating M on the top level of pp(t) until M again drops a visible pebble. There is one problem: 
how does M′ know whether or not pebble c is on top of the stack when M tries to lift it? To solve this problem, M′ uses 
an additional special invisible pebble �. It drops pebble � at the copy of u and thus knows that pebble c is at the top of 
the stack (for M) when it observes pebble �. Thus, at any moment of time, M′ has the same pebble stack as M, except 
that c is replaced by � and, moreover, the (invisible) pebbles below � are on the top level of pp(t), whereas � and the 
pebbles above it are on tu .

Unfortunately, this preprocessing cannot be realized by a tt (though it can easily be realized by a v1-ptt). For this reason 
we “fold” tu at the node u, such that (the marked copy of) u becomes its root; let us denote the resulting tree by t̂u . Roughly, 
t̂u is obtained from tu by inverting the parent-child relationship between the ancestors of u (including u), similarly as in 
the tree traversal algorithm sometimes known as “link inversion” [34, p.562]. Appropriate information is added to the node 
labels of those ancestors to reflect this inversion. As these changes are local (i.e., each node keeps the same neighbours) and 
clearly marked in the tree, M′ can easily reconstruct the unfolded tu , and simulate M as before. Note also that, with this 
change of pp(t), dropping or lifting of the first visible pebble can be simulated by M′ in one computation step, because the 
marked copy of u is the last child of the original u.

Now a tt N can compute pp(t), as follows.12 It copies t to the output (adding primes to its labels), but when it arrives 
at node u it additionally outputs the copy t̂u of t in a side branch of the computation. Copying the descendants of u “down 
stream” is an easy recursive task. To invert the parent-child relationship between the nodes on the path from u to roott , 
N uses a single process that walks along the nodes of that path “up stream” to the root, inverting the relationships in 
the copy. Copies of other siblings of children on the path are connected as in t , and their descendants are copied “down 
stream”. More precisely, if in t the i-th child v of parent w is on the path, then, in the output t̂u , v has an additional (last) 
child that corresponds to w , and w has the same children (with their descendants) as in t , except that its i-th child is a 
node that is labeled by the bottom symbol ⊥ of rank 0. For the sake of uniformity, roott is also given an additional (last) 
child, with label ⊥. Note that the nodes of t correspond one-to-one to the non-bottom nodes of t̂u ; in particular, the path 
in t from u to roott corresponds to the path in t̂u from its root to the parent of its rightmost leaf. The bottom nodes of t̂u
will not be visited by M′ .

A picture of pp(t) is given in Fig. 3, where t̂u is drawn for two nodes only. Note that in this picture the root of the copy 
of t (which is also the root of pp(t)) is the top of the triangle, but the root of t̂u is u (and, of course, similarly for v). As a 
concrete example, consider t = σ(δ(a, b), c) where σ , δ have rank 2 and a, b, c rank 0. We will name the nodes of t by their 
labels. Then

pp(t) = σ ′(δ′(a′(t̂a),b′(t̂b), t̂δ), c′(t̂c), t̂σ )

where

t̂a = a0,1(δ1,1(⊥,b,σ1,0(⊥, c,⊥))),

t̂b = b0,2(δ2,1(a,⊥,σ1,0(⊥, c,⊥))),

t̂δ = δ0,1(a,b,σ1,0(⊥, c,⊥)),

t̂c = c0,2(σ2,0(δ(a,b),⊥,⊥)), and

t̂σ = σ0,0(δ(a,b), c,⊥).

12 See also [41, Example 3.7] where t̂u occurs as “a complex rotation of the input tree” t , albeit for leaves u only.
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The subscripted node labels are on the rightmost paths of the t̂u ’s; the subscripts contain “reconstruction” information, to 
be explained below. As another example, if t is the monadic tree a(bm(c(dn(e)))) of height m + n + 3, and u is the c-labeled
node, then t̂u = c0,1(s1, s2) with s1 = dn(e) and s2 is the binary tree b1,1(⊥, b1,1(⊥, . . .b1,1(⊥, a1,0(⊥, ⊥)) · · · )) of height 
m + 2. This shows more clearly that t̂u is obtained by “folding”.

We now formally define the deterministic tt N that, for given ranked alphabet 	, realizes the preprocessing pp (called 
EncPeb in [20]). The definition is identical to the one in [14, Section 6]. Since N has no pebbles, we abbreviate the 
left-hand side 〈q, σ , j, ∅〉 of a rule by 〈q, σ , j〉. To simplify the definition of N we additionally allow output rules of 
the form 〈q, σ , j〉 → δ(s1, . . . , sm) where δ is an output symbol of rank m and every si is either the output symbol ⊥
or it is of the form 〈q′, ϕ〉 where ϕ is stay, up, or downi with i ∈ [1, m]. Such a rule should be replaced by the rules 
〈q, σ , j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) and 〈p j, σ , j〉 → s j for all j ∈ [1, m], where p1, . . . , pm are new states. Obviously this 
replacement can be done in quadratic time.

We introduce the states and rules of N one by one; in what follows σ ranges over 	, with m = rank	(σ ), j ranges over 
[0, mx	], and i over [1, m]. First, N has an “identity” state d that just recursively copies the subtree of the current node 
to the output, using the rules 〈d, σ , j〉 → σ(〈d, down1〉, . . . , 〈d, downm〉). Then, N has initial state g that copies the input 
tree t to the output (with primed labels) and at each node u of t “generates” a new copy t̂u of the input tree by calling the 
state f that computes t̂u by “folding” tu . The rules for g are

〈g,σ , j〉 → σ ′(〈g,down1〉, . . . , 〈g,downm〉, 〈 f , stay〉).
Note that σ ′ has rank m + 1: the root of t̂u is attached to u as its last child. The rules for f are

〈 f ,σ , j〉 → σ0, j(〈d,down1〉, . . . , 〈d,downm〉, ξ j)

where ξ j = 〈 f j, up〉 for j �= 0, and ξ0 = ⊥. The “reconstruction” subscripts of σ0, j mean the following: subscript 0 indicates 
that this node is the root of some t̂u , and subscript j is the child number of u in t . Note that σ0, j has rank m + 1: its 
last child corresponds to the parent of u in t (viewing ⊥ as the “parent” of roott in t). The tt N walks up along the path 
from u to the root of t using “folding” states f i , where the i indicates that in the previous step N was at the i-th child of 
the current node. The rules for f i are

〈 f i,σ , j〉 → σi, j(

〈d,down1〉, . . . , 〈d,downi−1〉,
⊥,

〈d,downi+1〉, . . . , 〈d,downm〉,
ξ j)

where ξ j is as above. If a node (in t̂u) with label σi, j corresponds to the node v in t , then the “reconstruction” subscript i
means that its parent corresponds to the i-th child of v in t (and its own i-th child is ⊥), and, as above, “reconstruction” 
subscript j is the child number of v . Just as σ0, j , also σi, j has rank m + 1: its last child corresponds to the parent of v in t . 
Note that the copy t̂u of the input tree is computed by the states f , f i (for every i) and d, such that f copies node u to 
the output and the other states walk from u to every other node v of t and copy v to the output. To be precise, N walks 
from u to v along the shortest (undirected) path from u to v , from u up to the least common ancestor of u and v (in the 
states f i ), and then down to v (in the state d). Arriving in a node v from a neighbour of v , the transducer N branches into 
a new process for every other neighbour of v .

This ends the description of the tt N . The output alphabet � of N (which will also be the input alphabet of M′) is the 
union of 	, {⊥}, {σ ′ | σ ∈ 	}, and {σi, j | σ ∈ 	, i ∈ [0, rank	(σ )], j ∈ [0, mx	]}. Thus, N has O (n2) output symbols, where 
n is the size of 	.13 So, since mx� = mx	 + 1, the size of � is polynomial in n. The set of states of N is {d, g, f } ∪ { f i | i ∈
[1, mx	]}, with initial state g . Thus, it has O (n) states and O (n3) rules; moreover, each of these rules is of size O (n logn). 
Hence, the size of N is polynomial in the size of 	, and it can be constructed in polynomial time.

We now turn to the description of the vk−1i-ptt M′ . It has input alphabet �, output alphabet �, set of states 
Q ∪ (Q × Cv), and the same initial states and visible colours as M. Its invisible colour set is C ′

i = C i ∪ {�}. It remains 
to discuss the set R ′ of rules of M′ . Let 〈q, σ , j, b〉 → ζ be a rule of M with rank	(σ ) = m. We consider four cases, 
depending on the variant σ ′ , σ0, j , σi, j with i �= 0, or σ in � of the input symbol σ ∈ 	.

In the first case, we consider the behaviour of M′ in state q on σ ′ , and we assume that b ∩ Cv = ∅. If ζ = 〈q′, dropc〉
with c ∈ Cv, then R ′ contains the rule 〈q, σ ′, j, b〉 → 〈(q′, c), downm+1; drop�〉,14 and otherwise R ′ contains the rule 
〈q, σ ′, j,b〉 → ζ . Thus, M′ simulates M on the original (now primed) part of the input tree t in pp(t), until M drops 

13 We assume here that the rank of each symbol of the ranked alphabet 	 is specified in unary rather than decimal notation, and thus mx	 ≤ n; cf. the 
last paragraph of [14, Section 2].
14 To be completely formal, this rule should be replaced by the two rules 〈q, σ ′, j, b〉 → 〈p, downm+1〉 and 〈p, σ0, j, m + 1, ∅〉 → 〈(q′, c), drop�〉, where p

is a new state.
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a visible pebble c on node u. Then M′ steps to the root of t̂u where it drops the invisible pebble �, and stores c in its 
finite state.

Next, we let c ∈ Cv and we consider the behaviour of M′ in state (q, c) on the remaining variants of σ . Let ζc be the 
result of changing in ζ every occurrence of a state q′ into (q′, c).

In the second case we assume that c ∈ b (corresponding to the fact that σ0, j labels the marked node of some t̂u ). If 
b = {c} and ζ = 〈q′, liftc〉, then R ′ contains the rule 〈(q, c), σ0, j, m + 1, {�}〉 → 〈q′, lift�; up〉.15 Thus, when M lifts visible 
pebble c from node u, M′ lifts invisible pebble � and steps from the root of t̂u back to node u. Otherwise, R ′ contains the 
rules

〈(q, c),σ0, j,m + 1,b \ {c} ∪ {�}〉 → ζ ′
c

(provided b ∩ C i =∅) and

〈(q, c),σ0, j,m + 1,b \ {c}〉 → ζ ′
c,

where ζ ′
c is obtained from ζc by changing up into downm+1. These two rules correspond to whether or not the invisible 

pebble � is observable. Note that the child number in pp(t) of a node with label σ0, j is always m + 1 (and the label of its 
parent is σ ′).

In the remaining two cases we assume that c /∈ b in the above rule of M. In the third case, we consider σi, j with i �= 0. 
Then R ′ contains the rules 〈(q, c), σi, j, j′, b〉 → ζ ′

c for every j′ ∈ [1, mx�], where ζ ′
c is now obtained from ζc by changing 

up into downm+1, and downi into up. In the fourth and final case, we consider σ itself (in �). Then R ′ contains the rule 
〈(q, c), σ , j, b〉 → ζc . Thus, M′ stepwise simulates M on every t̂u .

This ends the description of the vk−1i-ptt M′ . It should now be clear that τM′ (pp(t)) = τM(t) for every t ∈ T	 , and 
hence τN ◦ τM′ = τM . Each rule of M is turned into at most 1 + #(Cv) · (2 + mx	(mx	 + 1)) rules of M′ , of the same 
size as that rule (disregarding the space taken by the occurrences of c and m + 1). Thus, M′ can be computed from M in 
polynomial time. �

The tree pp(t) that is used in the previous proof consists of two levels of copies of the original input tree t; on the first 
level a straightforward copy of t (used until the first visible pebble is dropped) and a second level of copies t̂u (used to 
“store” the first visible pebble dropped). It is tempting to add another level, meant as a way to store the next visible pebble 
dropped. The problem with this is that it would make the first visible pebble effectively unobservable when the next one is 
dropped. The idea can be used for invisible pebbles, for arbitrarily many levels.

Lemma 4. For every i-ptt M a tt N and a tt M′ can be constructed in polynomial time such that τN ◦ τM′ = τM . If M is 
deterministic, then so is M′ . Hence, I-PTT ⊆ TT ◦ TT and I-dPTT ⊆ TT ◦ dTT.

Proof. The computation of a ptt M with invisible pebbles on tree t is simulated by a tt M′ (without pebbles) on tree t′ . 
The input tree t is preprocessed in a nondeterministic way by a tt N to obtain t′ . The top level of t′ is a copy of t , as 
before. On the next level, since the simulating transducer M′ cannot store the colours of all the pebbles in its finite state 
(as we did for one colour in the proof of Lemma 3), N does not attach one copy t̂u of t to each node u of t but #(C i) such 
copies, one for each pebble colour. In this way, the child number in t′ of the root of t̂u represents the pebble colour. In 
fact, in each node u of t the transducer N nondeterministically decides for each pebble colour c whether or not to spawn 
a process that copies t into t̂u , and this is a recursive process: in each node in each copy of t it can be decided to spawn 
such processes that generate new copies.

In this way a “tree of trees” is constructed. For an “artist impression” of such an output tree t′ , see Fig. 4. The child 
number in t′ of the root of each copy t̂u indicates an invisible pebble of colour c placed at node u in the original tree t . 
In each copy only one pebble is observable, the one represented by the child number of its root, exactly as the last pebble 
dropped in the original computation. In the simulation, moving down or up along the tree of trees corresponds to dropping 
and lifting invisible pebbles.

In general there is no bound on the depth of the stack of pebbles during a computation of M. The preprocessor N
nondeterministically constructs t′ . If t′ is not sufficiently deep, the simulating transducer M′ aborts the computation. Con-
versely, for every computation of M a tree t′ of sufficient depth can be constructed nonderministically from t .

We now turn to the formal definitions. Let M = (	, �, Q , Q 0, C, Cv, C i, R, 0) be an i-ptt. Without loss of generality we 
assume that C = C i and that C = [1, γ ] for some γ ∈ N . This choice of C simplifies the representation of colours by child 
numbers.

First, we define the nondeterministic tt N that preprocesses the trees over 	. It is a straightforward variant of the 
one in the proof of Lemma 3. The output alphabet � of N is now the union of {⊥}, {σ ′ | σ ∈ 	}, and {σ ′

i, j | σ ∈ 	, i ∈

15 Again, to be completely formal, this rule should be replaced by the two rules 〈(q, c), σ0, j, m + 1, {�}〉 → 〈p, lift�〉 and 〈p, σ0, j, m + 1, ∅〉 → 〈q′, up〉, 
where p is a new state.
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Fig. 4. An output tree t′ of the tt N of Lemma 4 for input tree t .

[0, rank	(σ )], j ∈ [0, mx	]} where, for every σ ∈ 	 of rank m, σ ′ has rank m + γ and σ ′
i, j has rank m + γ + 1, because 

γ processes are spawned at each node, and each of these processes generates, nondeterministically, either a copy t̂u of t or 
the bottom symbol ⊥. The set of states of N is as before, except that the state d is removed (with its rules). In the rules 
of N we will use 〈 f , stay〉γ as an abbreviation of the sequence 〈 f , stay〉, . . . , 〈 f , stay〉 of length γ . The rules for the initial 
state g are

〈g,σ , j〉 → σ ′(〈g,down1〉, . . . , 〈g,downm〉, 〈 f , stay〉γ ).

The rules for f are

〈 f ,σ , j〉 → ⊥
〈 f ,σ , j〉 → σ ′

0, j(〈g,down1〉, . . . , 〈g,downm〉, 〈 f , stay〉γ , ξ j)

where, as before, ξ j = 〈 f j, up〉 for j �= 0, and ξ0 = ⊥. Finally, the rules for f i are

〈 f i,σ , j〉 → σ ′
i, j(

〈g,down1〉, . . . , 〈g,downi−1〉,
⊥,

〈g,downi+1〉, . . . , 〈g,downm〉,
〈 f , stay〉γ ,

ξ j)

where ξ j is as above. This ends the definition of N .
Next, we define the simulating tt M′ . It has input alphabet � (the output alphabet of N ), output alphabet �, and the 

same set of states and initial states as M. The set R ′ of rules of M′ is defined as follows. Let 〈q, σ , j, b〉 → ζ be a rule 
of M with rank	(σ ) = m. Note that b is either empty or a singleton. We consider three cases, that describe the behaviour 
of M′ on the symbols σ ′ , σ ′

0, j , and σ ′
i, j with i �= 0.

In the first case we assume that b = ∅ (and hence ζ does not contain a lift-instruction). Then R ′ contains the rule 
〈q, σ ′, j〉 → ζ ′ where ζ ′ is obtained from ζ by changing dropc into downm+c for every c ∈ C .

In the second case we assume that b = {c} for some c ∈ C . Then R ′ contains the rule 〈q, σ ′
0, j, m + c〉 → ζ ′ where ζ ′ is 

now obtained from ζ by changing up into downm+γ +1, liftc into up, and dropd into downm+d for every d ∈ C . Note that 
the child number in t′ of a node with label σ ′

0, j is always m + c for some c ∈ C (and the label of its parent is σ ′ or σ ′
i, j for 

some i ∈ [0, m]).
In the third case we assume (as in the first case) that b = ∅. Then R ′ contains the rule 〈q, σ ′

i, j, j
′〉 → ζ ′ for every 

j′ ∈ [1, mx�], where ζ ′ is now obtained from ζ by changing up into downm+γ +1, downi into up, and dropc into downm+c
for every c ∈ C .

This ends the definition of M′ . It should, again, be clear that for every t ∈ T	 and s ∈ T� , s ∈ τM(t) if and only if there 
exists t′ ∈ τN (t) such that s ∈ τM′ (t′). Hence τN ◦ τM′ = τM . It is straightforward to show, as in the proof of Lemma 3, 
that N and M′ can be constructed in polynomial time from M. Note that mx� = mx	 + #(C i) + 1 and so the size of � is 
polynomial in the size of M. �

Combining the previous two results we can inductively decompose tree transducers with (visible and invisible) pebbles 
into tree transducers without pebbles.

Theorem 5. For every k ≥ 0, Vk I-PTT ⊆ TTk+2 . For fixed k, the involved construction takes polynomial time.
54



J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Observe that Vk-PTT ⊆ Vk−1I-PTT as the topmost pebble can be replaced by an invisible one, thus Vk -PTT ⊆ TTk+1, which 
was proved in [20, Theorem 10], also for the deterministic case.

We do not know whether Theorem 5 is optimal, i.e., whether or not Vk I-PTT is included in TTk+1. The deterministic 
version of Theorem 5 (for k �= 0) will be proved in Section 15 (Theorem 55), and we will show that it is optimal (after 
Theorem 56).

The nondeterminism of the “preprocessing” transducer N in the proof of Lemma 4 is rather limited. The general form of 
the constructed tree is completely determined by the input tree, only the depth of the construction is nondeterministically 
chosen. At the same time it remains nondeterministic even when we start with a deterministic ptt with invisible pebbles: 
I-dPTT ⊆ TT ◦ dTT. However, we can obtain a deterministic transduction if the number of invisible pebbles used by the 
transducer is bounded (over all input trees), cf. the M. Sc. Thesis of the third author [49] (where visible and invisible 
pebbles are called global and local pebbles, respectively). In Section 7 we will show that if we start with a deterministic 
tree transduction, then the inclusions of Lemma 4 also hold in the other direction (Theorem 17). In Section 15 we will show 
that I-dPTT ⊆ dTT3 (Corollary 54).

5. Typechecking

The inverse type inference problem is to construct, for a tree transducer M and a regular tree grammar Gout, a regular tree 
grammar G in such that L(G in) = τ−1

M (L(Gout)). The typechecking problem asks, for a tree transducer M and two regular tree 
grammars G in and Gout, whether or not τM(L(G in)) ⊆ L(Gout). The inverse type inference problem can be used to solve the 
typechecking problem, because τM(L(G in)) ⊆ L(Gout) if and only if L(G in) ∩ τ−1

M (L′
out) = ∅, where L′

out is the complement 
of L(Gout).

It was shown in [41] (see also [20, Section 7]) that both problems are solvable for tree-walking tree transducers with 
visible pebbles, i.e., for v-ptt’s, and hence in particular for tree-walking tree transducers without pebbles, i.e., for tt’s.16 This 
was extended in [14] to compositions of such transducers and, moreover, the time complexity of the involved algorithms 
was improved, using a result of [3] for attributed tree transducers.

We define a k-fold exponential function to be a function of the form 2g(n) where g is a (k − 1)-fold exponential function; 
a 0-fold exponential function is a polynomial.

Proposition 6. For fixed k ≥ 0, the inverse type inference problem is solvable

(1) for compositions of k tt’s in k-fold exponential time, and
(2) for vk-ptt’s in (k + 1)-fold exponential time.

Proposition 7. For fixed k ≥ 0, the typechecking problem is solvable

(1) for compositions of k tt’s in (k + 1)-fold exponential time, and
(2) for vk-ptt’s in (k + 2)-fold exponential time.

As also observed in [14], one exponential can be taken off the results of Proposition 7 if we assume that Gout is a total 
deterministic bottom-up finite-state tree automaton, because that exponential is due to the complementation of L(Gout).

It is immediate from Theorem 5 and Propositions 6(1) and 7(1) that both problems are also solvable for tree-walking 
tree transducers with invisible pebbles.

Theorem 8. For fixed k ≥ 0, the inverse type inference problem and the typechecking problem are solvable for vki-ptt’s in (k + 2)-fold 
and (k + 3)-fold exponential time, respectively.

The main conclusion from Proposition 7(2) and Theorem 8 is that the complexity of typechecking ptt’s basically depends 
on the number of visible pebbles used. Thus we can improve the complexity of the problem by changing visible pebbles 
into invisible ones as much as possible, see Section 10.

Note that the solvability of the inverse type inference problem for a tree transducer M means in particular that its do-
main is a regular tree language, taking L(Gout) = T� where � is the output alphabet of M. Thus, it follows from Theorem 8
that the domains of ptt’s are regular, or in other words, that every alternating pta accepts a regular tree language.

Corollary 9. For every ptt M, its domain L(M) is regular.

16 Note however that our definition of inverse type inference differs from the one in [41], where it is required that L(G in) = { s | τM(s) ⊆ L(Gout) }. The 
reason is that our definition is more convenient when considering compositions of tree transducers.
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6. Trees, tests and trips

In this section we show that vi-pta’s recognize the regular tree languages, that they compute the mso definable binary 
patterns (or trips), and that they can perform mso tests on the observable part of their configuration (which consists of the 
position of the head and the positions of the observable pebbles).

For “classical” tree-walking automata with a bounded number of visible pebbles, i.e., for v-pta’s, it was shown in [15, 
Section 5] that these automata accept regular tree languages only. However, as proved in [8], they cannot accept all regular 
tree languages. One of the main reasons for introducing an unbounded number of invisible pebbles is that they can be used 
to recognize every regular tree language. Recall that REGT denotes the class of regular tree languages.

Lemma 10. REGT ⊆ I-dPTA.

Proof. As the regular tree languages are recognized by deterministic bottom-up finite-state tree automata, it suffices to 
explain how the computation of such an automaton A can be simulated by a deterministic pta A′ with invisible pebbles. 
The computation of A on the input tree can be reconstructed by a post-order evaluation of the tree. At the current node u, 
A′ uses an invisible pebble to store the states in which A arrives at the first m children of u, for some m. The colour of 
the pebble represents the sequence of states. For each ancestor v of u the pebble stack contains a similar pebble for the 
first i − 1 children of v , where vi is the unique child of v that is also an ancestor of u (or u itself). If u has more than 
m children, then A′ moves to its (m + 1)-th child and drops a pebble that represents the empty sequence of states of A. 
Otherwise, A′ computes the state assumed by A in u based on the states of the children, lifts the pebble at u, and moves 
to the parent of u to update its pebble with that state. The post-order evaluation ensures that pebbles are used in a nested 
fashion.

Formally, let A = (	, P , F , δ) where 	 is a ranked alphabet, P is a finite set of states, F ⊆ P is the set of final states, and 
δ is the transition function that assigns a state δ(σ , p1, . . . , pm) ∈ P to every σ ∈ 	 and p1, . . . , pm ∈ P with m = rank	(σ ). 
As pebble colours the i-pta A′ has all strings in P∗ of length at most mx	 . Its states and rules are introduced one by one as 
follows, where σ ranges over 	, j and m range over [0, rank(σ )], and p, p1, . . . , pm range over P . The initial state q0 does 
not occur in the right-hand side of any rule. In the initial state, the automaton A′ drops a pebble at the root representing 
the empty sequence of states of A, and goes into the main state q◦ . The rule is

ρ1 : 〈q0,σ ,0,∅〉 → 〈q◦,dropε〉.
In state q◦ , A′ consults the pebble to see whether or not all children have been evaluated, and acts accordingly. For 
m < rank(σ ) it has the rule

ρ2 : 〈q◦,σ , j, {p1 · · · pm}〉 → 〈q◦,downm+1;dropε〉,
which handles the case that the state of A is not yet known for all children of node u. For m = rank(σ ) and p =
δ(σ , p1, . . . , pm) it has the rules

ρ3 : 〈q◦,σ , j, {p1 · · · pm}〉 → 〈q̄p, liftp1···pm ;up〉 if j �= 0,

ρ4 : 〈q◦,σ ,0, {p1 · · · pm}〉 → 〈qyes, stay〉 if p ∈ F ,

ρ5 : 〈q◦,σ ,0, {p1 · · · pm}〉 → 〈qno, stay〉 if p /∈ F ,

and for m < rank(σ ) it has the rule

ρ6 : 〈q̄p,σ , j, {p1 · · · pm}〉 → 〈q◦, liftp1···pm ;dropp1···pm p〉.
Thus, if the states p1, . . . , pm of A at all the children of node u are known, A′ computes the state p = δ(σ , p1, . . . , pm)

of A at u. If u is not the root of the input tree, then A′ stores p in its own state q̄p , lifts the pebble p1 · · · pm , and moves 
up to the parent of u. Since the pebble at the parent is now observable, it can be updated. If u is the root of the input tree, 
then A′ knows whether or not A accepts that tree, and correspondingly goes into state qyes or state qno, where qyes is the 
unique final state of A′ . Note that there is one pebble left on the root of the tree. �

Adding an infinite supply of invisible pebbles on the other hand does not lead out of the regular tree languages. It is 
possible to give a proof of this fact by reducing vki-pta’s to the backtracking pushdown tree automata of [51], but here we 
deduce it from the results of the previous section.

Theorem 11. For each k ≥ 0, Vk I-PTA = Vk I-dPTA = REGT.

Proof. By Lemma 10, REGT ⊆ Vk I-dPTA. Conversely, as observed before, a pta A is easily turned into a ptt M that outputs 
single node tree δ (with rank(δ) = 0) for trees accepted by A: for every final state q of A add all rules 〈q, σ , j, b〉 → δ. Then 
L(A) = L(M), the domain of M, which is regular by Corollary 9. �
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Note that an infinite supply of visible pebbles could be used to mark a’s and b’s alternatingly and thus accept the 
nonregular language {anbn | n ∈ N} (and similarly {anbncn | n ∈ N}). Note also that the stack of pebbles cannot be replaced 
by two independent stacks, one for visible and one for invisible pebbles. Then we could accept {anbn | n ∈N} with just one 
visible pebble: drop an invisible pebble on each a, and then use the visible pebble on the b’s to count the number of a’s, 
by lifting one invisible pebble (in fact, the unique observable one) for each b.

Recall from Section 2 that an n-ary pattern over a ranked alphabet 	 is a set T ⊆ {(t, u1, . . . , un) | t ∈ T	, u1, . . . , un ∈
N(t)}. Recall also that the pattern T is said to be regular if its marked representation mark(T ) ⊆ T	×{0,1}n is a regular tree 
language. In fact, T is regular if and only if it is mso definable, which means that there is an mso formula ϕ(x1, . . . , xn)

over 	 such that T = T (ϕ), where T (ϕ) = {(t, u1, . . . , un) | t |= ϕ(u1, . . . , un)}. Recall finally that a unary pattern (n = 1) is 
called a site, and a binary pattern (n = 2) is called a trip.

With the help of an unbounded supply of invisible pebbles tree-walking automata can recognize regular tree languages, 
Lemma 10. Likewise vni-pta’s can match arbitrary mso definable n-ary patterns ϕ . When n visible pebbles are dropped on a 
sequence of n nodes, the invisible pebbles can be used to evaluate the tree, and test whether it belongs to the regular tree 
language mark(T (ϕ)). In Section 10 we will consider pattern matching in detail.

Ignoring the visible pebbles, it is also possible to consider just the position of the head, and test whether the input tree 
together with that position belongs to a given regular “marked” tree language. We say that a family F of pta’s (or ptt’s) can 
perform mso head tests if, for a regular site T over 	, an automaton (or transducer) in F can test whether or not (t, h) ∈ T , 
where t is the input tree and h the position of the head at the moment of the test. Admittedly, this is a very informal 
definition. To formalize it we have to define a pta

mso (or a ptt
mso), i.e., a pta (or ptt) with mso head tests, that has rules of 

the form 〈q, σ , j, b, T 〉 → ζ where T is a regular site over 	 (specified in some effective way). Such a rule is relevant to a 
configuration 〈q, h, π〉 on a tree t if, in addition, (t, h) ∈ T . Since the regular tree languages are closed under complement, 
the complement T c of T can be tested in a rule with left-hand side 〈q, σ , j, b, T c〉. Such an automaton (or transducer) is 
deterministic if for every two distinct rules 〈q, σ , j, b, T 〉 → ζ and 〈q, σ , j, b, T ′〉 → ζ ′ , the site T ′ is the complement of the 
site T . For a family F of pta’s (or ptt’s), such as the vki-pta or vki-dptt or vk-pta, we denote by Fmso the corresponding 
family of pta

mso ’s (or ptt
mso ’s). With this definition of pta

mso we can formally define that a family F of pta’s can perform
mso head tests if for every pta

mso in Fmso an equivalent pta in F can be constructed, and similarly for ptt’s.
Obviously, as v-pta’s cannot recognize all regular tree languages, they cannot perform mso head tests either: for any 

regular tree language T the set {(t, roott) | t ∈ T } is a regular site.
The next result shows that any vi-pta that uses mso head tests as a built-in feature (i.e., any vi-pta

mso) can be replaced 
by an equivalent vi-pta without such tests. The result holds for vi-pta’s with any fixed number of visible pebbles, either 
deterministic or nondeterministic, and it also holds for the corresponding vi-ptt’s.

Lemma 12. For each k ≥ 0, the vki-pta can perform mso head tests. The same holds for the vki-dpta, vki-ptt, and vki-dptt.

Proof. Let AT be a deterministic bottom-up finite-state tree automaton recognizing the regular tree language mark(T ) over 
	 ×{0, 1}, representing the site T , trees with a single marked node. We show how a deterministic i-pta A′

T can test whether 
or not the input tree with current head position h is accepted by AT , in a computation starting in configuration 〈q0, h, ε〉
and ending in configuration 〈qyes, h, ε〉 or 〈qno, h, ε〉, where q0 is the initial state and {qyes, qno} the set of final states of A′

T . 
Moreover, it starts the computation by dropping a pebble on h, and it keeps a pebble on h until the final computation step. 
It should be obvious that this i-pta A′

T can be used as a subroutine by any vki-pta or vki-ptt A, starting in configuration 
〈(q̃, q0), h, π〉 and ending in configuration 〈(q̃, qyes), h, π〉 or 〈(q̃, qno), h, π〉, for every state q̃ and pebble stack π of A. Just 
replace each rule 〈q, σ , j, b〉 → 〈q′, α〉 of A′

T by all possible rules 〈(q̃, q), σ , j, b ∪b′〉 → 〈(q̃, q′), α〉 where b′ is a set of visible 
pebble colours of A (except that in the first rule of A′

T , which drops a pebble on h, the set b′ possibly contains an invisible 
pebble colour of A).

The post-order evaluation of Lemma 10 does not work here without precautions. If we mark node h with an invisible 
pebble the pebble becomes unobservable during the evaluation. In this way we cannot take the special “marked” position 
of h into account.17 Instead, we first evaluate the subtree rooted at h, and subsequently the subtrees rooted at the ancestors 
of h, moving along the path from h to the root of the input tree. At the start of the evaluation of a subtree, we “paint” its 
root u by adding a special colour to the pebble on u, and preserving that information when the pebble is updated. In this 
way it is always clear when the painted node is visited. We paint node h with the special additional colour � and use the 
evaluation process of Lemma 10 to compute the state of AT at h, viewing the label σ of each node as (σ , 0) except for the 
label σ of h which is treated as (σ , 1). We paint each ancestor u of h with an additional colour ( j, p) which indicates the 
child number j of the previous ancestor of h and the state p at which AT arrives at that child of u (with h as a marked 
node). Then we use, again, the evaluation process of Lemma 10 to compute the state of AT at u (with every σ viewed as 
(σ , 0)), except that the information in the pebble ( j, p) is used for the state p of the j-th child of u, which is the unique 
child that has h as a descendant. Repeating this process for each ancestor, we eventually reach the root of the tree, and 
know the outcome of the test. Then we return to the original position h picking up the pebbles left on the path from that 
position to the root.

17 Marking h with a visible pebble would easily work, showing that vi-pta’s can perform mso head tests.
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Formally, let AT = (	 × {0, 1}, P , F , δ). For convenience we will identify the symbols (σ , 0) and σ . The i-pta A′
T is 

an extension of the i-pta A′ in the proof of Lemma 10. It has the additional states q↓yes and q↓no, and in addition to the 
pebble colours p1 · · · pm of A′ it has the pebble colours (μ, p1 · · · pm) where either μ = � or μ = (i, r) for some i ∈ [1, mx	]
and r ∈ P . The additional pebbles are used to “paint” h (with μ = �) and the ancestors of h (with some μ = (i, r)). The 
automaton A′

T has all the rules of A′ , except that rules ρ4 and ρ5 will become superfluous, and rule ρ1 is replaced by the 
rule

ρ ′
1 : 〈q0,σ , j,∅〉 → 〈q◦,drop(�,ε)〉.

Thus, A′
T starts by evaluating the subtree rooted at h, with h as marked node. For m < rank(σ ) and every μ as above, 

except when μ = (m + 1, r) for some r ∈ P , A′
T has the rules

ρ
μ
2 : 〈q◦,σ , j, {(μ, p1 · · · pm)}〉 → 〈q◦,downm+1;dropε〉

ρ
μ
6 : 〈q̄p,σ , j, {(μ, p1 · · · pm)}〉 → 〈q◦, lift(μ,p1···pm);drop(μ,p1···pm p)〉

which intuitively means that the pebble (μ, p1 · · · pm) is treated in the same way as p1 · · · pm when not all children of the 
current node have been evaluated: A′

T moves to the (m + 1)-th child and calls A′ , and when A′ returns with the state p, 
A′

T adds p to the sequence of states in the pebble. However, in the exceptional case where m < rank(σ ) and μ = (m + 1, r), 
A′

T has the rule

ρ
μ
2,6 : 〈q◦,σ , j, {(μ, p1 · · · pm)}〉 → 〈q◦, lift(μ,p1···pm);drop(μ,p1···pmr)〉

which means that for the (m + 1)-th child A′
T does not call A′ but uses the state r that was previously computed and 

stored in μ.
The remaining rules of A′

T handle the situations that A′
T has just evaluated the subtrees rooted at the children of h or 

of one of the ancestors u of h, in state q◦ . The automaton A′
T computes the state p of AT at the marked node h or the 

unmarked node u, and drops the pebble (( j, p), ε) at its parent v , where j is the child number of h or u, thus indicating 
that the subtree rooted at the j-th child of v (with h as a marked node) evaluates to p. Then A′

T evaluates the subtree 
rooted at v .

For m = rank(σ ) and every μ as above, A′
T has the rules

ρ
μ
3 : 〈q◦,σ , j, {(μ, p1 · · · pm)}〉 → 〈q◦,up;drop(( j,p),ε)〉 if j �= 0,

ρ
μ
4 : 〈q◦,σ ,0, {(μ, p1 · · · pm)}〉 → 〈q↓yes, stay〉 if p ∈ F ,

ρ
μ
5 : 〈q◦,σ ,0, {(μ, p1 · · · pm)}〉 → 〈q↓no, stay〉 if p /∈ F ,

where p = δ((σ , 1), p1, . . . , pm) if μ = � and p = δ(σ , p1, . . . , pm) otherwise.
When A′

T arrives at the root of the input tree, it knows whether or not AT accepts that tree (with h as a marked node), 
and moves down to h. For the outcome x ∈ {yes, no} the rules are

〈q↓x,σ , j, {((i, r), p1 · · · pm)}〉 → 〈q↓x, lift((i,r),p1···pm);downi〉
〈q↓x,σ , j, {(�, p1 · · · pm)}〉 → 〈qx, lift(�,p1···pm)〉.

This ends the description of A′
T . �

This result can easily be extended, using the same proof technique: pta’s and ptt’s can test their visible configuration, the 
position of the head together with the positions and colours of the visible pebbles. Later we will show the more complicated 
result that pta’s and ptt’s can even test their observable configuration, i.e., the visible configuration plus the topmost pebble 
(Theorem 16).

Let C be the set of colours of a pta or ptt. To represent the visible and observable configurations, we introduce a new 
ranked alphabet 	 × 2C , such that the rank of (σ , b) equals that of σ in 	. A tree over 	 × 2C is a “coloured tree”. For 
each pebble stack π on a tree t over 	 we define two coloured trees. The visible configuration tree vis(t, π) is obtained by 
adding to the label of each node u of t the set b ⊆ C such that b contains c if and only if (u, c) occurs in π and c ∈ Cv. 
Similarly for obs(t, π), the observable configuration tree, b contains c if and only if (u, c) occurs in π and c is observable 
(i.e., c ∈ Cv or (u, c) is the top element of π ). Note that as long as a pta does not change its pebble stack by a drop- or 
lift-instruction, it behaves just as a ta on obs(t, π).

We say that a family F of pta’s (or ptt’s) can perform mso tests on the visible configuration if, for a regular site T over 
	 × 2C , an automaton (or transducer) in F can test whether or not (vis(t, π), h) ∈ T , where t is the input tree, π the 
current pebble stack, and h the current position of the head. A similar definition can be given for mso tests on the observable 
configuration. These informal definitions could be formalized in a way explained for mso head tests before Lemma 12.

We now show that the vi-pta and vi-ptt can perform mso tests on the visible configuration. Note that for a regular 
site T over 	 × 2C , mark(T ) is a regular tree language over 	 × 2C × {0, 1}.
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Lemma 13. For each k ≥ 0, the vki-pta and vki-dpta can perform mso tests on the visible configuration. The same holds for the vki-ptt 
and vki-dptt.

Proof. As in the proof of Lemma 12, let AT be a deterministic bottom-up finite-state tree automaton recognizing the 
regular tree language mark(T ) over 	 × 2C × {0, 1}, representing the site T , coloured trees with a single marked node. 
As observed in the first paragraph of that proof the i-ptt A′

T (of that proof) can be turned into a subroutine for any vki-

pta or vki-ptt A with visible colour set Cv by replacing each rule 〈q, σ , j, b〉 → 〈q′, α〉 of A′
T (except ρ ′

1) by all possible 
rules 〈(q̃, q), σ , j, b ∪ b′〉 → 〈(q̃, q′), α〉 with b′ ⊆ Cv. This subroutine can easily be turned into one that tests whether or 
not (vis(t, π), h) ∈ T as follows. For the rules corresponding in this way to ρ3, ρ4, ρ5 (in the proof of Lemma 10), change 
p = δ(σ , p1, . . . , pm) into p = δ((σ , b′, 0), p1, . . . , pm). Similarly, for ρμ

3 , ρμ
4 , ρμ

5 change p = δ((σ , 1), p1, . . . , pm) into p =
δ((σ , b′, 1), p1, . . . , pm) and, again, p = δ(σ , p1, . . . , pm) into p = δ((σ , b′, 0), p1, . . . , pm). �

We now turn to the pta as a navigational device: the trip T (A) computed by a pta A consists of all triples (t, u, v)

such that A, on input tree t , started at node u in an initial state without pebbles on the tree, walks to node v , and 
halts in a final state (possibly leaving pebbles on the tree). Formally, T (A) = {(t, u, v) ∈ T	 × N(t) × N(t) | ∃ q0 ∈ Q 0, q∞ ∈
F , π ∈ (N(t) × C)∗ : 〈q0, u, ε〉 ⇒∗

A 〈q∞, v, π〉}. Two pta’s A and B are trip-equivalent if T (A) = T (B). Since it is clear that 
L(A) = {t ∈ T	 | ∃ u ∈ N(t) : (t, roott , u) ∈ T (A)}, trip-equivalence implies (language-)equivalence. A trip T is functional if, for 
every t , {(u, v) | (t, u, v) ∈ T } is a function. Note that the trip computed by a deterministic pta is functional.

It is straightforward to check that Lemma 1 also holds for the pta as navigational device, replacing equivalence by trip-
equivalence. Thus, vki-pta’s can perform stack tests also when computing a trip. Similarly, they can perform the mso tests 
discussed in Lemmas 12 and 13, and to be discussed in Theorem 16.

In [5, Theorem 8] it is shown that every mso definable trip (tree-node relation) can be computed by a ta
mso , i.e., a tree-

walking automaton with mso head tests (and vice versa). Moreover, by (the corrected version of) [5, Theorem 9], if the trip 
is functional, then the automaton is deterministic. We will also use the fact that, according to the proof of [5, Theorem 8], 
the mso definable trips can be computed in a special way.

Proposition 14. Every mso definable trip can be computed by a tree-walking automaton with mso head tests that has the following 
two properties:

(1) it never walks along the same edge twice (in either direction), and
(2) it visits each node at most twice.

If the trip is functional, then the automaton is deterministic.

The first property means that, when walking from a node u to a node v , the automaton always takes the shortest 
(undirected) path from u to v , i.e., the path that leads from u up to the least ancestor of u and v , and then down to v . The 
second property means that the automaton does not execute two consecutive stay-instructions.

The next result provides a characterization of the mso definable trips by pebble automata that is more elegant than the 
one in [17], which uses so-called marble/pebble automata, a restricted kind of v1i-pta (marbles are invisible pebbles only 
dropped on the path from the root to the current position of the head; a single visible pebble may only be dropped and 
picked up on a tree without marbles).

Theorem 15. For each k ≥ 0, the trips computed by vki-pta’s are exactly the mso definable trips. Similarly for vki-dpta’s and functional 
trips.

Proof. Consider a trip T computed by vki-pta A. Thus, for any (t, u, v) in T , starting at node u of input tree t , A walks to 
node v and halts. Then mark(T ) can be recognized by another vki-pta as follows. First it searches (deterministically) for the 
marked starting node u, then it simulates A, and when A halts in a final state, verifies that the marked node v is reached. 
By Theorem 11 this tree language is regular and hence T is mso definable.

By Proposition 14 every mso definable trip can be computed by a tree-walking automaton B with mso head tests. Since 
(as observed above) Lemma 12 also holds for the pta as a navigational device, it can therefore be computed by an i-pta B′ . 
Moreover, if the trip is functional, then the automata B and B′ are deterministic. �

Note that the automaton B′ in the above proof always removes all its pebbles before halting. Thus, that requirement 
could be added to the definition of the trip computed by a vki-pta (implying that not every vki-pta computes a trip). This 
conforms to the idea that one should not leave garbage after a picknick.

Using the above result, or rather Proposition 14, we are now able to show that the pta and ptt can perform mso tests on 
the observable configuration, i.e., they can evaluate mso formulas ϕ(x) on the observable configuration tree obs(t, π) with 
the variable x assigned to the position of the reading head.
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Theorem 16. For each k ≥ 0, the vki-pta and vki-dpta can perform mso tests on the observable configuration. The same holds for the
vki-ptt and vki-dptt.

Proof. Let T be a regular site over 	 × 2C , and let A be a vki-pta that uses T as a test to find out whether or not 
(obs(t, π), h) ∈ T . Our aim is to construct a trip-equivalent vki-pta A′ that does not use mso tests on the observable 
configuration. The proof is exactly the same for the case where A and A′ are vki-ptt (with equivalence instead of trip-
equivalence).

Essentially, A′ simulates A. When A uses the test T , there are two cases. In the first case, either the pebble stack 
of A is empty or the colour of the topmost pebble of A is visible. Then the observable configuration equals the visible 
configuration, and so A′ can use the test T too, by Lemma 13. The remaining, difficult case is that the colour d of the 
topmost pebble of A is invisible. To implement the test T in this case it seems that A′ cannot use any additional invisible 
pebbles (as in the proof of Lemma 13), because they make pebble d unobservable. However, this is not a problem as long 
as the additional pebbles carry sufficient information about the position u of pebble d. The solution is to view T as a trip 
from u to h (the position of the head), and to keep track of an automaton Bd that computes that trip. Although Bd is 
nondeterministic, it is straightforward for A′ to employ the usual subset construction for finite-state automata.

For every d ∈ C i , let Td be the trip over 	 × 2C defined by Td = {(s, u, h) | (s′, h) ∈ T }, where s′ is obtained from s
by changing the label (σ , b) of u into (σ , b ∪ {d}). Then (obs(t, π), h) ∈ T if and only if (vis(t, π), u, h) ∈ Td , if (d, u) is 
the topmost element of π . It should be clear from the regularity of T that Td is a regular trip. Hence, by Proposition 14, 
there is a ta with mso head tests Bd that computes Td and that has the special properties mentioned there. Therefore (see 
the paragraph after Proposition 14), to keep track of the possible computations of Bd , the automaton A′ uses additional 
invisible pebbles to cover the shortest (undirected) path from u to h. These pebbles will be called beads to distinguish 
them from A’s original pebbles. Each bead carries state information on computations of Bd that start at position u (in 
an initial state) and end at position h. More precisely, each bead is a triple (S, δ, d) where S is a set of states of Bd and 
δ ∈ {up, stay} ∪ {downi | i ∈ [1, mx	]}. There is one such bead (S, δ, d) on every node v on the path from u to h (including u
and h) where S is the set of states p of Bd such that Bd has a computation on vis(t, π) starting at u in an initial state and 
ending at v in state p. Moreover, δ indicates the node w just before v on the path, which is the parent or i-th child of v if 
δ is up or downi , respectively, and which is nonexistent when v = u, if δ = stay. The bead at v is on top of the bead at w
in the pebble stack of A′ . Thus, the bead at h is always on the top of the stack of A′ and hence is always observable.

The automaton A′ can still simulate A because if the bead (S, δ, d) is at head position h, then the invisible pebble d is 
observable at h by A if and only if δ = stay. If A lifts d, then A′ lifts both (S, stay, d) and d. If A drops another pebble 
d′ at h, then so does A′ (and starts a new chain of beads on top of that pebble if d′ is invisible). When pebble d′ is lifted 
again, the beads for pebble d are still available and can be used as before.

Now, suppose that A uses the test T at position h. If A′ does not see a bead at position h, then it uses T as a test on 
the visible configuration. If A′ sees a bead (S, δ, d) at h, then A′ just checks whether or not S contains a final state of Bd , 
i.e., whether or not (vis(t, π), u, h) ∈ Td .

It remains to show how A′ computes the beads. The path of beads is initialized by A′ when A drops invisible pebble d. 
Then A′ also drops pebble d, computes the relevant set S of states of Bd , and drops bead (S, stay, d). The set S contains 
all initial states of Bd , plus all states that Bd can reach from an initial state by applying one relevant rule with a stay-
instruction (cf. the second property in Proposition 14). To find the latter states, A′ just simulates all those rules. Note that 
the mso head tests of Bd on vis(t, π) are mso tests on the visible configuration of A′ . That is because during the simulation 
of A by A′ the visible configuration vis(t, π ′) of A′ equals the visible configuration vis(t, π) of A: the pebble stack π of A
is obtained from the corresponding pebble stack π ′ of A′ by removing all (invisible) beads.

The path of beads is updated as follows. If we backtrack on the path from u to h, i.e., the current bead is (S, δ, d)

with δ �= stay and we move in the direction δ, we just lift the current bead before moving. If we move away from u, we 
must compute new bead information. Suppose the current bead on h is (S, up, d) and we move down to the i-th child hi
of h. Then the bead at hi is (S ′, up, d) where S ′ can be computed in a similar way as the set S above: A′ simulates all 
computations of Bd that start at h in a state of S and end at hi (and note that such a computation consists of one step, 
possibly followed by another step with a stay-instruction). Now suppose that the current bead is (S, downi, d), which means 
that u is a descendant of h. If we move up to the parent v of h, then the new bead is (S ′, down j, d) where j is the child 
number of h. If we move down to a child v of h with child number �= i, then the new bead is (S ′, up, d). In each of these 
cases S ′ can be computed as before, by simulating the computations of Bd from h to v .

In general, A can of course use several regular sites T1, . . . , Tn as tests on the observable configuration. It should be 
obvious how to extend the proof to handle that. The beads are then of the form (S1, . . . , Sn, δ, d) where Si is a set of states 
of a ta with mso head tests Bid that computes the trip Tid . To test Ti in the presence of such a bead, A′ just checks whether 
or not Si contains a final state of Bid . �
7. The power of the I-PTT

In this section we discuss some applications of the fact that the i-ptt can perform mso head tests (Lemma 12). We prove 
that it can simulate the composition of two tt’s of which the first is deterministic (cf. Lemma 4), and that it can simulate 
the bottom-up tree transducer.
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Composition of TT’s. We now prove that the inclusions of Lemma 4 also hold in the other direction, provided that we start 
with a deterministic tt.

Theorem 17. dTT ◦ dTT ⊆ I-dPTT and dTT ◦ TT ⊆ I-PTT.

Proof. Consider two deterministic tt’s M1 and M2. Assume that input tree t is translated into tree s by transducer M1. 
We will simulate the computation of M2 on s directly on t using a ptt M with invisible pebbles. Any action taken by 
M2 on node v of tree s will be simulated by M on the node u of t that was the position of M1 when it generated v . 
This means that if M2 moves down in the tree s to one of the children of v , the computation of M1 is simulated until 
it generates that child. On the other hand, if M2 moves up in the tree s to the parent of v , it is necessary to backtrack 
on the computation of M1, back to the moment that parent was generated. In this way, tree s is never fully reconstructed 
as a whole, but at every moment M has access to a single node of s. The necessary node, the current node of M2, is 
continuously updated by moving back and forth along the computation of M1 on t .

Moving forward on the computation of M1 is straightforward. To be able to retrace, M uses its pebbles to record the 
output-generating steps of the computation of M1 on t . Each output rule of M1 is represented by a pebble colour, and is 
put on the node u of t where it was applied. The pebble colour also codes the child number of the generated node v in s. 
Thus the pebble stack represents a (shortest) path in s from the root to v . For each node on that path the stack contains a 
pebble with the rule of M1 used to generate that node and with its child number, from bottom to top.

Note that the determinism of M1 is an essential ingredient for this construction. Simulating M2, walking along the 
virtual tree s, one has to ensure that each time a node v is revisited, the same rule of M1 is applied to u.

The above intuitive description assumes that the input tree t is in the domain L(M1) of M1. In fact, it suffices to 
construct an i-ptt M such that τM(t) = τM2 (τM1 (t)) for every such t , because M can then easily be adapted to start 
with an mso head test verifying that the input tree is in L(M1), which is regular by Corollary 9.

Let us now give the formal definitions. Let M1 = (	, �, P , {p0}, R1) be a deterministic tt and let M2 = (�, �, Q , Q 0, R2)

be an arbitrary tt. To define the i-ptt M it is convenient to extend the definition of an i-ptt with a new type of instruction: 
we allow the right-hand side of a rule to be of the form 〈q′, to-top〉, which when applied to a configuration 〈q, u, π〉 leads 
to the next configuration 〈q′, v, π〉 where v is the node in the topmost element of π . Obviously this does not extend the 
expressive power of the i-ptt: it is straightforward to write a subroutine that searches for the (unique observable) pebble 
on the tree, by first walking to the root and then executing a depth-first search of the tree until a pebble is observed.

The i-ptt M has input alphabet 	 and output alphabet �. Its set C i of pebble colours consists of all pairs (ρ, i) where 
ρ is an output rule of M1, i.e., a rule of the form 〈p, σ , j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) with p, p1, . . . , pm ∈ P , and i is a 
child number of �, i.e., i ∈ [0, mx�]. The set of states of M is defined to be Q ∪ (P × [0, mx�] × Q ) and the set of initial 
states is {p0} × {0} × Q 0. A state q ∈ Q is used by M when simulating a computation step of M2, and a state (p, i, q) is 
used by M when simulating the computation of M1 that generates the i-th child of the current node of M2 (keeping the 
state q of M2 in memory). Initially, M simulates M1 in order to generate the root of its output tree. The rules of M are 
defined as follows.

First we define the rules that simulate M1. Let ρ : 〈p, σ , j〉 → ζ be a rule in R1. If ζ = 〈p′, α〉 and α is a move 
instruction, then M has the rules 〈(p, i, q), σ , j, b〉 → 〈(p′, i, q), α〉 for every i ∈ [0, mx�], q ∈ Q , and b ⊆ C i with #(b) ≤ 1. 
If ρ is an output rule with ζ = δ(〈p1, stay〉, . . . , 〈pm, stay〉), then M has the rules 〈(p, i, q), σ , j, b〉 → 〈q, drop(ρ,i)〉 for every 
i, q, b as above. Thus, M simulates M1 until M1 generates an output node, drops the corresponding pebble, and continues 
simulating M2.

Second we define the rules that simulate M2. Let 〈q, δ, i〉 → ζ be a rule in R2 and let ρ : 〈p, σ , j〉 → δ(〈p1, stay〉, . . . ,
〈pm, stay〉) be an output rule in R1 (with the same δ). Then M has the rule 〈q, σ , j, {(ρ, i)}〉 → ζ ′ where ζ ′ is defined as 
follows. If ζ = 〈q′, down�〉, then ζ ′ = 〈(p�, �, q′), stay〉. If ζ = 〈q′, up〉, then ζ ′ = 〈q′, lift(ρ,i); to-top〉. Otherwise, ζ ′ = ζ . Thus, 
M simulates every output rule or stay rule of M2 without changing its current node and current pebble stack, because the 
current node of M2 stays the same. To simulate a down�-instruction of M2, M starts simulating M1 in state p� with the 
child number � of the next node of M2. Finally, M simulates an up-instruction of M2 by lifting its topmost pebble and 
walking to the new topmost pebble, where it continues the simulation of M2. �

Taking Theorem 17 and Lemma 4 together, we obtain that dTT◦dTT ⊆ I-dPTT ⊆ I-PTT ⊆ TT◦TT. It is open whether or not 
the first and last inclusions are proper. A way to express I-dPTT and I-PTT in terms of tree-walking tree transducers (without 
pebbles) would be to allow those transducers to have infinite input and output trees. Let us denote by dTT∞ the class of 
transductions realized by deterministic tt’s that have finite input trees but can output infinite trees. As a particular example, 
the tt N in the proof of Lemma 4 can be turned into such a deterministic tt N∞ by removing all rules 〈 f , σ , j〉 → ⊥. This 
N∞ preprocesses every input tree t into a unique “tree of trees” t∞ consisting of top level t and infinitely many levels of 
copies t̂u of t . Moreover, let us denote by ∞TT the class of transductions realized by tt’s that output finite trees but can 
walk on infinite input trees, and similarly for ∞dTT. It should be clear that the tt M′ in the proof of Lemma 4 can also be 
viewed as working on input tree t∞ rather than a nondeterministically generated t′ (and thus never aborts its simulation 
of M). It should also be clear that the proof of Theorem 17 still works when M1 produces an infinite output tree as input 
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tree for M2.18 Taking these results together, we obtain that I-dPTT = dTT∞ ◦ ∞dTT and I-PTT = dTT∞ ◦ ∞TT. The formal 
definitions are left to the reader. Other characterizations of I-dPTT will be shown in Section 15 (Theorem 53), where we 
also show that I-dPTT ⊆ dTT3 (Corollary 54).

Bottom-up tree transducers. The classical top-down and bottom-up tree transducers are compared to the v-ptt at the end 
of [41, Section 3.1]. Obviously, tt’s generalize top-down tree transducers. In fact, the latter correspond to tt’s that do not 
use the move instructions up and stay. Moreover, the classical top-down tree transducers with regular look-ahead can be 
simulated by tt’s with mso head tests, and hence by i-ptt’s. In general, bottom-up tree transducers cannot be simulated by
v-ptt’s, because otherwise every regular tree language could be accepted by a v-pta (see below for the details), which is 
false as proved in [8]. We will show that every bottom-up tree transducer can be simulated by an i-ptt. This will not be 
used in the following sections.

A bottom-up tree transducer is a tuple M = (	, �, P , F , R) where 	 and � are ranked alphabets, P is a finite set of 
states with a subset F of final states, and R is a finite set of rules of the form σ(p1(x1), . . . , pm(xm)) → p(ζ ) such that 
m ∈ N , σ ∈ 	(m) , p1, . . . , pm, p ∈ P and ζ ∈ T�({x1, . . . , xm}). For p ∈ P , the sets τp ⊆ T	 × T� are defined inductively as 
follows: the pair (σ (t1, . . . , tm), s) is in τp if there is a rule as above and there are pairs (ti, si) ∈ τpi for all i ∈ [1, m] such 
that s = ζ [s1, . . . , sm], which is the result of substituting si for every occurrence of xi in ζ . The transduction τM realized 
by M is the union of all τp with p ∈ F . The transducer M is deterministic if it does not have two rules with the same 
left-hand side. For more information see, e.g., [29, Chapter IV].

For every regular tree language L there is a deterministic bottom-up finite-state tree automaton A = (	, P , F , δ) (see the 
proof of Lemma 10) that recognizes L and hence there is a deterministic bottom-up tree transducer M that realizes the 
transduction τL = {(t, 1) | t ∈ L} ∪ {(t, 0) | t /∈ L}. In fact, M = (	, {0, 1}, P , F , R) where 0 and 1 have rank 0 and R is the set 
of all rules σ(p1(x1), . . . , pm(xm)) → p(i) such that δ(σ , p1, . . . , pm) = p and i = 1 if p ∈ F , i = 0 otherwise. A v-ptt that 
computes τL can be turned into a v-pta that accepts L by removing every output rule 〈q, σ , j, b〉 → 0 and changing every 
output rule 〈q, σ , j, b〉 → 1 into 〈q, σ , j, b〉 → 〈qfin, stay〉 where qfin is the final state.

Let B (dB) denote the class of transductions realized by (deterministic) bottom-up tree transducers.

Theorem 18. B ⊆ I-PTT and dB ⊆ I-dPTT.

Proof. Let M = (	, �, P , F , R) be a bottom-up tree transducer. Intuitively, for a given input tree t , the transducer M visits 
each node u of t exactly once. It arrives at the children of u in certain states p1, . . . , pm with certain output trees s1, . . . , sm , 
and applies a rule σ(p1(x1), . . . , pm(xm)) → p(ζ ) where σ is the label of u. Thus, it arrives at u in state p with output 
ζ [s1, . . . , sm].

We construct an i-ptt M′ with mso head tests such that τM′ = τM (see Lemma 12). The transducer M′ uses the rules 
of M as pebble colours. The behaviour of M′ on a given input tree t is divided into two phases. In the first phase M′
walks through t and (nondeterministically) drops one pebble c on each node u of t , in post-order. The input symbol σ in 
the left-hand side of rule c must be the label of u. Intuitively, c is the rule σ(p1(x1), . . . , pm(xm)) → p(ζ ) applied by M
at u during a possible computation. When M drops c on u it uses mso head tests to check that M has a computation on t
that arrives at the i-th child ui of u in state pi , for every i ∈ [1, m]. This can be done because the state behaviour of M
on t is that of a bottom-up finite-state tree automaton. Thus, the tree language L p = {t ∈ T	 | ∃ s : (t, s) ∈ τp} is regular for 
every p ∈ P and hence the site Ti = {(t, u) | t|ui ∈ Lpi } is also regular, as can easily be seen. Note that if M is deterministic, 
then this first phase of M′ is deterministic too, because M arrives at each node in a unique state (during a successful 
computation). In the second, deterministic phase M′ moves top-down through t , checks that the states in the guessed rules 
are consistent, and computes the corresponding output. First M′ checks for the pebble c = σ(p1(x1), . . . , pm(xm)) → p(ζ )

at the root u, that the state p is in F . If so, it starts a process that is the same for every node u of t . It lifts pebble c and 
goes into state [c, ζ ], in which it will output the �-labeled nodes of ζ , without leaving u. In state q = [c, δ(ζ1, . . . , ζn)], it 
uses the output rules 〈q, σ , j, ∅〉 → δ(〈[c, ζ1], stay〉, . . . , 〈[c, ζn], stay〉). When M′ is in a state [c, xi], it calls a subroutine Si . 
Subroutine Si walks through the subtrees t|um, . . . , t|u(i+1) of t , depth-first right-to-left, lifts the pebbles at all the nodes of 
those trees in reverse post-order (which is possible because the pebbles were dropped in post-order), and returns control 
to M′ , which continues by moving in state c to child ui where it observes the pebble at ui (again, because of the post-
order dropping). Then M checks that the state in the right-hand side of that pebble is pi , and repeats the above process 
for node ui instead of u. It should be clear that in this way M′ simulates the computations of M, and so τM′ = τM . Note 
that the bottom-up transducer M can disregard computed output, because in a rule as above it may be that xi does not 
occur in ζ . In such a case M′ clearly does not compute that output either, in the second phase, whereas it has checked in 
the first phase that M indeed has a computation that arrives in state pi at the i-th child. Note also that if xi occurs twice 
in ζ , then M′ simulates in the second phase twice the same computation of M on the i-th subtree (which was guessed in 
the first phase). �
18 To see that L(M1) is regular, construct an ordinary nondeterministic tt N by adding to M1 all rules 〈q, σ , j〉 → ⊥ such that M1 has no rule with 

left-hand side 〈q, σ , j〉, and all rules 〈q, σ , j〉 → � such that M1 has a rule with that left-hand side (where ⊥ and � are new output symbols of rank 0). 
Then L(M1) is the complement of τ−1

N (R) where R is the set of output trees of N with an occurrence of ⊥. Now use Proposition 6(1).
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8. Look-ahead tests

The results on look-ahead in this section are only needed in the next section (and in a minor way in Section 11). They 
also hold for the pta as navigational device, computing a trip.

We say that a family F of pta’s (or ptt’s) can perform look-ahead tests if an automaton (or transducer) A in F can test 
whether or not a ptt B (not necessarily in F ) has a successful computation when started in the current situation of A (i.e., 
position of the head and stack of pebbles). We require that 	A = 	B , CA

v ⊆ CB
v , CA

i ⊆ CB
i , and kA ≤ kB (where 	A is 

the input alphabet of A, and similarly for the other notation). Since we are only interested in the existence of a successful 
computation, and not in its output tree, we are actually using alternating pta’s as look-ahead device (cf. Section 3). In 
particular, we also allow a pta to be used as look-ahead B, viewing it as a ptt as in the proof of Theorem 11.

In the formal definition of a pta or ptt with look-ahead tests (cf. the formal definition of mso head tests before Lemma 12), 
the rules are of the form 〈q, σ , j, b, B〉 → ζ or 〈q, σ , j, b, ¬ B〉 → ζ which are relevant to a given configuration 〈q, h, π〉 of A
on tree t if the transducer B does or does not have a successful computation on t that starts in the situation 〈h, π〉, i.e., if 
there do or do not exist p0 ∈ Q B

0 and s ∈ T�B such that 〈p0, h, π〉 ⇒∗
t,B s (where �B is the output alphabet of B), or in the 

case of a pta B, if there do or do not exist p0 ∈ Q B
0 , p f ∈ FB , and 〈u, π〉 ∈ SitB(t) such that 〈p0, roott , ε〉 ⇒∗

t,B 〈p f , u, π〉
(where FB is the set of final states of B).

Theorem 19. For each k ≥ 0, the vki-pta and vki-dpta can perform look-ahead tests. The same holds for the vki-ptt and vki-dptt.

Proof. Let A be a vki-pta that performs a look-ahead test by calling some vmi-ptt B (with k ≤ m). We wish to construct 
a trip-equivalent vki-pta A′ that does not perform such look-ahead tests. By Lemma 1 we may construct A′ as a pta with 
stack tests, i.e., a pta that can test whether its pebble stack is empty and if so, what the colour of the topmost pebble is.

As usual, A′ simulates A. Suppose that A uses the look-ahead test B in situation 〈h, π〉. When no pebbles are dropped, 
i.e., π = ε, the test whether B, started in that situation, has a successful computation, is an mso head test. Indeed, the site 
T = {(t, h) | ∃ p0 ∈ Q B

0 , s ∈ T�B : 〈p0, h, ε〉 ⇒∗
t,B s} is regular, as mark(T ) is the domain of the vmi-ptt B′ that starts in the 

root, looks for the marked node h, and then simulates B. Domains are regular by Corollary 9, and A′ can perform mso head 
tests by Lemma 12.

In general, one may imagine that A′ implements the look-ahead test by simulating B. However, when A′ is ready 
with the simulation of B, that started with the stack π of A, A′ must be able to recover π to continue the simulation 
of A. Note that B can inspect π , thereby possibly destroying part of π and adding something else. For this reason the 
computations of B starting at the position of the topmost pebble of π will be precomputed. With each pebble dropped 
by A, the automaton A′ stores the set S of states p of B for which B has a successful computation when started in state p
at the position u of the topmost stack element (and with the current stack of A). Now a successful computation of B can be 
safely simulated, consisting of a part where the pebbles of B are on top of the stack π inherited from A, possibly followed 
by a precomputed part where B inspects π , starting with a visit to u. We discuss how these state sets are determined, 
and how they are used (by A′) to perform the look-ahead test. Rather then simulating B, A′ will use mso tests on the 
observable configuration, which is possible by Theorem 16. The colour sets of A′ are C ′

v = Cv × 2Q B
and C ′

i = C i × 2Q B
.

If A drops the first pebble c (i.e., π = (h, c)), then A′ drops the pebble (c, S) where it determines for every state p of B
whether or not p ∈ S using an mso head test: construct B′ as above except that it now drops c at the marked node h before 
simulating B in state p. Thus, this time, the domain of B′ is mark(T ) with T = {(t, h) | ∃ s ∈ T�B : 〈p, h, c〉 ⇒∗

t,B s}.
Suppose now that A uses the look-ahead test B when it is in situation 〈h, π〉 with π �= ε, and suppose that the topmost 

pebble of π has colour d and that the set of visible pebble colours that occur in π is Cv(π) = {c1, . . . , c�} ⊆ Cv, with 
� ∈ [0, k]. Then the colour of the topmost pebble of the stack π ′ of A′ is (d, S) for some set S of states of B, and the set 
of visible pebble colours that occur in π ′ is Cv(π

′) = {(c1, S1), . . . , (c�, S�)} for some S1, . . . , S� . Since A′ can perform stack 
tests, it can determine (d, S). Moreover, it should be clear that A′ can determine Cv(π

′), and hence Cv(π), by an mso test 
on the visible configuration. With this topmost colour d, this state information S , and this set Cv(π) of visible pebbles, the 
look-ahead test can be performed by A′ as an mso test on the observable configuration, as follows. Consider the observable 
configuration tree obs(t, π ′) with the current node h marked, see Theorem 16. We want to show that there is a regular 
site T over 	 × 2C ′

such that (obs(t, π ′), h) ∈ T if and only if there exist p0 ∈ Q B
0 and s ∈ T�B such that 〈p0, h, π〉 ⇒∗

t,B s. 
Indeed, mark(T ) is the domain of a vm′ i-ptt B′ , with m′ = m − �. It first searches for the position u of the topmost pebble, 
which is the unique node of obs(t, π ′) of which the label contains the colour (d, S). It drops the special invisible pebble �
on u, and then proceeds to the marked node h, starts simulating B and halts successfully when it observes pebble � at 
position u with B in a state of S , or when it never has observed � and B halts successfully (meaning that pebbles are 
still on top of � when visiting u). Note that B′ can simulate B, which walks on t with pebbles rather than on obs(t, π ′), 
because the colours in the labels of the nodes of obs(t, π ′) contain the observable pebbles on t in the stack π . Also, B′ does 
not apply rules of B that contain a dropci

-instruction with ci ∈ Cv(π). The domain mark(T ) of B′ is regular and A′ can 
perform the mso test T on its observable configuration.

The same reasoning shows that the state set for the next pebble c dropped by A can be computed by mso tests on the 
observable configuration: again B′ first drops the pebble c on h before starting the simulation of B in any state p.
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Finally it should be clear that if A uses the look-ahead tests B1, . . . , Bn , then state information for every Bi should be 
stored in the pebbles, i.e., they are of the form (c, S1, . . . , Sn) where Si is a set of states of Bi . �

A natural question is now whether Theorem 19 also holds for pta’s and ptt’s that are allowed to perform stack tests,
mso head tests, and mso tests on the visible and observable configuration. The answer is yes.

Let us first consider the case of stack tests. Roughly speaking, if A uses look-ahead tests B1, . . . , Bn , then we just apply 
the construction of Lemma 1 to both A and all Bi , i ∈ [1, n], and then apply Theorem 19 to the resulting equivalent 
(ordinary) pta A′ that calls the (ordinary) ptt’s B′

1, . . . , B′
n . It should be noted that even if A does not use stack tests but 

some Bi does, the construction of Lemma 1 must be applied to A too, because the stack that Bi inherits from A must 
contain the necessary additional information concerning the colours of previously dropped pebbles. Vice versa, if A (or 
another B j ) uses stack tests but Bi does not, then Bi can just ignore the additional information in the stack of A, but it is 
also correct to apply the construction of Lemma 1 to Bi . However, not only the additional information in the stack should 
be passed from A′ to B′

1, . . . , B′
n , but also the additional information in the finite state of A′ . Thus, to be more precise, if 

A is in state q and uses the look-ahead test Bi , then whenever A′ is in state (q, γ ), it should use the look-ahead test B′
i(γ )

that is obtained from B′
i by changing its set Q Bi

0 × {ε} of initial states into Q Bi
0 × {γ }.

For the case of mso head tests and mso tests on the visible configuration the proof is easier. The constructions of 
Lemmas 12 and 13 can be applied to A and B1, . . . , Bn independently, depending on whether they use such tests or not. 
The reason is that these tests are implemented by subroutines for which the pebble stack need not be changed. Finally, for 
the case of mso tests on the observable configuration the construction of Theorem 16 is again applied simultaneously to all 
of A and B1, . . . , Bn , with beads that take care of all the regular sites T that are used by both A and B1, . . . , Bn as tests. 
That ensures that the beads of A′ also contain the information needed by B′

1, . . . , B′
n . Note that in this case (as opposed to 

the case of stack tests above) A′ does not carry any additional information in its finite state and thus, whenever A uses Bi
as look-ahead test, A′ can use B′

i as look-ahead test.
A similar natural question is whether Theorem 19 also holds for pta’s and ptt’s that use look-ahead, in particular whether 

we can allow the look-ahead transducer to use another transducer as look-ahead test. The answer is again yes, with a similar 
solution. In fact it can be shown that the vki-pta (and vki-ptt) even can perform iterated look-ahead tests, that is, they can 
use look-ahead tests that use look-ahead tests that use . . . look-ahead tests.

Formally, we define for n ≥ 0 the notion of a pta or ptt A of (look-ahead) depth n, by induction on n. Simultaneously we 
define the finite sets test(A) and test∗(A) of ptt’s, where test(A) contains the look-ahead tests of A, and test∗(A) contains 
its iterated look-ahead tests plus A itself. For n = 0, a pta or ptt A of depth 0 is just a pta or ptt (without look-ahead tests). 
Moreover, test(A) =∅ and test∗(A) = {A}. For n ≥ 0, a pta or ptt A of depth n + 1 uses as look-ahead tests arbitrary ptt’s 
of lower depth, i.e., it has rules 〈q, σ , j, b, B〉 → ζ or 〈q, σ , j, b, ¬ B〉 → ζ where B is a ptt of depth m ≤ n. Furthermore, 
test(A) is the set of all ptt’s of depth m ≤ n that A uses as look-ahead tests, and test∗(A) = {A} ∪ ⋃

B∈test(A) test∗(B). 
A pta or ptt with iterated look-ahead tests is one of depth n, for some n ∈N . Note that a pta (or ptt) of depth 1 is the same 
as a pta (or ptt) with look-ahead tests. The definition of the semantics of a pta or ptt with iterated look-ahead tests is by 
induction on the depth n, and is entirely analogous to the one for the case n = 1 as given in the beginning of this section.

Theorem 20. For each k ≥ 0, the vki-pta and vki-dpta can perform iterated look-ahead tests. The same holds for the vki-ptt and
vki-dptt.

Proof. We will show that for every vki-ptt C of depth n ≥ 1 we can construct an equivalent vki-ptt C′ of depth n − 1. The 
result then follows by induction. Since the construction generalizes the one of Theorem 19 (which is the case n = 1), we 
will need all ptt’s in test∗(C′) to use stack tests and mso tests on the observable configuration. Thus, for the induction to 
work, we first have to prove that every v�i-ptt of depth m ≥ 1 can perform such tests. For the case m = 1 we have already 
argued this after Theorem 19, and the general case can be proved in a similar way. Let D be a v�i-ptt of depth m such that 
all A ∈ test∗(D) perform stack tests. We just apply the construction of Lemma 1 simultaneously to every ptt A ∈ test∗(D), 
resulting in the ptt A′ . Moreover, for all A, B ∈ test∗(D), if A is in state q and uses look-ahead test B, then whenever A′ is 
in state (q, γ ), it uses look-ahead test B′(γ ). Obviously, every B′(γ ) is of the same depth as B, and hence the resulting
v�i-ptt D′ is of the same depth m as D. For the mso tests the argument is completely analogous to the argument for m = 1
after Theorem 19, applying the appropriate constructions simultaneously to all ptt A ∈ test∗(D).

Now let C be a vki-ptt of depth n ≥ 1 and let us construct an equivalent vki-ptt C′ of smaller depth. The argument is 
similar to those above. Let P0 be the set of all B ∈ test∗(C) of depth 0, i.e., all ptt without look-ahead tests, and let P1
contain all A ∈ test∗(C) of depth ≥ 1. We now apply the construction of Theorem 19 simultaneously to every ptt A ∈ P1, 
resulting in a ptt A′ that stores state information of every B ∈ P0 in the pebbles. If A1 ∈ P1 uses look-ahead test A2 ∈ P1, 
then A′

1 uses look-ahead test A′
2. Note that if A ∈ P1 uses look-ahead test B ∈ P0, then A′ uses an mso test instead. Thus, 

clearly, the depth of every A′ is one less than the depth of A, and so the depth of the resulting vki-ptt C′ is n − 1. Finally, 
we remove the stack tests and mso tests from C′ and its iterated look-ahead tests as explained above for D. �

Although this result does not seem practically useful, it will become important when we propose the query language 
Pebble XPath in the next section, as an extension of Regular XPath. Intuitively, Pebble XPath expressions are similar to i-pta’s
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with iterated look-ahead tests. We note that ta’s with iterated look-ahead tests are used in [53] to prove that Regular XPath 
is not mso complete.

9. Document navigation

We define Pebble XPath, an extension of Regular XPath [39] with pebbles. Due to its potential application to navigation in 
XML documents, it works on (nonempty) forests rather than trees. We prove that the trips defined by the path expressions 
of Pebble XPath are exactly the mso definable trips on forests.

Pebble XPath has path expressions (denoted α, β) and node expressions (denoted ϕ, ψ ). These expressions concern 
forests over an (unranked) alphabet 	 of node labels, or tags, that can be chosen arbitrarily. Since we are mainly inter-
ested in path expressions, we view the node expressions as auxiliary. A path expression describes a walk through a given 
nonempty forest f over 	 during which invisible coloured pebbles can be dropped on and lifted from the nodes of f , in a 
nested (stack-like) manner. Such a walk steps through f from node to node following both the vertical and horizontal edges 
in either direction. The context in which a path expression is evaluated (i.e., the situation at the start of the walk) is a pair 
〈u, π〉 consisting of a node u of f and a stack π of pebbles that lie on the nodes of f . Formally, a context, or situation, on 
a forest f is an element of the set Sit( f ) = N( f ) × (N( f ) × C)∗ , where N( f ) is the set of nodes of f and C is the finite set 
of colours of the pebbles (that can be chosen arbitrarily). The walk ends in another context. Thus, the semantics of a path 
expression is a binary relation on Sit( f ). Similarly, the semantics of a node expression is a subset of Sit( f ), i.e., a test on a 
given context. Note that the notion of a context on a forest is entirely similar to that of a situation on a ranked tree for an
i-pta with (invisible) colour set C .

For the syntax of Pebble XPath, we start with the basic path expressions, with c ∈ C :

α0 ::= child | parent | right | left | dropc | liftc

The first four expressions operate on the context node only (in the usual way, moving to a child, the parent, the next sibling, 
and the previous sibling, respectively), whereas the last two also operate on the pebble stack (dropping/lifting a pebble of 
colour c on/from the context node u, which is modeled by pushing/popping the pair (u, c) on/off the stack). The syntax of 
path expressions is

α ::= α0 | ?ϕ | α ∪ β | α/β | α∗

where β is an alias of α. The three last expressions show the usual regular operations on binary relations: union, composi-
tion, and transitive-reflexive closure. The expression ?ϕ denotes the identity relation on the set of contexts defined by the 
node expression ϕ , i.e., it filters the current context by requiring that ϕ is true.

We now turn to the node expressions and start with the basic ones, with σ ∈ 	:

ϕ0 ::= haslabelσ | isleaf | isroot | isfirst | islast | haspebblec

The first five expressions test whether the context node has label σ , whether it is a leaf, a root, the first among its siblings, 
or the last among its siblings. The last expression (which is the only one that also uses the pebble stack) tests whether 
the topmost pebble, i.e., the most recently dropped pebble, lies on the context node and has colour c. The syntax of node 
expressions is

ϕ ::= ϕ0 | 〈α〉 | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where ψ is an alias of ϕ . The last three expressions show the usual boolean operations. The expression 〈α〉 is like a 
predicate [α] in XPath 1.0, which filters the context by requiring the existence of at least one successful α-walk starting 
from this context. In terms of tree-walking automata it is a look-ahead test. We will also consider the language Pebble CAT, 
which is obtained from Pebble XPath by dropping the filter tests ϕ ::= 〈α〉. The expressions of Pebble CAT are caterpillar 
expressions extended with pebbles.

The formal semantics of Pebble XPath expressions is given in Tables 3 and 4. For every nonempty forest f over 	, the 
semantics �α� f ⊆ Sit( f ) × Sit( f ) and �ϕ� f ⊆ Sit( f ) of path and node expressions are defined, where u, u′ vary over N( f ), 
π, π ′ vary over (N( f ) × C)∗ , and p varies over N( f ) × C . Note that �parent� f = �child�−1

f , �left� f = �right�−1
f , and 

�liftc� f = �dropc�
−1
f . Note also that the set �〈α〉� f is the domain of the binary relation �α� f .

The filtering XPath expression α[β] of XPath 1.0 can here be defined as α[β] = α/?〈β〉. Also, the node expression 
loop(α) from [30,52] can be defined as loop(α) = 〈dropc/α/liftc〉 where c is a colour not occurring in α. Then 
�loop(α)� f = {〈u, π〉 | (〈u, π〉, 〈u, π〉) ∈ �α� f } = {〈u, π〉 | (〈u, ε〉, 〈u, ε〉) ∈ �α� f }, because α cannot inspect the stack π and 
it must return to u in order to lift pebble c.

Two path expressions α and β are equivalent, denoted by α ≡ β , if �α� f = �β� f for every nonempty forest f over 	, 
and similarly for node expressions. Note that ?(ϕ ∧ ψ) ≡ ?ϕ/?ψ and ?(ϕ ∨ ψ) ≡ ?ϕ ∪ ?ψ . Hence, using De Morgan’s laws, 
the syntax for node expressions can be replaced by ϕ ::= ϕ0 | ¬ϕ0 | 〈α〉 | ¬〈α〉 for Pebble XPath, and ϕ ::= ϕ0 | ¬ϕ0 for 
Pebble CAT. Thus, keeping only the basic node expressions, we can always assume that the syntax for path expressions is
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Table 3
Semantics of Pebble XPath path expressions.

�child� f = {(〈u,π 〉, 〈u′,π 〉) | u′ is a child of u}
�parent� f = {(〈u,π 〉, 〈u′,π 〉) | u′ is the parent of u}
�right� f = {(〈u,π 〉, 〈u′,π 〉) | u′ is the next sibling of u}
�left� f = {(〈u,π 〉, 〈u′,π 〉) | u′ is the previous sibling of u}
�dropc� f = {(〈u,π 〉, 〈u,π p〉) | p = (u, c)}
�liftc� f = {(〈u,π p〉, 〈u,π 〉) | p = (u, c)}
�?ϕ� f = {(〈u,π 〉, 〈u,π 〉) | 〈u,π 〉 ∈ �ϕ� f }
�α ∪ β� f = �α� f ∪ �β� f

�α/β� f = �α� f ◦ �β� f

�α∗� f = �α�∗
f

Table 4
Semantics of Pebble XPath node expressions.

�haslabelσ � f = {〈u,π 〉 | u has label σ }
�isleaf� f = {〈u,π 〉 | u is a leaf}
�isroot� f = {〈u,π 〉 | u is a root}
�isfirst� f = {〈u,π 〉 | u is a first sibling}
�islast� f = {〈u,π 〉 | u is a last sibling}
�haspebblec� f = {〈u,π p〉 | p = (u, c)}
�〈α〉� f = {〈u,π 〉 | ∃〈u′,π ′〉 : (〈u,π 〉, 〈u′,π ′〉) ∈ �α� f }
�¬ϕ� f = Sit( f ) \ �ϕ� f

�ϕ ∧ ψ� f = �ϕ� f ∩ �ψ� f

�ϕ ∨ ψ� f = �ϕ� f ∪ �ψ� f

α ::= α0 | ?ϕ0 | ?¬ϕ0 | ?〈β〉 | ?¬〈β〉 | α ∪ β | α/β | α∗

for Pebble XPath, and hence

α ::= α0 | ?ϕ0 | ?¬ϕ0 | α ∪ β | α/β | α∗

for Pebble CAT. In that case we will say that we assume the syntax to be in normal form.
Note also that all basic node expressions except haslabelσ are redundant, because isleaf ≡ ¬〈child〉 (a node 

is a leaf if and only if it has no children), isroot ≡ ¬〈parent〉, isfirst ≡ ¬〈left〉, islast ≡ ¬〈right〉, and 
haspebblec ≡ 〈liftc〉. However, these basic node expressions were kept in the syntax, because we also wish to con-
sider the subset Pebble CAT in which there are no filter tests 〈α〉. Note finally that when dropc , liftc , and haspebblec
are removed from Pebble XPath, the resulting formalism is exactly Regular XPath [39] (and in the semantics the stack can, 
of course, be disregarded).

The purpose of Pebble XPath is the same as that of XPath: to define trips, i.e., binary patterns. Recall from Section 2 that 
a trip T over an unranked alphabet 	 is a set T ⊆ {( f , u, v) | f ∈ F	, u, v ∈ N( f )} where F	 is the set of forests over 	. 
Note that f is always a nonempty forest. For a path expression α (based on 	 and some C ) we say that α defines the trip
T (α) = {( f , u, v) | ∃ π ∈ (N( f ) × C)∗ : (〈u, ε〉, 〈v, π〉) ∈ �α� f }. We now define a trip T over 	 to be definable in Pebble XPath
if there exists a Pebble XPath path expression α such that T = T (α). And similarly for Pebble CAT. The next theorem states 
that Pebble XPath and Pebble CAT have the same expressive power as mso logic on forests.

Theorem 21. A trip is definable in Pebble XPath if and only if it is definable in Pebble CAT if and only if it is mso definable.

As such our expressions have the desirable property of being a Core (and even Regular) XPath extension that is complete 
for mso definable binary patterns. Other such extensions were considered in [30] (TMNF caterpillar expressions) and [52]
(μRegular XPath). Pebble CAT is similar to PCAT of [30] which has the same expressive power as the v-pta (and thus less 
than mso by [8]). In PCAT the nesting of pebbles is defined syntactically rather than semantically.

The proof of Theorem 21 is given in the remainder of this section. It should be clear that Pebble CAT is closely related to 
the i-pta. In fact, we will show later that their relationship can be viewed as the classical equivalence of regular expressions 
and finite automata. The remainder of the proof is then directly based on the fact that the i-pta has the same expressive 
power as mso logic for defining trips on trees (Theorem 15), and on the fact that the i-pta can perform iterated look-ahead 
tests (Theorem 20). One technical problem is that these theorems are formulated for ranked trees rather than unranked 
forests. Thus we start by adapting Pebble XPath to ranked trees and showing that it suffices to prove Theorem 21 for ranked 
trees instead of forests.
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Table 5
Basic path expressions α0 for a ranked tree t .

�down1�t = {(〈u,π 〉, 〈u′,π 〉) | u′ is the first child of u}
�down2�t = {(〈u,π 〉, 〈u′,π 〉) | u′ is the second child of u}
�up�t = {(〈u,π 〉, 〈u′,π 〉) | u′ is the parent of u}
�dropc�t = {(〈u,π 〉, 〈u,π p〉) | p = (u, c)}
�liftc�t = {(〈u,π p〉, 〈u,π 〉) | p = (u, c)}

Table 6
Basic node expressions ϕ0 for a ranked tree t .

�haslabelσ �t = {〈u,π 〉 | u has label σ }
�ischild0�t = {〈u,π 〉 | u is the root}
�ischild1�t = {〈u,π 〉 | u is a first child}
�ischild2�t = {〈u,π 〉 | u is a second child}
�haspebblec�t = {〈u,π p〉 | p = (u, c)}

Pebble XPath on ranked trees. Since ranked trees are a special case of unranked forests, we need not change Pebble XPath 
for its use on ranked trees. However, for its comparison to the i-pta it is more convenient to change its basic path expres-
sions α0 and basic node expressions ϕ0 as follows:

α0 ::= down1 | down2 | up | dropc | liftc

ϕ0 ::= haslabelσ | ischild0 | ischild1 | ischild2 | haspebblec

The semantics of these basic expressions for a tree t over 	 is given in Tables 5 and 6. Since we will only be interested 
in ranked trees that encode forests, we assume that 	 is a ranked alphabet and that the rank of each element of 	 is 
at most 2. Note that up has the same semantics as parent, and that the semantics of dropc , liftc , haslabelσ , and 
haspebblec is unchanged. The remaining expressions of Pebble XPath, and their semantics (for t instead of f ), are the 
same as for forests, cf. the last four lines of Tables 3 and 4.

We first show that for every path expression α on forests there is a path expression α′ that computes the same trip as α
on the binary encoding of the forests as ranked trees. We use the encoding enc′ defined in Section 2, which encodes forests 
over the alphabet 	 as ranked trees over the associated ranked alphabet 	′ . Note that for every forest f , enc′( f ) has the 
same nodes as f . For a trip T on forests, we define the encoded trip enc′(T ) on ranked trees by enc′(T ) = {(enc′( f ), u, v) |
( f , u, v) ∈ T }.

Lemma 22. For every Pebble XPath path expression α on forests over 	, a Pebble XPath path expression α′ on ranked trees over 	′ can 
be constructed in polynomial time such that T (α′) = enc′(T (α)). If α is a Pebble CAT expression, then so is α′.

Proof. The proof is an elementary coding exercise. Let us start with Pebble XPath. We will, in fact, define α′ such 
that �α′�enc′( f ) = �α� f for every f ∈ F	 , which implies the result. It clearly suffices to do this for basic path expres-
sions α0, and similarly for basic node expressions ϕ0. As observed before, all basic node expressions except haslabelσ

are redundant, so it suffices to define haslabel′
σ ≡ haslabelσ 11 ∨ haslabelσ 10 ∨ haslabelσ 01 ∨ haslabelσ 00 . 

We now turn to the basic path expressions. We will use the auxiliary basic path expressions child1 and parent1
with the semantics �child1� f = {(〈u, π〉, 〈u′, π〉) | u′ is the first child of u} and �parent1� f = �child1�

−1
f . Since clearly 

child≡ child1/right∗ and parent≡ left∗/parent1, it suffices to define child′
1 and parent′

1 instead of child′
and parent′ , as follows: child′

1 ≡ ?ϕ1/down1 where ϕ1 is the disjunction of haslabelσ 11 and haslabelσ 10 for all 
σ ∈ 	, and parent′

1 ≡ ?ischild1/up/?ϕ1. Then we define right′ ≡ down2 ∪ ?ϕ2/down1 where ϕ2 is the disjunc-
tion of all haslabelσ 01 for σ ∈ 	. Since �left� f is the inverse of �right� f , we define left′ ≡ ?ischild2/up ∪
?ischild1/up/?ϕ2. Finally, drop′

c ≡ dropc and lift′
c ≡ liftc .

To prove the result for Pebble CAT, we also have to consider the other basic node expressions ϕ0. Obviously, we define 
haspebble′

c ≡ haspebblec . We define isleaf′ to be the disjunction of haslabelσ 01 and haslabelσ 00 for all σ ∈ 	, 
and similarly, islast′ to be the disjunction of haslabelσ 10 and haslabelσ 00 for all σ ∈ 	. It remains to consider 
isfirst and isroot. Since we may assume the syntax of α to be in normal form, it suffices to define (?ϕ0)

′ and (?¬ϕ0)
′ . 

We define (?isfirst)′ ≡ ?ischild0 ∪ ischild1/up/child′
1 and (?¬isfirst)′ ≡ up/right′ where child′

1 and 
right′ are defined above. For isroot, we first note that ?isroot≡ dropc/left

∗/?isroot/?isfirst/right∗/liftc
where c is any element of C . Intuitively, we walk from the current node to the left until we arrive at the first 
root, and then walk back. Thus, since the first root of a forest f is encoded as the root of enc′( f ), we de-
fine (?isroot)′ ≡ dropc/(left

′)∗/?ischild0/(right′)∗/liftc . Finally, we define (?¬isroot)′ by (?¬isroot)′ ≡
dropc/parent

′/child′/liftc . �
Next we prove the reverse direction of Lemma 22, for Pebble CAT.
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Lemma 23. For every Pebble CAT path expression α on ranked trees over 	′ there is a Pebble CAT path expression α′ on forests over 	
such that enc′(T (α′)) = T (α).

Proof. This is also an elementary coding exercise. We assume the syntax of α to be in normal form, whereas for α′ we 
keep the full syntax. As in the previous lemma, we will define α′ such that �α′� f = �α�enc′( f ) . It suffices to do this for 
path expressions α0, ?ϕ0, and ?¬ϕ0. We start with α0 and we define down′

1 ≡ child/?isfirst∪ ?isleaf/right and 
down′

2 ≡ ?¬isleaf/right. Moreover, up′ ≡ ?isfirst/parent ∪ left. Finally, drop′
c ≡ dropc and lift′

c ≡ liftc . 
We now turn to the basic node expressions. For ϕ0 ≡ haslabelσ 10 we define (?ϕ0)

′ ≡ ?ϕ′
0 and (?¬ϕ0)

′ ≡ ?¬ϕ′
0, where 

ϕ′
0 ≡ haslabelσ ∧ ¬isleaf ∧ islast, and similarly for haslabelσ 11 , haslabelσ 01 , and haslabelσ 00 . We do this 

also for ϕ0 ≡ ischild0 with ϕ′
0 ≡ isroot∧isfirst, and for ϕ0 ≡ haspebblec with ϕ′

0 ≡ haspebblec . It remains to 
consider ischild1 and ischild2. We define (?ischild2)

′ ≡ left/?¬isleaf/right and hence (?¬ischild2)
′ ≡

?isfirst ∪ left/?isleaf/right. For ischild1 the definitions of (?ischild1)
′ and (?¬ischild1)

′ now follow 
from the fact that ?ischild1 ≡ ?¬ischild0/?¬ischild2 and ?¬ischild1 ≡ ?ischild0 ∪ ?ischild2. �

Lemmas 22 and 23 together show that if the first equivalence of Theorem 21 holds for ranked trees, then it also holds 
for forests. To show this also for the second equivalence, we need the next elementary lemma.

Lemma 24. For every trip T on forests, T is mso definable if and only if enc′(T ) is mso definable.

Proof. (Only if) Since f and enc′( f ) have the same nodes, for every forest f over 	, it suffices to show that the atomic 
formulas labσ (x), down(x, y), and next(x, y) for forests can be expressed by an mso formula for the ranked trees that 
encode the forests. Clearly, labσ (x) can be expressed by the disjunction of all labσ k� (x) for k, � ∈ {0, 1}, as in the proof of 
Lemma 22. For down(x, y) we show that the trip T = {(enc′( f ), u, v) | f |= down(u, v)} is mso definable. This follows from 
Proposition 14 because T = T (B) for the ta B that has the rules (for all k, � ∈ {0, 1}, j ∈ {0, 1, 2}, and σ ∈ 	):

〈p0,σ
1�, j〉 → 〈p,down1〉,

〈p,σ 11, j〉 → 〈p,down2〉,
〈p,σ 01, j〉 → 〈p,down1〉,
〈p,σ k�, j〉 → 〈p∞, stay〉,

where p0 is the initial and p∞ the final state of B. Thus, there is a formula ϕ(x, y) such that enc′( f ) |= ϕ(u, v) if and only 
if f |= down(u, v), for every forest f , which means that ϕ(x, y) expresses down(x, y) on the encoding of f .19 The formula 
next(x, y) can be treated in the same way, where B now has the rules 〈p0, σ 11, j〉 → 〈p∞, down2〉 and 〈p0, σ 01, j〉 →
〈p∞, down1〉, and hence T (B) = {(enc′( f ), u, v) | f |= next(u, v)}.

(If) For the same reason as above, it suffices to show that the atomic formulas downi(x, y) and labσ k� (x) for ranked trees 
over 	′ can be expressed by an mso formula for the forests they encode. For this we consider the path expressions down′

i
and haslabel′

σ 10 in the proof of Lemma 23, and we define

ϕ1(x, y) ≡ (down(x, y) ∧ first(y)) ∨ (leaf(x) ∧ next(x, y)),

ϕ2(x, y) ≡ ¬ leaf(x) ∧ next(x, y),

ϕ10(x) ≡ labσ (x) ∧ ¬ leaf(x) ∧ last(x),

and similarly for the other ϕk�(x, y). Then enc′( f ) |= downi(u, v) if and only if f |= ϕi(u, v), and enc′( f ) |= labσ k� (u) if and 
only if f |= ϕk�(u). �

From now on, when we refer to Pebble XPath or Pebble CAT we always mean their version on ranked trees.

Directive I-PTA’s. For the purpose of the proof of Theorem 21 on ranked trees, we formulate the i-pta in an alternative way 
and, for lack of a better name, call it the directive i-pta. For an alphabet 	 (of which every element has rank at most 2) and 
a finite set C of colours, we define a directive over 	 and C to be a path expression τ with the syntax τ ::= α0 | ?ϕ0 | ?¬ ϕ0
for the same 	 and C (where α0 and ϕ0 are as in Tables 5 and 6). The finite set of directives over 	 and C is denoted 
D	,C .

A directive i-pta is a tuple A = (	, Q , Q 0, F , C, R), where 	, Q , Q 0, F , and C are as for an ordinary i-pta (with C = C i), 
and R is a finite set of rules of the form 〈q, τ , q′〉 where q, q′ ∈ Q and τ ∈ D	,C . Thus, syntactically, A can be viewed as 
a finite automaton of which each state transition is labeled by a directive, i.e., either by a basic path expression of Pebble 

19 For the reader familiar with mso logic we note that it is also easy to write down the formula ϕ(x, y) using the equivalences in the proof of Lemma 22
and the fact that the transitive-reflexive closure of an mso definable relation is mso definable.
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XPath, or by a basic node expression of Pebble XPath, or its negation, where the node expressions are turned into path 
expressions by the ?-operator. Intuitively, ?ϕ0 and ?¬ ϕ0 represent a basic test on the current situation, whereas α0 is a 
basic instruction to be executed on the current situation. Just as for an ordinary i-pta, a situation on a tree t ∈ T	 is a pair 
〈u, π〉 ∈ Sit(t) and a configuration is a triple 〈q, u, π〉 with q ∈ Q and 〈u, π〉 ∈ Sit(t). We write 〈q, u, π〉 ⇒t,A 〈q′, u′, π ′〉
if there is a rule 〈q, τ , q′〉 such that (〈u, π〉, 〈u′, π ′〉) ∈ �τ �t , where �τ �t is the semantics of path expression τ on t (cf. 
Tables 5 and 6 for α0 and ϕ0, and Table 3 for the ?-operator). To indicate the directive τ that is executed by A in this 
computation step we also write 〈q, u, π〉 ⇒τ

t,A 〈q′, u′, π ′〉. Moreover, we define the semantics �A�t of A on tree t as �A�t =
{(〈u, π〉, 〈u′, π ′〉) ∈ Sit(t) × Sit(t) | ∃ q0 ∈ Q 0, q∞ ∈ F : 〈q0, u, π〉 ⇒∗

t,A 〈q∞, u′, π ′〉}. Finally, the trip computed by A on T	 is 
T (A) = {(t, u, v) | ∃ π ∈ (N(t) × C)∗ : (〈u, ε〉, 〈v, π〉) ∈ �A�t}.

For the sake of the proofs below we also define �A�t for an ordinary i-pta A on a tree t , in entirely the same way as 
above for a directive i-pta.

A directive i-pta A with look-ahead tests is defined similarly to the ordinary case in Section 8 (restricted to automata), 
by additionally allowing rules of the form 〈q, ?〈B〉, q′〉 and 〈q, ?¬ 〈B〉, q′〉 where B is another directive i-pta. The above 
semantics stays the same, with (as expected)

�?〈B〉�t = {(〈u,π〉, 〈u,π〉) | ∃〈u′,π ′〉 : (〈u,π〉, 〈u′,π ′〉) ∈ �B�t}
and similarly for �?¬ 〈B〉�t (with ¬ ∃). A directive i-pta with iterated look-ahead tests is defined as in Section 8. We will use
i-pta

la as an abbreviation of ‘i-pta with iterated look-ahead tests’.
We now show that the directive i-pta has the same expressive power as the i-pta (and similarly with iterated look-

ahead tests). Hence Theorems 15 and 20 also hold for the directive i-pta, i.e., it computes the mso definable trips, and it 
can perform iterated look-ahead tests. In what follows, we only consider i-pta’s of which every input symbol has at most 
rank 2.

Lemma 25. For every directive i-pta
la A there is an i-pta

la A′ such that T (A′) = T (A).

Proof. Let A = (	, Q , Q 0, F , C, R) be a directive i-pta. We will, in fact, define the i-pta A′ such that �A′�t = �A�t for every 
t ∈ T	 , which implies the result.

We let A′ = (	, Q , Q 0, F , C, ∅, C i, R ′, 0) where C i = C and R ′ is defined as follows. If 〈q, α0, q′〉 is a rule of A, where 
α0 is a basic path expression, then A′ has all rules 〈q, σ , j, b〉 → 〈q′, α0〉. We now turn to the basic node expressions. 
A rule 〈q, ?haslabelσ , q′〉 is simulated by all rules 〈q, σ , j, b〉 → 〈q′, stay〉, and a rule 〈q, ?¬ haslabelσ , q′〉 by all rules 
〈q, τ , j, b〉 → 〈q′, stay〉 with τ ∈ 	 \ {σ }. A rule 〈q, ?ischild j, q′〉 is simulated by all rules 〈q, σ , j, b〉 → 〈q′, stay〉, and a 
rule 〈q, ?¬ ischild j, q′〉 by the two rules 〈q, σ , j′, b〉 → 〈q′, stay〉 with j′ ∈ {0, 1, 2} \ { j}. A rule 〈q, ?haspebblec, q′〉 is 
simulated by all rules 〈q, σ , j, {c}〉 → 〈q′, stay〉, and a rule 〈q, ?¬ haspebblec, q′〉 by all rules 〈q, σ , j, ∅〉 → 〈q′, stay〉 and 
all rules 〈q, σ , j, {c′}〉 → 〈q′, stay〉 with c′ ∈ C \ {c}.

Finally we consider look-ahead. If 〈q, ?〈B〉, q′〉 is a rule of A, and B′ is an i-pta
la such that �B′�t = �B�t for every t ∈ T	 , 

then A′ has all the rules 〈q, σ , j, b, B′〉 → 〈q′, stay〉 that use B′ as a look-ahead test. Similarly, the rule 〈q, ?¬ 〈B〉, q′〉 is 
simulated by all the rules 〈q, σ , j, b, ¬ B′〉 → 〈q′, stay〉. �
Lemma 26. For every i-pta A there is a directive i-pta A′ such that T (A′) = T (A).

Proof. Let A = (	, Q , Q 0, F , C, ∅, C i, R, 0) be an i-pta with C i = C . To simplify the proof we extend the syntax of the 
directive i-pta by allowing rules 〈q, τ , q′〉 with τ ::= α0 | ?ϕ0 | ?¬ ϕ0 | τ/τ ′ , where τ ′ is an alias of τ . This clearly does not 
extend their power, because a rule 〈q, τ/τ ′, q′〉 can be replaced by the two rules 〈q, τ , p〉 and 〈p, τ ′, q′〉 where p is a new 
state. We now construct A′ = (	, Q , Q 0, F , C, R ′) where R ′ is defined as follows. If A has a rule 〈q, σ , j, b〉 → 〈q′, α〉, then 
A′ has the rule 〈q, τ , q′〉 such that τ = τσ /τ j/τb/α if α �= stay, and τ = τσ /τ j/τb if α = stay, where τσ = ?haslabelσ , 
τ j = ?ischild j , τ{c} = ?haspebblec , and τ∅ = ?¬ haspebblec1

/ · · ·/?¬ haspebblecn
, if C = {c1, . . . , cn}. �

As observed before, a directive i-pta A can be viewed as a finite automaton of which each state transition is labeled 
by a directive. Thus, viewing the set D	,C as an alphabet, A accepts a string language Lstr(A) ⊆ D∗

	,C . We now show the 
(rather obvious) fact that the semantics �A�t of A (for every tree t over 	) depends only on the language Lstr(A), cf. [12, 
Theorem 3.11] and [5, Lemma 3]. We do this (as in [12, Definition 2.7] and [5, Section 4]) by associating a semantics �L�t

with every language L ⊆ D∗
	,C . Intuitively, a string w = τ1 · · ·τn of directives can be viewed as the path expression τ1/ · · ·/τn

and a language L = {w1, w2, . . . } of such strings can be viewed as the (possibly infinite) path expression w1 ∪ w2 ∪· · · . Thus, 
for a tree t over 	 we formally define �ε�t to be the identity on Sit(t), �τ1 · · ·τn�t = �τ1�t ◦ · · · ◦ �τn�t , and �L�t = ⋃

w∈L�w�t . 
The next lemma is a special case of [12, Theorem 3.11]. Its proof is entirely similar to the one of [5, Lemma 3].

Lemma 27. �A�t = �Lstr(A)�t .
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Proof. A string w of directives induces a state transition relation RA(w) ⊆ Q × Q as follows. For τ ∈ D	,C , RA(τ ) =
{(q, q′) | 〈q, τ , q′〉 ∈ R}. For the empty string, RA(ε) is the identity on Q , and RA(τ1 · · ·τn) = RA(τ1) ◦ · · · ◦ RA(τn). Then 
Lstr(A) = {w ∈ D∗

	,C | RA(w) ∩ (Q 0 × F ) �=∅}.
It is straightforward to show by induction that, for all configurations 〈q, u, π〉 and 〈q′, u′, π ′〉 and for every w = τ1 · · ·τn

over D	,C , there is a computation

〈q1, u1,π1〉 ⇒τ1
t,A 〈q2, u2,π2〉 ⇒τ2

t,A · · · ⇒τn
t,A 〈qn+1, un+1,πn+1〉

with 〈q1, u1, π1〉 = 〈q, u, π〉 and 〈qn+1, un+1, πn+1〉 = 〈q′, u′, π ′〉 if and only if (〈u, π〉, 〈u′, π ′〉) ∈ �w�t and (q, q′) ∈ RA(w). 
From this equivalence it follows that �A�t consists of all (〈u, π〉, 〈u′, π ′〉) such that

∃q0 ∈ Q 0,q∞ ∈ F , w ∈ D∗
	,C : (〈u,π〉, 〈u′,π ′〉) ∈ �w�t , (q,q′) ∈ RA(w)

i.e., such that ∃ w ∈ Lstr(A) : (〈u, π〉, 〈u′, π ′〉) ∈ �w�t , which means that it equals �Lstr(A)�t . �
Proof of Theorem 21. We assume the syntax for path expressions α of Pebble XPath and Pebble CAT to be in 
normal form. We also add α ::= ∅ to the syntax, with �∅�t = ∅ for every tree t . That is possible because, e.g., 
�?ischild0/?¬ischild0�t =∅.

We first show that Pebble CAT has the same power as mso. Let us recall that the set D	,C of directives τ of the directive
i-pta was defined by the syntax τ ::= α0 | ?ϕ0 | ?¬ϕ0. Thus, the path expressions of Pebble CAT are, in fact, exactly the 
usual regular expressions over the “alphabet” D	,C . Accordingly, we define for such a path expression α the string language 
Lstr(α) ⊆ D∗

	,C in the obvious way, interpreting the operators ∪, /, and ∗ as union, concatenation, and Kleene star of string 
languages, respectively. The next lemma is the analogue of Lemma 27, with a straightforward proof.

Lemma 28. �α�t = �Lstr(α)�t .

Proof. It is easy to see, for string languages L1, L2 ⊆ D∗
	,C , that �L1 ∪ L2�t = �L1�t ∪ �L2�t , �L1L2�t = �L1�t ◦ �L2�t , and 

�L∗
1�t = �L1�

∗
t , cf. [12, Lemma 2.9]. Then the proof is by induction on the structure of α. �

By Kleene’s classical theorem, a string language can be accepted by a finite automaton if and only if it can be defined by 
a regular expression. Thus, by Lemmas 27 and 28, a trip is definable in Pebble CAT if and only if it can be computed by a 
directive i-pta, and hence, by Theorem 15 (for k = 0) and Lemmas 25 and 26, if and only if it is mso definable.

It remains to show that if a trip is definable in Pebble XPath, then it can be computed by a directive i-pta. We will 
prove below that for every Pebble XPath path expression α there is a directive i-pta

la A, i.e., a directive i-pta with iterated 
look-ahead tests, such that �A�t = �α�t for every t . This implies that α and A define the same trip, and then we obtain 
from Theorem 20 (and Lemmas 25 and 26) a directive i-pta (without look-ahead) computing that same trip.

Let nα be the nesting depth of subexpressions of α of the form 〈β〉. The proof is by induction on nα , and A will be of 
look-ahead depth nα . If nα = 0, i.e., there are no such subexpressions at all, then α is a Pebble CAT expression, and we are 
done by the first part of the proof. Now suppose that the result holds for nesting depth n, and let nα = n + 1. For every 
subexpression 〈β〉 of α that is not nested within another such subexpression, let Aβ be a directive i-pta

la of look-ahead 
depth n (or less) such that �Aβ�t = �β�t for all t . We now define the extended “alphabet” Dn

	,C to consist of all path 
expressions τ with the syntax τ ::= α0 | ?ϕ0 | ?¬ϕ0 | ?〈β〉 | ?¬〈β〉 where 〈β〉 ranges over the above subexpressions of α. 
Then α can be viewed as a regular expression over the alphabet Dn

	,C , and it should be clear that Lemma 28 is also valid 
in this case. Also, using Dn

	,C instead of D	,C in the rules of the directive i-pta, and identifying each “symbol” ?〈β〉 with 
the “symbol” ?〈Aβ 〉 (and similarly for the negated tests), we obtain a subclass of the directive i-pta

la of look-ahead depth 
n + 1, because the semantics of the path expression ?〈β〉 is exactly the same as the meaning of the look-ahead test ?〈Aβ 〉. 
Again, it should be clear that Lemma 27 is also valid for these directive i-pta’s, which are finite automata over Dn

	,C . Hence, 
by the same Kleene argument as in the first part of the proof, there is a directive i-pta

la A of look-ahead depth n + 1 such 
that �A�t = �α�t for every tree t .

This ends the proof of Theorem 21, both for ranked trees and (by Lemmas 22, 23, and 24) for unranked forests.

Two remarks. (1) Although the MSO definable trips are, of course, closed under complement and intersection, we do not 
know whether the XPath 2.0 operations intersect and except can be added to the syntax of path expressions of 
Pebble XPath (α ::= α ∩ β | α \ β). That is because it is not clear whether for every i-pta A there is an i-pta B such that 
�B�t = Sit(t) − �A�t for every tree t .

(2) The language Pebble XPath meets the requirements as listed in [30]. It is simple, defined in an algebraic language 
using simple operators: in particular we believe that pebbles form a user friendly concept. It is understandable, as its expres-
sive power can be characterized in terms of automata. It is useful in the sense that the query evaluation problem ‘given path 
expression α and two nodes u, v in forest f , is ( f , u, v) ∈ T (α)?’ is tractable. At least, the latter property holds for Pebble 
CAT, as α can be transformed into an i-pta in polynomial time, and the problem ‘( f , u, v) ∈ T (α)?’ can then be translated 
70



J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
into the emptiness problem for push-down automata. For Pebble XPath the query evaluation problem is tractable for every 
fixed path expression α. This is explained in more detail in the next two paragraphs.

Query evaluation. For a directive i-pta A = (	, Q , Q 0, C, R), the binary node relation T computed by A on an input tree t
can be evaluated in polynomial time as follows. It is straightforward to construct from A and t an ordinary pushdown 
automaton P with state set Q × N(t) and pushdown alphabet N(t) × C in such a way that P (with the empty string as 
input) has the same computation steps as A on t . Note that the configurations of P are exactly the configurations 〈q, u, π〉
of A on t . Dropping and lifting a pebble corresponds to pushing and popping a pushdown symbol. Moving around in t
corresponds to a change of state. To decide whether (t, u, v) ∈ T , with u, v ∈ N(t), decide whether P has a computation 
from configuration 〈q0, u, ε〉 (for some q0 ∈ Q 0) to some final configuration 〈q, v, π〉. Clearly, P can be constructed in 
polynomial time from A and t , and the existence of such a computation can be verified in polynomial time.

By Lemma 22, path expressions on forests can be translated into path expressions on ranked trees in polynomial time. 
Since for a Pebble CAT path expression on ranked trees the corresponding directive i-pta can be constructed in polynomial 
time, using Kleene’s construction, Pebble CAT path expressions can be evaluated in polynomial time. This does not seem to 
hold for Pebble XPath, as the construction in the proof of Theorem 19 (which implements a look-ahead test by calling an
i-pta B) is at least 2-fold exponential (because determining the domain of the related i-pta B′ takes 2-fold exponential time 
by Theorem 8). However, the data complexity of the problem is of course polynomial, i.e., for a fixed path expression α we 
obtain a fixed directive i-pta A for which the binary node relation can be evaluated in polynomial time.

10. Pattern matching

One of the basic tree transformations in the context of XML is pattern matching. The transducer must find all sequences 
of nodes satisfying a certain description and generate the subtrees rooted at these nodes, for each match. More precisely, 
we consider queries of the form

for X where ϕ return r

in which X is a finite set of node variables, ϕ is an mso formula with its free variables in X , and r is a tree of which the 
leaves may be labeled with the variables in X . In what follows we assume that X and r are fixed. Let X = {x1, . . . , xn}, 
where x1, . . . , xn is an arbitrary order of the elements of X . The transducer must find all sequences of nodes u1, . . . , un of 
the input tree t that match the pattern defined by ϕ(x1, . . . , xn), i.e., such that t |= ϕ(u1, . . . , un), and for each match it must 
generate the output tree r in which each occurrence of the variable xi is replaced by the subtree of t with root ui . Usually 
the variables in X are indeed specified in a specific order λ = (x1, . . . , xn), and it is required that the transducer finds (and 
generates) the matches in the lexicographic document order induced by λ. We will, however, also consider the case where 
this requirement is dropped, and the most efficient order λ can be selected.

For convenience we assume that r is of the form μ(x1, . . . , xn) for some symbol μ of rank n, and so the output for each 
match is μ(t|u1 , . . . , t|un ) where t|u is the subtree of t with root u. For convenience we also assume that the input tree t is 
ranked. Moreover, we assume that the output alphabet is also ranked and contains the binary symbol @ that allows us to 
list the various output trees μ(t|u1 , . . . , t|un ), and the nullary symbol e to indicate the end of the list of output trees (similar 
to the binary tag <result> and the nullary tag <endofresults> of Example 2). In Section 11 we will consider pattern 
matching in forests.

We now describe a total deterministic ptt A that executes the above query. In order to find all n-tuples of nodes 
matching the n-ary pattern defined by the mso formula ϕ(x1, . . . , xn), and generate the corresponding output, the ptt A
systematically enumerates all n-tuples of nodes of the input tree t . To do this, A uses visible pebbles c1, . . . , cn on the 
stack, representing the variables x1, . . . , xn , respectively.20 It drops them in this order and moves each of them through the 
input tree t in document order (i.e., in pre-order), in a nested fashion. Inductively speaking, A moves pebble c1 in pre-
order through t (alternately dropping and lifting c1), and for each position u1 of c1 it uses pebbles c2, . . . , cn to enumerate 
all possible (n − 1)-tuples u2, . . . , un of nodes of t . For each enumerated n-tuple u1, . . . , un , with pebble ci at position ui , 
A performs the test ϕ , using an mso test on the visible configuration (Lemma 13), and, in case of success, spawns a process 
that outputs the corresponding n-tuple of subtrees.

More precisely, if the ranked input alphabet is 	, then ϕ is an mso formula over 	, and A has the ranked output 
alphabet � = 	 ∪ {μ, @, e} where μ has rank n, and @ and e have rank 2 and 0 respectively. For input tree t , the output 
tree s is of the form s = @(r1, @(r2, . . . @(rk, e) · · · )) where each ri corresponds to a match, i.e., there is a sequence of 
nodes u1, . . . , un of t such that t |= ϕ(u1, . . . , un) and ri = μ(t|u1 , . . . , t|un ). Moreover, the sequence r1, . . . , rk corresponds 
to the sequence of all matches, in lexicographic document order. As explained above, the visible colour set of the ptt A is 
Cv = {c1, . . . , cn}, and A generates s by enumerating all sequences u1, . . . , un of nodes of t using pebbles c1, . . . , cn . To find 
out whether this sequence is a match, A performs the mso test ψ(x) on the visible configuration, defined by

20 It is not necessary that all pebbles are visible, as we will discuss below, but it simplifies the description of A.
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ψ(x) ≡ ∀x1, . . . , xn((pebc1
(x1) ∧ · · · ∧ pebcn

(xn)) → ϕ′(x1, . . . , xn))

where pebc(x) is the disjunction of all lab(σ ,b)(x) such that c ∈ b, and where ϕ′ is obtained from ϕ by changing every atomic 
subformula labσ (y) into the disjunction of all lab(σ ,b)(y). Note that ψ(x) is an mso formula over 	 × 2C , where C is the 
colour set of A. Note also that the variable x (for the head position) does not, and need not, occur in ψ(x). If the sequence 
u1, . . . , un is not a match, then A continues the enumeration of n-tuples. If the sequence is a match, then A outputs the 
symbol @ and branches into two subprocesses (as in the 5-th rule of Example 2). In the second (main) branch it continues 
the enumeration of n-tuples. In the first branch it outputs the symbol μ and branches into n subprocesses, where the i-th 
process searches for visible pebble ci and then outputs t|ui . Note that, in this first branch, A could easily output an arbitrary 
tree r in which every occurrence of the variable xi is replaced by t|ui . This ends the description of A.

As the complexity of typechecking the transducer A depends critically on the number of visible pebbles used (see 
Theorem 8), we wish to minimize that number and use as few visible pebbles as possible for matching. It should be clear 
that, instead of using n visible pebbles, A can also use n − 2 visible pebbles c1, . . . , cn−2, one invisible pebble cn−1 on top 
(which is therefore always observable), and the head instead of the last pebble cn . Then A can perform the mso test χ(x)
on the observable configuration, defined by χ(x) ≡

∀x1, . . . , xn−1((pebc1
(x1) ∧ · · · ∧ pebcn−1

(xn−1)) → ϕ′(x1, . . . , xn−1, x))

where xn is renamed into x in ϕ′ . Thus, from Theorem 16 we obtain the following result on the matching of arbitrary mso

definable patterns.

Theorem 29. For n ≥ 2, every mso definable n-ary pattern can be matched by a total deterministic vn−2i-ptt. Moreover, and in 
particular, every mso definable unary or binary pattern can be matched by a total deterministic i-ptt.

To further reduce the number of visible pebbles, we consider the more specific case of queries of the form

for X where β(ϕ1, . . . ,ϕm) return r

in which β(ϕ1, . . . , ϕm) is a boolean combination (using ∧, ∨, ¬) of the mso formulas ϕ1, . . . , ϕm , m ≥ 2, and each ϕ� , 
� ∈ [1, m], has its free variables in X . We will make use of the fact that not all variables in X need actually occur in each 
formula ϕ� . As discussed in the Introduction, the for · · · where construct in XQuery often induces patterns ϕ1 ∧ · · · ∧ ϕm

such that each ϕ� contains just two free variables, cf. [32].
Consider an arbitrary query as displayed above. Let Gϕ = (Vϕ, Eϕ) be the undirected graph induced by the pattern 

ϕ ≡ β(ϕ1, . . . , ϕm), by which we mean that the set Vϕ of vertices of Gϕ consists of the free variables of ϕ , i.e., Vϕ =X , and 
that the set Eϕ of edges of Gϕ consists of the unordered pairs {x, y} (with x, y ∈ Vϕ , x �= y) for which there exists � ∈ [1, m]
such that both x and y occur (free) in ϕ� . Note that Gϕ does not depend on any order of the variables in X . Note also that 
for every finite undirected graph G there exists ϕ ≡ ϕ1 ∧ · · · ∧ ϕm such that G is isomorphic to Gϕ .

Pattern matching ϕ , and executing the above query, can be done by a total deterministic ptt A as follows, similarly 
to the general ptt A above (as discussed before Theorem 29). Again, let λ = (x1, . . . , xn) be an arbitrary order of the 
variables in X . Pebbles with distinct colours c1, . . . , cn−1 are used to represent x1, . . . , xn−1, dropping them in that order. 
For every j ∈ [1, n], when pebbles c1, . . . , c j−1 are dropped on the tree and the head is at a candidate position u j for the 
variable x j , all mso tests ϕ� are performed of which the free variables are in {x1, . . . , x j} (and that have not been tested 
before). Thus, when A has enumerated a sequence u1, . . . , un , it can compute the boolean value of ϕ(u1, . . . , un). For each 
match u1, . . . , un the tree r is generated, such that for every occurrence of the variable xi in r the subtree rooted at ui is 
generated, by a separate process; that is straightforward, even when ci is invisible: lift pebbles cn−1, . . . , ci+1 one by one 
(in that order), and then access ci and output t|ui . Note that, as before, the matches are generated in the lexicographic 
document order induced by the order λ.

It remains to determine which are the visible and invisible pebbles, keeping in mind that we wish to use as many 
invisible pebbles as possible for matching. To do the mso tests at position u j all pebbles ci for which {xi, x j} ∈ Eϕ and 
i < j should be observable. Hence all such pebbles under the topmost pebble c j−1 must be visible. These are the pebbles 
corresponding to the set

vis(λ) = {xi | there exists {xi, x j} ∈ Eϕ such that i + 1 < j}.
Thus, for A we define Cv = {ci | xi ∈ vis(λ)} and C i = {ci | xi /∈ vis(λ)}. Note that cn−1 ∈ C i .

In the case where the order λ = (x1, . . . , xn) of the variables is irrelevant, we may want to determine an optimal order. 
A finite undirected graph G = (V , E) will be called a union of paths if it is acyclic and has only vertices of degree at most 2. 
Intuitively this means that each connected component of G is a path. Thus, clearly, there is an order v1, . . . , v p of the 
vertices of G such that for all i, j ∈ [1, p] with i < j, if {vi, v j} ∈ E then i + 1 = j (repeatedly pick a vertex of degree 0 or 1, 
and remove it from the graph together with all its incident edges). We will call this an invisible order of the vertices of G . 
Note that a graph is a union of paths if and only if it has an invisible order. Note also that every subgraph of G is also a 
union of paths.
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Fig. 5. Visible sets of different sizes.

Fig. 6. Three visible sets of minimal size.

For an arbitrary finite undirected graph G = (V , E), let us now say that a set W ⊆ V of vertices of G is a visible set of G
if the subgraph of G induced by V \ W , denoted by G[V \ W ], is a union of paths. By the last sentence of the previous 
paragraph, every superset of a visible set is also a visible set.

Lemma 30. A set of variables W ⊆ Vϕ is a visible set of Gϕ if and only if there is an order λ of Vϕ such that vis(λ) ⊆ W .

Proof. (If) It is easy to verify that every vis(λ) is a visible set of Gϕ . In fact, for all i < j, if xi, x j /∈ vis(λ) and {xi, x j} ∈ Eϕ , 
then i + 1 = j.

(Only if) Define the order λ on Vϕ as follows. First list the vertices of W in any order. Then list the remaining vertices 
according to an invisible order of the vertices of Gϕ [Vϕ \ W ]. Obviously vis(λ) ⊆ W . �
Theorem 31. Pattern ϕ ≡ β(ϕ1, . . . , ϕm) can be matched by a total deterministic vki-ptt where k = #(W ) for a visible set W of Gϕ . 
In particular, if Gϕ is a union of paths, then ϕ can be matched by a total deterministic i-ptt.

Proof. By Lemma 30 there is an order λ of Vϕ such that vis(λ) ⊆ W . Hence at most #(W ) visible pebbles suffice. If Gϕ is 
a union of paths, then W = ∅ is a visible set. �

Lemma 30 shows that finding an order λ for which vis(λ) is of minimal size, is the same as finding a visible set W
of minimal size. Unfortunately, this is an NP-complete problem. More precisely, the problem whether for a given graph 
G = (V , E) and a given number k there is a set of vertices V ′ ⊆ V with #(V ′) ≥ k such that G[V ′] is a union of paths, is 
NP-complete (see Problem GT21 of [28]).

We now give some examples of visible sets of a graph G . It suffices to take as visible vertices those of degree ≥ 3 in G
(plus one vertex in each connected component that is a cycle). But often one can choose a smaller set.

Example 32. If G is a cycle or a star, then it has a visible set W with #(W ) = 1 (for a cycle any singleton is a visible set, 
and for a star the visible set W consists of the centre vertex).

In Figs. 5 and 6 we show graphs with the vertices of a visible set W encircled. For the graph G in Fig. 5, the upper left W
consists of all vertices of degree 3. It is not minimal, in the sense that it has a proper subset that is also a visible set, as 
shown at the upper right. This one is minimal, because dropping one of the vertices from W produces a vertex of degree 3 
in the complement. Another minimal visible set (of the same size) is shown at the lower left: dropping the leftmost vertex 
of W produces a cycle, and dropping one of the other vertices produces two vertices of degree 3. Finally, a visible set of 
size 3 is shown at the lower right. It is of minimal size, i.e., #(W ) ≥ 3 for every visible set W of G . In fact, removing a 
vertex of degree 2 from G leaves a graph with two disjoint cycles that both must be broken, whereas removing a vertex of 
degree 3 from G either leaves a graph with two disjoint cycles or a graph with a cycle and a vertex of degree 3 of which 
the neighbourhood is disjoint with that cycle. Thus, any pattern ϕ such that Gϕ is isomorphic to G can be matched with 
three visible pebbles.

Visible sets of minimal size need not be unique. For the graph in Fig. 6, three different visible sets of minimal size are 
shown. �
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If we allow matches to occur more than once in the output, then Theorem 31 is not optimal (still assuming that the 
order λ is irrelevant). Using the boolean laws, the mso formula ϕ ≡ β(ϕ1, . . . , ϕm) can be written as a disjunction ϕ ≡
ψ1 ∨ · · · ∨ ψk where each ψi is a conjunction of some of the formulas ϕ1, . . . , ϕm or their negations. Now the ptt A can 
execute the queries ‘for X where ψi return r’ consecutively for i = 1, . . . , k. Obviously, Gψi is a subgraph of Gϕ for 
every i ∈ [1, k]. Hence every visible set of Gϕ is also a visible set of Gψi , and so the minimal size of the visible sets of 
Gψi is at most the minimal size of the visible sets of Gϕ . Thus, pattern matching formulas ψ1, . . . , ψk consecutively needs 
at most as many visible pebbles as pattern matching ϕ , but it may need less. As a simple example, let ϕ ≡ ϕ1(x, y) ∧
(ϕ2(y, z) ∨ϕ3(x, z)). Then Gϕ is a triangle, which needs one visible pebble. But ϕ ≡ ψ1 ∨ ψ2 where ψ1 ≡ ϕ1(x, y) ∧ ϕ2(y, z)
and ψ2 ≡ ϕ1(x, y) ∧ ϕ3(x, z). Both Gψ1 and Gψ2 are (unions of) paths, which do not need visible pebbles. Thus, ϕ can be 
matched by an i-ptt. However, all matches for which ϕ1 ∧ ϕ2 ∧ ϕ3 holds occur twice in the output.

We finally discuss another way to reduce the number of visible pebbles. Suppose that, for some i ∈ [1, m], the formula ϕi
has exactly two free variables x, y ∈ X . Thus, the edge {x, y} is in Eϕ . Suppose moreover that the trip defined by ϕi(x, y)

is functional. Suppose finally that W is a visible set of Gϕ with x, y ∈ W . Then all other edges of Gϕ incident with y can 
be redirected to x, and y can be dropped from W . To be precise, every formula ϕ j that contains the free variable y can be 
changed into the formula ∀y(ϕi(x, y) → ϕ j) that contains the free variable x instead of y. The resulting query is obviously 
equivalent to the given one.

11. Pebble forest transducers

The ptt transforms ranked trees, whereas XML documents are unranked forests. However, it is not difficult to use, or 
slightly adapt, the ptt for the transformation of forests. The most obvious, and well-known way to do this, is to encode the 
forests as binary trees. Let enc′ be the class of all encodings enc′ (one encoding for each input alphabet 	), and let dec be 
the class of all decodings dec (one decoding for each output alphabet �). Then we can view the class enc′ ◦ Vk I-PTT ◦ dec
as the class of forest transductions realized by vki-ptt’s. For the input forest f this is a natural definition, because it is quite 
easy to visualize a ptt walking on enc′( f ) as actually walking on f itself. For the output forest g this is also a natural defi-
nition, as it is, in fact, easy to transform a ptt that outputs enc(g) into a (slightly adapted type of) ptt that directly outputs 
g itself: change every output rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, 〈q2, stay〉) into 〈q, σ , j, b〉 → δ(〈q1, stay〉)〈q2, stay〉, and every 
output rule 〈q, σ , j, b〉 → e into 〈q, σ , j, b〉 → ε. The definition is also natural with respect to typechecking, because a forest 
language L is regular if and only if the tree language enc(L) is regular, and similarly for enc′(L). Since the transformation of 
the involved grammars can obviously be done in polynomial time, Theorem 8 in Section 5 also holds for vki-ptt as forest 
transducers.

We observe here that the class enc′ ◦Vk I-PTT◦dec does not depend on the chosen encodings and decodings, i.e., enc′ can 
be replaced by the class enc of all encodings enc, and dec by the class dec′ of all decodings dec′ . In fact, a ptt that walks 
on enc′( f ) can easily be simulated by one that walks on enc( f ): the original label σ kl can be determined by inspecting the 
children of the node with label σ . Vice versa, a ptt that walks on enc( f ) can be simulated by one that walks on enc′( f ): 
a node with label, e.g., σ 01 represents the original node and its first child with label e; the difference between these nodes 
can be stored in the finite state and in the pebble colours of the simulating ptt. Moreover, a ptt that outputs enc′(g)

can easily be simulated by one that outputs enc(g): change, e.g., the rule 〈q, σ , j, b〉 → δ01(〈q′, stay〉) into the two rules 
〈q, σ , j, b〉 → δ(〈p, stay〉, 〈q′, stay〉) and 〈p, σ , j, b〉 → e where p is a new state. Vice versa, a ptt A that outputs enc(g) can 
be simulated by a ptt A that outputs enc′(g), but that requires look-ahead (Theorem 19), as follows. If A has an output 
rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, 〈q2, stay〉), then A′ has the rule 〈q, σ , j, b, B01〉 → δ01(〈q2, stay〉) where B01 is a look-ahead 
test that finds out whether A can generate e when started in state q1 in the current situation. To be precise, B01 is obtained 
from A by changing its set of initial states into {q1} and removing all output rules that do not output e. And of course, 
A′ has similar rules for the other symbols δi j .

So far so good, in particular for the input forest f . There is, however, another natural possibility for the output forest g , 
as introduced and investigated in [47] for macro tree transducers. It is quite natural to allow a ptt that directly outputs g , 
as discussed above, to not only have output rules with right-hand sides δ(〈q1, stay〉)〈q2, stay〉 and ε, but also right-hand 
sides 〈q1, stay〉〈q2, stay〉 and δ(〈q′, stay〉) that realize the concatenation of forests and the formation of a tree out of a forest.

Accordingly we define a tree-walking forest transducer with nested pebbles (abbreviated pft) to be the same as a ptt M, 
except that its output alphabet is unranked, and its output rules are of the form 〈q, σ , b, j〉 → ζ with ζ = δ(〈q′, stay〉)
introducing a new node with label δ and generating a forest from state q′ , or ζ = 〈q1, stay〉 〈q2, stay〉 concatenating two 
forests, or ζ = ε generating the empty forest. Note that a right-hand side δ(〈q1, stay〉)〈q2, stay〉 is also allowed, as it can 
easily be simulated in two steps.

Formally, an output form of the pft M on an input tree t is defined to be a forest in F�(Con(t)). Let s be an output 
form and let v be a leaf of s with label 〈q, u, π〉 ∈ Con(t). If the rule 〈q, σ , b, j〉 → ζ is relevant to 〈q, u, π〉 then we write 
s ⇒t,M s′ where s′ is obtained from s as follows. If the rule is not an output rule, then the label of v is changed in the same 
way as for the pta and ptt. If ζ = δ( 〈q′, stay〉 ) then node v is replaced by the subtree δ(〈q′, u, π〉). If ζ = 〈q1, stay〉 〈q2, stay〉
then node v is replaced by the two-node forest 〈q1, u, π〉〈q2, u, π〉. And if ζ = ε then the node v is removed from s. The 
transduction realized by M consists of all (t, s) ∈ T	 × F� such that 〈q0, roott〉 ⇒∗

t,M s for some q0 ∈ Q 0. Thus, we have 
defined the pft as a transformer of ranked trees into unranked forests. The corresponding classes of transductions are 
denoted by Vk I-PFT. For forest transformations one can of course consider the classes enc′ ◦ Vk I-PFT.
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Lemma 33. For every k ≥ 0,

(1) VkI-PTT ◦ dec ⊆ VkI-PFT and (2) VkI-PFT ◦ enc ⊆ VkI-PTT ◦ I-dPTT

and similarly for the deterministic case.

Proof. Inclusion (1) is obvious from the discussion above: change every rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, 〈q2, stay〉) into 
〈q, σ , j, b〉 → δ(〈q1, stay〉)〈q2, stay〉, and every rule 〈q, σ , j, b〉 → e into 〈q, σ , j, b〉 → ε.

The proof of inclusion (2) is similar to the proof in [47] that every macro forest transducer can be simulated by two 
macro tree transducers. Let M be a vki-pft with (unranked) output alphabet �. Let �1 be the ranked alphabet � ∪
{@(2), e(0)}, where every element of � has rank 1. We now obtain the vki-ptt M′ from M by changing every output 
rule 〈q, σ , b, j〉 → 〈q1, stay〉 〈q2, stay〉 into 〈q, σ , b, j〉 → @(〈q1, stay〉, 〈q2, stay〉) and every output rule 〈q, σ , b, j〉 → ε into 
〈q, σ , b, j〉 → e. Let ‘flat’ be the mapping from T�1 to F� defined by flat(@(t1, t2) = flat(t1)flat(t2), flat(δ(t)) = δ(flat(t)) and 
flat(e) = ε. Then obviously τM = τM′ ◦ flat. Thus, it remains to show that the mapping flat ◦ enc is in I-dPTT. We will prove 
this after Theorem 37. It is, in fact, not hard to see that flat ◦ enc is even in dTT. �
Typechecking. The inverse type inference problem and the typechecking problem are defined for pft’s as in Section 5, 
except that Gout is a regular forest grammar rather than a regular tree grammar. It follows from Lemma 33(2), together 
with Lemma 4, Theorem 5, and Propositions 6 and 7 that these problems can be solved for vki-pft’s in (k + 4)-fold and 
(k + 5)-fold exponential time. However, it is shown in [14, Section 7] that they can be solved for vk-pft’s in the same 
time as for vk-ptt’s, i.e., in (k + 1)-fold and (k + 2)-fold exponential time, respectively. This is due to the fact (shown 
in [14, Lemma 4]) that inverse type inference for the mapping flat ◦ enc can be solved in polynomial time, cf. the proof 
of Lemma 33. For exactly the same reason a similar result holds for vki-pft’s. In other words, Theorem 8 also holds for
vki-pft’s.

Theorem 34. For fixed k ≥ 0, the inverse type inference problem and the typechecking problem are solvable for vki-pft’s in (k +2)-fold 
and (k + 3)-fold exponential time, respectively.

MSO tests. It should be clear that Theorem 16 also holds for the pft, as mso tests only concern the input tree.

Pattern matching. Pattern matching for forests can be defined in exactly the same way as we did for trees in Section 10. 
Since, obviously, Lemma 24 also holds for arbitrary n-ary patterns instead of trips, we may however assume that the input 
forest f over 	 of the query

for X where ϕ return r

is encoded as a binary tree t = enc′( f ) over 	′ for which we execute the query

for X where ϕ′ return r

where ϕ′ is the encoding of the formula ϕ according to Lemma 24. Consequently, we can use a pft to execute this query 
and produce for each match of ϕ′(x1, . . . , xn) the required output r. We may now assume that r is a forest rather than a 
tree, and we may for simplicity assume that r is of the form μ(x1 · · · xn) for some output symbol μ. Thus, the output for 
each match ϕ′(u1, . . . , un) is μ( f |u1 · · · f |un ), and the output forest is of the form s = r1r2 · · · rke where r1, . . . , rk are the 
outputs corresponding to all the matches. Note that e is another output symbol, and so � = 	 ∪ {μ, e}. It should be clear 
how the total deterministic ptt A in Section 10 can be changed into a total deterministic pft that executes this query. 
The only small problem is that A outputs the encoded subtrees t|ui rather than the required subtrees f |ui . However, a pft

can easily transform an encoded forest enc′( f |u) into the forest f |u , using rules 〈q, σ 11, j, b〉 → σ(〈q, down1〉)〈q, down2〉, 
〈q, σ 01, j, b〉 → σ 〈q, down1〉, 〈q, σ 10, j, b〉 → σ(〈q, down1〉), and 〈q, σ 00, j, b〉 → σ .

From this it should be clear that Theorems 29 and 31 also hold for forest pattern matching and pft.

Expressive power. As in [47], the pft is more powerful than the ptt. In particular, the i-pft is more powerful than the i-ptt

that generates encoded forests, i.e., I-PTT ◦ dec is a proper subclass of I-PFT. In fact, it is well known (cf. [20, Lemma 7]
and [26, Lemma 5.40]), and easy to see, that the height of the output tree of a functional tt M (which means that τM
is a function) is linearly bounded by the size of the input tree: otherwise M would be in a loop and would generate 
infinitely many output trees for that input tree. Since I-PTT ⊆ TT ◦ TT by Lemma 4, this implies that for a functional 
i-ptt the height of the output tree is exponentially bounded by the size of the input tree. However, the following total 
deterministic i-pft M2exp outputs, for an input tree of size n, a forest of length double exponential in n. Since the height 
of the encoded output forest is at least the length of that forest, this transformation cannot be realized by an i-ptt that 
generates encoded forests. The transducer M2exp is similar to the i-ptt Msib of Example 2, assuming that there are large 
cities only. Thus, using its pebbles, it enumerates 2n itineraries (where n is the number of intermediate cities). However, after 
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marking an itinerary, it does not output the itinerary, but instead branches into two identical subprocesses that continue the 
enumeration. After the last itinerary, M2exp is branched into a forest of 22n

copies of itself, each of which finally outputs 
one symbol. Imitating Msib, the i-pft M2exp first walks to the leaf:

〈qstart,σ1, j,∅〉 → 〈qstart,down1〉
〈qstart,σ0,1,∅〉 → 〈q1,up〉

Then, in state q1, it marks as many cities as possible:

〈q1,σ1,1,∅〉 → 〈q1,dropc;up〉
〈q1,σ1,0,∅〉 → 〈qnext,down1〉〈qnext,down1〉

In state qnext it continues the search for itineraries by unmarking the most recently marked city; when arriving at the leaf 
it outputs e:

〈qnext,σ1,1,∅〉 → 〈qnext,down1〉
〈qnext,σ1,1, {c}〉 → 〈q1, liftc;up〉
〈qnext,σ0,1,∅〉 → e

This ends the description of the i-pft M2exp.

12. Document transformation

In this section we compare the i-ptt and i-pft to the document transformation languages dtl and tl, which transform 
(unranked) forests. We prove that dtl can be simulated by the i-ptt, and that tl has the same expressive power as the i-pft.

The Document Transformation Language dtl was introduced and studied in [38]. A program in the dtl framework is a 
tuple P = (	, �, Q , Q 0, R) where 	 and � are unranked alphabets, Q is a finite set of states, Q 0 ⊆ Q is the set of initial 
states, and R is a finite set of template rules of the form 〈q, ϕ(x)〉 → f , where f is a forest over �, the leaves of which 
can additionally be labeled by a selector of the form 〈q′, ψ(x, y)〉; q and q′ are states in Q , and ϕ and ψ are mso formulas 
over 	, with one and two free variables respectively. Such a rule can be applied in state q at an input node x that matches ϕ , 
i.e., satisfies ϕ(x). Then program P outputs forest f , where each selector 〈q′, ψ(x, y)〉 is recursively computed as the result 
of a sequence of copies of P , started in state q′ at each of the nodes y that satisfy ψ(x, y), the nodes taken in pre-order 
(i.e., document order). Thus, P “jumps” from node x to each node y, according to the trip defined by the mso formula ψ .

Formally, a configuration of P on input forest t is a pair 〈p, u〉 where u is a node of t and p is either a state or a selector 
of P . An output form of P on t is a forest in F�(Con(t)), where Con(t) is the set of configurations of P on t . As usual, the 
computation steps of P on t are formalized as a binary relation ⇒t,P on F�(Con(t)). Let s be an output form and let v
be a leaf of s with label 〈q, u〉 ∈ Con(t), where q is a state of P . Moreover, let 〈q, ϕ(x)〉 → f be a template rule of P such 
that t |= ϕ(u). Let θu( f ) be the forest obtained from f by changing every selector 〈q′, ψ(x, y)〉 into 〈〈q′, ψ(x, y)〉, u〉. Then 
we write s ⇒t,P s′ where s′ is obtained from s by replacing the node v by the forest θu( f ). Now let s be an output form 
and let v be a leaf of s with label 〈〈q′, ψ(x, y)〉, u〉. Then we write s ⇒t,P s′ where s′ is obtained from s by replacing the 
node v by the forest 〈q′, u′

1〉 · · · 〈q′, u′
�〉 where u′

1, . . . , u
′
� is the sequence of all nodes u′ of t , in document order, such that 

t |= ψ(u, u′). The transduction τP realized by P is defined by τP = {(t, s) ∈ F	 × F� | ∃ q0 ∈ Q 0 : 〈q0, roott〉 ⇒∗
t,P s}.

The dtl program P is deterministic if for every two rules 〈q, ϕ(x)〉 → f and 〈q, ϕ′(x)〉 → f ′ with the same state q, the 
tests ϕ(x) and ϕ′(x) are exclusive, meaning that the sites they define are disjoint.

We observe here that in [38] the selectors have a more complicated form, which we will discuss after the next lemma.
We have defined the dtl program such that the input t is an unranked forest, and thus it can in particular be a ranked 

tree. It should be clear from Lemma 24 (which also holds for sites instead of trips) that we may in fact restrict ourselves 
to ranked trees and assume that input forests are encoded as binary trees. Thus, from now on we assume that in the above 
definition 	 is a ranked alphabet and t ∈ T	 is a ranked input tree. This allows us to compare dtl programs with pft’s.

Let DTL denote the transductions realized by dtl programs and dDTL those realized by deterministic dtl programs, from 
ranked trees to unranked forests. Thus, the class of forest transductions realized by dtl programs is equal to enc′ ◦ DTL, and 
similarly for the deterministic case.

Lemma 35. DTL ⊆ I-PFT and dDTL ⊆ I-dPFT.

Proof. Let P = (	, �, Q , Q 0, R) be a dtl program. We construct an equivalent i-pft M with mso tests, cf. Theorem 16. It 
has the same alphabets 	 and � as P . Since M stepwise simulates P , its set of states consists of the states and selectors 
of P , plus the states that it needs to execute the subroutines discussed below. It has the same initial states Q 0 as P . 
Moreover, it uses invisible pebbles of a single colour �, and never lifts its pebbles.
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For an input tree t , the transducer M simulates a template rule 〈q, ϕ(x)〉 → f in state q at node u of t by first using 
an mso head test to check whether t |= ϕ(u). With a positive test result, it calls a subroutine S that outputs the �-labeled
nodes of the right-hand side f . The subroutine S is started by M in state [ f ]. If its state is of the form [sf ′], for a tree s
and a forest f ′ , it uses a rule 〈[sf ′], σ , j, b〉 → 〈[s], stay〉 〈[ f ′], stay〉, branching the computation. If the state is of the form 
[δ( f ′)], the rule is 〈[δ( f ′)], σ , j, b〉 → δ(〈[ f ′], stay〉), and if it is of the form [ε], the rule is 〈[ε], σ , j, b〉 → ε. If the state is of 
the form [〈q′, ψ(x, y)〉], for a selector 〈q′, ψ(x, y)〉, the subroutine S returns control to (this copy of) M in state 〈q′, ψ(x, y)〉. 
In that state, M first drops a pebble � on the current node u and then calls a subroutine Sq′,ψ that finds all nodes u′ in 
the input tree t for which ψ(u, u′) holds. The subroutine does this by performing a depth-first traversal of t , starting at the 
root, checking in each node u′ whether t |= ψ(u, u′) using an mso test on the observable configuration. If true, then Sq′,ψ
branches into two concatenated processes. The left branch returns control to M in state q′ , and the right branch continues 
the depth-first search. When the search ends, Sq′,ψ outputs ε. Thus, Sq′,ψ transforms the configuration 〈〈q′, ψ(x, y)〉, u, π〉
of M into the forest of configurations 〈q′, u′

1, π〉 · · · 〈q′, u′
�, π〉, where u′

1, . . . , u
′
� are all such nodes u′ , in document order. 

With this definition of M, it should be clear that τM = τP . �
The selectors in [38] are more general than those defined above. They can be of the form 〈q′

1, ψ1(x, y), . . . , q′
m, ψm(x, y)〉, 

such that the mso formulas ψ1(x, y), . . . , ψm(x, y) are mutually exclusive, i.e., the trips they define are mutually disjoint. Let 
ψ(x, y) be the disjunction of all ψi(x, y), i ∈ [1, m]. The execution of the above selector at node u of the input tree results in 
the forest 〈q′

i1
, u′

1〉 · · · 〈q′
i�
, u′

�〉 where u′
1, . . . , u

′
� is the sequence of all nodes u′ of t in document order such that t |= ψ(u, u′), 

and for every j ∈ [1, �], i j is the unique number in [1, m] such that t |= ψi j (u, u′
j). It should be clear that Lemma 35 is still 

valid with these more general selectors. To execute the above selector, the i-pft M calls subroutine Sq′
1,ψ1,...,q′

m,ψm
which 

in each node u′ tests each of the formulas ψi(u, u′); if ψi(u, u′) is true, then the subroutine branches in two, in the first 
branch returning control to M in state qi .

To compare DTL to I-PTT rather than I-PFT we also consider dtl programs that transform ranked trees. A dtl program 
P = (	, �, Q , Q 0, R) is ranked if 	 and � are both ranked alphabets, and every rule 〈q, ϕ(x)〉 → f satisfies the following 
two restrictions:

(R1) f is a ranked tree in T�(S) where S is the set of selectors, and
(R2) for every selector 〈q′, ψ(x, y)〉 that occurs in f , every input tree t ∈ T	 , and every node u ∈ N(t), if t |= ϕ(u) then 

there is a unique node v ∈ N(t) such that t |= ψ(u, v).

In other words, the trip T (ψ(x, y)) is functional and, for fixed input tree t ∈ T	 , it is defined for every node of t that satisfies 
ϕ(x). Thus, execution of the selector 〈q′, ψ(x, y)〉 results in a “jump” from node x to exactly one node y. This clearly implies 
that all reachable output forms of P are ranked trees in T�(Con(t)). Thus τP ⊆ T	 × T� is a ranked tree transformation. 
The class of transductions realized by ranked tl programs will be denoted by DTLr , and by dDTLr in the deterministic case.

Corollary 36. DTLr ⊆ I-PTT and dDTLr ⊆ I-dPTT.

Proof. The proof is the same as the one of Lemma 35, except for the subroutines S and Sq′,ψ . The states of S are now of the 
form [s] where s is a subtree of a right-hand side of a rule. Instead of the rules for states [sf ′], [δ( f ′)], and [ε], subroutine S
has rules 〈[δ(s1, . . . , sm)], σ , j, b〉 → δ(〈[s1], stay〉, . . . , 〈[sm], stay〉) for every δ of rank m and all trees s1, . . . , sm (restricted 
to subtrees of right-hand sides). When subroutine Sq′,ψ finds a node u′ such that t |= ψ(u, u′) (and it always finds one by 
restriction (R2)), it returns control to M and does not continue the depth-first search. �

It can, in fact, be shown that when output forests are encoded as binary trees, DTL is included in I-PTT. Thus, instead 
of I-PFT we consider the class I-PTT ◦ dec (which equals the class I-PTT ◦ dec′), cf. Section 11. The next theorem will not be 
used in what follows (except in the paragraph directly after the theorem).

Theorem 37. DTL ⊆ I-PTT ◦ dec and dDTL ⊆ I-dPTT ◦ dec.

Proof. Let P = (	, �, Q , Q 0, R) be a dtl program. The main difficulty in outputting the binary encoding enc( f ) of a for-
est f as opposed to the construction in the proof of Lemma 35 is that here the first symbol δ of f has to be determined 
before any other output can be generated. We reconsider that construction, and here essentially make a depth-first se-
quential search over nodes in the computation tree (implemented using a stack of pebbled nodes) instead of the recursive 
approach. In that way an i-ptt M can simulate the leftmost computations of the dtl program P .

As unranked forests with selectors can be generated by the recursive definition f ::= δ( f ) f ′ | 〈q, ψ〉 f | ε, where f ′ is an 
alias of f , dtl rules are of the form 〈q, ϕ(x)〉 → f , where f is δ( f1) f2, 〈q, ψ〉 f ′ , or ε. The set of states of the transducer M
to be constructed consists of the states of P and all states [ f ] where f is a subforest of a right-hand side of a rule of P , 
plus the states of the subroutines S ′

q′,ψ and S ′′
q′,ψ discussed below. The state [ f ] is used to generate the binary encoding of 

the subforest f , similarly to its use by the subroutine S in the proof of Lemma 35. The initial states of M are those of P . 
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The pebble colours used by M are 〈q, ψ, f 〉 where 〈q, ψ〉 f occurs in the right-hand side of a rule of P , and the special 
colour ⊥. The state and pebble stack of M store a part of the output form of P that still has to be evaluated. The output 
alphabet of M is � ∪ {e} where each δ ∈ � has rank 2 and e has rank 0.

The transducer M starts by dropping ⊥ on the root. To simulate, in state q, a rule 〈q, ϕ(x)〉 → f of P , it uses an mso

head test to check whether ϕ holds for the current node, and goes into state [ f ]. We consider the above three cases for [ f ].
In state [〈q′, ψ〉 f ′], pebble 〈q′, ψ, f ′〉 is dropped on the current node u. As in the proof of Lemma 35, M then calls a 

subroutine S ′
q′,ψ which, this time, finds the first node u′ (in document order) for which ψ(u, u′) holds, where it returns 

control to M in state q′ . If S ′
q′,ψ does not find such a matching node u′ , then it moves to the topmost pebble 〈q′, ψ, f ′〉, 

lifts it, and returns control to M in state [ f ′].
In state [ f ] = [δ( f1) f2], the root δ of the first tree of the forest is explicitly given, and this is captured by the i-ptt output 

rule 〈[ f ], σ , j, b〉 → δ( 〈[ f1], drop⊥〉, 〈[ f2], stay〉 ). The symbol ⊥ is pushed, and never popped afterwards, making the stack 
of pebbles effectively empty: the first copy of the transducer evaluates f1 as left child of δ. The second copy inherits the 
stack and evaluates f2 as right child of δ, together with all postponed duties as stored in the stack of pebbles. This will 
generate the siblings of δ in the original forest.

In state [ε], the transducer M determines the colour of the topmost pebble, using an mso test on the observable config-
uration. If it is ⊥, it outputs e for the empty forest. Otherwise it calls subroutine S ′′

q′,ψ to continue the search corresponding 
to the topmost pebble 〈q′, ψ, f ′〉. That subroutine finds the first node u′ after the current node u (in document order) for 
which ψ(v, u′) holds, where v is the position of the topmost pebble. Similar to S ′

q′,ψ , if a matching node is found it returns 
control to M in state q′ , and otherwise it lifts the topmost pebble and returns control to M in state [ f ′].

This ends the description of M. To understand its correctness, we show how the output forms of M represent output 
forms of P . We disregard the output forms of M that contain states of the subroutines S ′

q′,ψ and S ′′
q′,ψ , and view the execu-

tion of such a subroutine as one big computation step of M that (deterministically) changes one configuration into another. 
The mapping ‘rep’ from such restricted output forms of M to output forms of P is defined as follows. The �-labeled part 
of the output form of M is decoded, i.e., rep(e) = ε and rep(δ(s1, s2)) = δ(rep(s1)) rep(s2). It remains to define ‘rep’ for 
the configurations on an input tree t that occur in the restricted output forms of M, i.e., for every configuration 〈p, u, π〉
where p is a state q of P or a state [ f ]. We will write rep(p, u, π) instead of rep(〈p, u, π〉). The definition is by induc-
tion on the structure of π , of which the topmost pebble is of the form (v, ⊥) or (v, 〈q′, ψ, f ′〉). For a state [ f ], we define 
rep([ f ], u, π(v, ⊥)) = θu( f ) and

rep([ f ], u,π(v, 〈q′,ψ, f ′〉)) = θu( f )〈q′, u′
1〉 · · · 〈q′, u′

�〉 rep([ f ′], v,π)

where u′
1, . . . , u

′
� are all nodes u′ after u (in document order) such that t |= ψ(v, u′). Note that rep([ f ], u, π) =

θu( f ) rep([ε], u, π) because θu(ε) = ε, and hence

rep([ f1 f2], u,π) = θu( f1) rep([ f2], u,π).

For a state q of P we define rep(q, u, π) = 〈q, u〉 rep([ε], u, π).
It is now straightforward to prove, for every initial state q0 of P , every input tree t , and every output form s of P , that 

〈q0, roott〉 ⇒∗
t,P s if and only if there exists a restricted output form s′ of M such that 〈q0, roott , (roott , ⊥)〉 ⇒∗

t,M s′ and 
rep(s′) = s. The proof of the if-direction of this equivalence is by induction on the length of the computation, and consists 
of four cases, depending on the state of the configuration of M that is rewritten, as discussed above, viz., q, [〈q′, ψ〉 f ′], 
[δ( f1) f2], or [ε]. From the last two cases it follows that for every restricted output form s′ of M there exists a restricted 
output form s′′ of M such that s′ ⇒∗

t,M s′′ , rep(s′′) = rep(s′), and the states of M that occur in s′′ are either states q of P
or states of the form [〈q′, ψ〉 f ′]. In the only-if-direction we only consider leftmost computations of P , i.e., computations in 
which always the first configuration of the output form (in pre-order) is rewritten. If rep(s′) = rep(s′′) = s, with s′′ as above, 
then the first configuration of M in s′′ corresponds to the first configuration of P in s, and the proof is similar to the first 
two cases of the proof of the if-direction. The details are left to the reader. Since rep(s′) = dec(s′) for every output tree s′
of M, the above equivalence implies that τM ◦ dec = τP . �

We are now able to finish the proof of Lemma 33(2). Consider the mapping flat : T�1 → F� defined in that proof. 
It can be realized by the one-state deterministic dtl program with rules 〈q, lab@(x)〉 → 〈q, down1(x, y)〉〈q, down2(x, y)〉, 
〈q, labδ(x)〉 → δ(〈q, down1(x, y)〉) for every δ ∈ �, and 〈q, labe(x)〉 → ε. Hence, by Theorem 37, it is in I-dPTT ◦ dec, which 
means that the mapping flat ◦ enc is in I-dPTT.

In [37] the language dtl was extended to the Transformation Language tl where the states have parameters that hold 
unevaluated forests, similar to macro tree transducers with outside-in parameter evaluation [22]. In a tl program P =
(	, �, Q , Q 0, R), the set of states Q is a ranked alphabet such that the initial states in Q 0 have rank 0. The rules of tl

program P are of the form 〈q, ϕ(x)〉(z1, . . . , zn) → f , where n = rankQ (q) and z1, . . . , zn are the formal parameters of q, 
taken from a fixed infinite parameter set Z = {z1, z2, . . . }. The right-hand side f of the rule is a forest of which the nodes 
can be labeled by a symbol from �, by a selector 〈q′, ψ(x, y)〉, or by a formal parameter zi with i ∈ [1, n]. A node labeled by 
〈q′, ψ(x, y)〉 must have rank(q′) children, and a node labeled by parameter zi must be a leaf. Thus, in such a forest (called an 
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action in [37]), selectors can be nested. We could as well allow in tl the more general selectors discussed after Lemma 35, 
but we restrict ourselves to the usual selectors for simplicity (and because they are the selectors in [37]). Determinism of 
program P is defined as for dtl.

An output form of P on input forest t is a forest of which the nodes can be labeled either by a symbol from �, 
or by a configuration 〈q, u〉 or 〈〈q, ψ(x, y)〉, u〉 of P in which case the node must have rank(q) children. A node of an 
output form, or of a right-hand side of a rule, is said to be outermost if all its proper ancestors are labeled by a symbol 
from �. The computation steps of P are formalized as a binary relation on output forms, as follows (similar to the dtl

case). Let s be an output form, and let v be an outermost node of s with label 〈q, u〉, where q is a state of P . Moreover, let 
〈q, ϕ(x)〉(z1, . . . , zn) → f be a rule of P such that t |= ϕ(u). Let θu( f ) be defined as in the dtl case. Then we write s ⇒t,P s′
where s′ is obtained from s by replacing the subtree s|v with root v by the forest θu( f ) in which every parameter zi is 
replaced by the subtree s|vi , for i ∈ [1, rank(q)]. Intuitively, the subtree s|vi rooted at the i-th child vi of v is the i-th actual 
parameter of (this occurrence of) the state q. Now let s be an output form and let v be an outermost node of s with label 
〈〈q′, ψ(x, y)〉, u〉 and rank(q′) = m. Then we write s ⇒t,P s′ where s′ is obtained from s by replacing the subtree s|v with 
root v by the forest 〈q′, u′

1〉(s|v1, . . . , s|vm) · · · 〈q′, u′
�〉(s|v1, . . . , s|vm) where u′

1, . . . , u
′
� is the sequence of all nodes u′ of t , in 

document order, such that t |= ψ(u, u′). Intuitively, the actual parameters of (this occurrence of) the selector 〈q′, ψ(x, y)〉
are passed to each new occurrence of the state q′ . As in the dtl case, the transduction realized by P is defined by τP =
{(t, s) ∈ F	 × F� | ∃ q0 ∈ Q 0 : 〈q0, roott〉 ⇒∗

t,P s}.
In [37] the denotational semantics of a tl program is given as a least fixed point. It is straightforward to show that the 

semantics in [37] is equivalent to the above operational semantics.21 Also, in [37] the syntactic formulation of tl is such 
that in the right-hand side of a rule the states can have forests as parameters rather than trees. Such a forest parameter 
s1 · · · sm , where each si is a tree, can be expressed in our syntactic formulation of tl as the tree 〈@m, x = y〉(s1, . . . , sm), 
where @m is a special state of rank m that has the unique rule 〈@m, x = x〉(z1, . . . , zm) → z1 · · · zm .

Example 38. The transformation from Example 2 can be computed by a deterministic tl program Psib with the following 
rules, where the variables i, σi , c, and λi range over the same values as in Example 2, with c = 1 or i = 1 in rule ρ4.

ρ1 : 〈qstart, root(x)〉 → 〈qstart, leaf(y)〉
ρ2 : 〈qstart,¬root(x) ∧ labσ0(x)〉 → 〈q1,up(x, y)〉(σ0, e)

ρ3 : 〈q0,¬root(x) ∧ labλ0(x)〉(z1, z2) → 〈q0,up(x, y)〉(z1, z2)

ρ4 : 〈qc,¬root(x) ∧ labλi (x)〉(z1, z2) → 〈qi,up(x, y)〉(λi(z1), 〈qc,up(x, y)〉(z1, z2))

ρ5 : 〈qc, root(x) ∧ labσ1(x)〉(z1, z2) → r(σ1(z1), z2)

Intuitively, z1 represents an itinerary from some city to Vladivostok, and z2 represents a list of itineraries from Moscow to 
Vladivostok (viz. all itineraries that do not have z1 as postfix), where we only consider itineraries that do not visit a small 
city twice in a row.

The selectors in the right-hand sides of the rules all define functional trips, and hence select just one node. Rule ρ1
jumps from the root to the leaf, and rules ρ2, ρ3, ρ4 just move to the parent.

To show the correctness of Psib, let u be a node of an input tree t , such that u is not the leaf of t . Moreover, let ζ1 be 
an output tree that is an itinerary from the child of u to the leaf, of which the first stop is large (c = 1) or small (c = 0), 
and let ζ2 be an arbitrary output form. Then 〈qc, u〉(ζ1, ζ2) generates the output form r(s1(ζ1), r(s2(ζ1), . . . r(sn(ζ1), ζ2) · · · ))
where s1, . . . , sn are all possible itineraries from the root to u such that every si(ζ1) is an itinerary from root to leaf. This 
can be proved by induction on the number of nodes between the root and u. The base of the induction is by rule ρ5, which 
generates the root label σ1, and the induction step is by rules ρ3 and ρ4. In rule ρ3 a small city is skipped. In rule ρ4, the 
outermost selector 〈qi, up(x, y)〉 generates all itineraries si from the root to x that include x (or rather, its label λi ), whereas 
the innermost selector 〈qc, up(x, y)〉 generates all those that do not include x. Taking c = 1, u equal to the parent of the 
leaf, and σ0 to the label of the leaf, shows that 〈q1, u〉(σ0, e) generates all required itineraries. That implies the correctness 
of Psib by rule ρ2.

An XSLT 1.0 program with exactly the same structure as Psib is given in Section 13. �
As in the case of DTL, we will assume that in the above definition of tl program, the input alphabet 	 is ranked and 

the input forest t is a ranked tree in T	 . Also, ranked tl programs are defined as for dtl programs. In particular, for every 
rule 〈q, ϕ(x)〉(z1, . . . , zn) → f , the right-hand side f is a ranked tree in T�(S ∪ Zn) where S is the set of selectors and 
Zn = {z1, . . . , zn}. The program Psib of Example 38 is ranked.

Let TL denote the class of transductions realized by tl programs and dTL the class of those realized by deterministic tl

programs, from ranked trees to unranked forests. Moreover, TLr and dTLr denote the classes of transductions realized by 
ranked programs, from ranked trees to ranked trees.

21 It is similar to the “alternative” fixed point characterization of the OI context-free tree languages mentioned after [21, Definition 5.19].
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In what follows we will prove that TL = I-PFT, and similarly for the deterministic case and for the ranked case (The-
orem 46). Note that this also implies that tl programs and i-pft’s realize the same forest transductions, i.e., enc′ ◦ TL =
enc′ ◦ I-PFT. These equalities are variants of the well-known fact that macro grammars are equivalent to indexed grammars 
[24], see also [23, Theorem 5.24].

Lemma 39. TL ⊆ I-PFT and dTL ⊆ I-dPFT. Moreover, TLr ⊆ I-PTT and dTLr ⊆ I-dPTT.

Proof. The construction extends the one in the proof of Lemma 35. The main idea is to use pebbles to store the actual 
parameters. Thus, the pebble colours are of the form ([s1], . . . , [sm]) where m ≥ 0 and s1, . . . , sm are subtrees of a right-
hand side of a rule (in particular, the subtrees rooted at the children of a node that is labeled by a selector).

As in the dtl case, for an input tree t , the transducer M simulates a rule 〈q, ϕ(x)〉(z1, . . . , zn) → f in state q at node u
of t by testing whether t |= ϕ(u) and, if successful, calling subroutine S . In this (nested) case, S outputs the outermost 
�-labeled nodes of f , plus the outermost �-labeled nodes of the actual parameters that are the values of the formal 
parameters zi that occur outermost in f . For the states [sf ′], [δ( f ′)], and [ε], the rules of S are as in the proof of Lemma 35
(and see the proof of Corollary 36 for the ranked case). If the state of S is of the form [〈q′, ψ(x, y)〉(s1, . . . , sm)], then it 
drops a pebble ([s1], . . . , [sm]) on the current node u to represent the parameters, and returns control to (this copy of) M
in state 〈q′, ψ(x, y)〉. In that state, M calls subroutine Sq′,ψ , which works as in the dtl case. Note that M need not drop 
a pebble �, as Sq′,ψ can use the pebble ([s1], . . . , [sm]) instead. Finally, if the state of S is of the form [zi] for some formal 
parameter zi , this means that the corresponding actual parameter has to be evaluated. To do this, the subroutine S searches 
for the topmost pebble, which has some colour ([s1], . . . , [sm]). Then S lifts that pebble and changes its state to [si ], ready 
to evaluate si .

It is easy to show, for every i ∈N , that whenever M is in state q or state 〈q, ψ(x, y)〉 with i ∈ [1, rank(q)], and whenever 
S is in state [ f ] and zi occurs in f , then the topmost pebble with colour ([s1], . . . , [sm]) satisfies i ∈ [1, m]. Hence the last 
sentence of the previous paragraph never fails.

To understand the correctness of M, we show how the output forms of M represent output forms of P , similar to the 
correctness proof of Theorem 37. We restrict ourselves to output forms in which all the states of M are states of P or selec-
tors of P or states of the subroutine S , i.e., we disregard the states of the subroutines Sq′,ψ and view the execution of such 
a subroutine as one big step in the computation of M, changing a configuration 〈〈q′, ψ(x, y)〉, u, π〉 deterministically into a 
forest 〈q′, u′

1, π〉 · · · 〈q′, u′
�, π〉 (which is just a one-node tree 〈q′, u′, π〉 in the ranked case). Thus, we define a mapping ‘rep’ 

from such restricted output forms of M to the output forms of P . The �-labeled part of the output form is not changed 
by ‘rep’, i.e., rep(sf ) = rep(s) rep( f ), rep(ε) = ε, and rep(δ( f )) = δ(rep( f )) for δ ∈ �, where s is a tree and f a forest (or 
rep(δ(s1, . . . , sm)) = δ(rep(s1), . . . , rep(sm)) in the ranked case). It remains to define ‘rep’ for the configurations of M that 
occur in restricted output forms, i.e., for every configuration 〈p, u, π〉 where p is a state q of P , or a selector 〈q′, ψ(x, y)〉
of P , or a state [ f ] of S (where f is a subforest of a right-hand side of a rule of P). As before, we will write rep(p, u, π)

instead of rep(〈p, u, π〉). The definition is by induction on the structure of π , of which we consider the topmost pebble: let 
π = π ′(v, ([s1], . . . , [sm])). If p = q or p = 〈q′, ψ(x, y)〉, then rep(p, u, π) = 〈p, u〉(rep([s1], v, π ′), . . . , rep([sm], v, π ′)). For 
p = [ f ] we define rep([ f ], u, π) to be the forest θu( f ) in which every parameter zi is replaced by rep([si], v, π ′). Finally, 
for π = ε, we define rep(p, u, ε) = 〈p, u〉 in the first case, and rep([ f ], u, ε) = θu( f ) in the second case. If we consider only 
reachable output forms of M, then ‘rep’ is well defined (cf. the previous paragraph).

It is now straightforward to prove, for every initial state q0 of P , every input tree t , and every output form s of P , that 
〈q0, roott〉 ⇒∗

t,P s if and only if there exists a restricted output form s′ of M such that 〈q0, roott , ε〉 ⇒∗
t,M s′ and rep(s′) = s. 

In the proof one should use the rather obvious fact that for every restricted output form s′ of M there exists a restricted 
output form s′′ of M such that s′ ⇒∗

t,M s′′ , rep(s′′) = rep(s′), and no states [ f ] of S occur in s′′ . The above equivalence 
implies that τM = τP . �
Example 40. The i-ptt M corresponding to the (ranked) tl program Psib of Example 38, according to the proof of 
Lemma 39, works in essentially the same way as the i-ptt Msib of Example 2. Rules ρ1 to ρ5 are translated into rules 
for M that are similar to the first 5 rules of Msib. Rule ρ1 can be translated into the first rule of Msib, which im-
plements the jump to the leaf. Rule ρ2 can be translated into the rule 〈qstart, σ0, 1, ∅〉 → 〈q1, drop([σ0],[e]); up〉. Thus, 
M drops the special pebble ([σ0], [e]) at the leaf, where Msib does not drop a pebble. Rule ρ3 can be translated 
into the rule 〈q0, λ0, 1, ∅〉 → 〈q0, drop([z1],[z2]); up〉. Thus, M drops the “empty” pebble ([z1], [z2]) whenever Msib does 
not drop a pebble. Rule ρ4 can be translated into the rule 〈qc, λi, 1, ∅〉 → 〈qi, dropc(λi)

; up〉, where c(λi) is the pebble 
([λi(z1)], [〈qc, up(x, y)〉(z1, z2)]) which is dropped by M instead of the pebble c. Note that the pebble colours c(λi) and 
([σ0], [e]) include the label (λi or σ0) of the node on which the pebble is dropped, which is of course superfluous infor-
mation. Finally, rule ρ5 can be translated into the rule 〈qc, σ1, 0, ∅〉 → r(〈[σ1(z1)], stay〉, 〈[z2], stay〉), which calls the states 
[σ1(z1)] and [z2] of the subroutine S . In state [σ1(z1)], S outputs σ1 and goes into state [z1]. We note that at any moment 
of time, when M is at node u of the input tree, all descendants of u, possibly including u itself, carry a pebble. Thus, 
in state [zi], S moves down to the child of u, lifts pebble ([s1], [s2]) and goes into state [si]. It is now easy to see that 
states [z1] and [z2] of M correspond to states qout and qnext of Msib, respectively. In state [z1], S moves down and outputs 
the labels of all nodes that are marked by some pebble c(λi) or ([σ0], [e]), lifting those pebbles one by one. In state [z2], 
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S moves down to the first pebble c(λi), replaces that pebble by the “empty” pebble ([z1], [z2]), and returns control to M, 
which then goes into state qc and moves up to the parent. When, in state [z2], S reaches the leaf with pebble ([σ0], [e]), it 
lifts that pebble and outputs e. �

Lemma 39 and Theorem 34 (for k = 0) together provide an alternative proof of the main result of [37]: the inverse type 
inference problem and the typechecking problem are solvable for tl programs. The proofs are, however, similar. In [37]
every tl program is decomposed into three macro tree transducers, whereas we have decomposed every i-ptt into two tt’s. 
In general, decomposition into tt’s leads to more efficient typechecking than decomposition into macro tree transducers, 
because (cf. Proposition 6) inverse type inference of a macro tree transducer takes double exponential time, unless the 
number of parameters is bounded and the output type is fixed [47]. Let us define a tl

db program to be a tl program in 
which the mso formulas ϕ(x) and ψ(x, y) in the template rules of the program are represented by deterministic bottom-up 
finite-state tree automata that recognize the corresponding regular sites mark(T (ϕ)) and trips mark(T (ψ)).

Theorem 41. The inverse type inference problem and the typechecking problem are solvable for tl
db programs in 3-fold and 4-fold 

exponential time, respectively.

Proof. By Theorem 34, these problems are solvable for i-pft’s in 2-fold and 3-fold exponential time. Let us now assume 
that the regular sites and trips used in mso tests of i-pft’s are also represented by deterministic bottom-up finite-state 
tree automata. Then it is easy to see that the construction in the proof of Lemma 39 takes polynomial time. However, 
the mso tests that are used by the resulting i-pft have to be removed, and the construction in the proof of Theorem 16
takes exponential time, as can be checked in a straightforward way. That involves checking that the constructions in the 
proofs of Lemmas 10, 12, and 13 take polynomial time, and so does the construction in the proof of Proposition 14 (for the 
nonfunctional case), i.e., in the proof of [5, Theorem 8]. The exponential in the proof of Theorem 16 is due to the use of the 
sets of states S of Bd in the colours of the beads. Hence, solving the above problems takes one more exponential for tl

db

programs than for i-pft. �
A tl program P = (	, �, Q , Q 0, R) is a macro tree transducer, more precisely an oi macro tree transducer (see [22]), if it 

is ranked, and for every rule 〈q, ϕ(x)〉(z1, . . . , zn) → f the following hold. First, ϕ(x) ≡ labσ (x) for some σ ∈ 	. Second, for 
every selector 〈q′, ψ(x, y)〉 that occurs in f , we have ψ(x, y) ≡ downi(x, y) for some i ∈ [1, rank	(σ )]. It follows immedi-
ately from Lemma 39 that macro tree transducers can be simulated by i-ptt. Let MToi denote the class of tree transductions 
realized by oi macro tree transducers, and dMToi the corresponding deterministic class.

Corollary 42. MToi ⊆ I-PTT and dMToi ⊆ I-dPTT.

The inclusions are proper because for every oi macro tree transduction the height of the output tree is exponentially 
bounded by the height of the input tree [22, Theorem 3.24], whereas it is not difficult to construct a deterministic i-ptt M
with input alphabet {σ , e}, where rank(σ ) = 2 and rank(e) = 0, such that the height of the output tree is exponential 
in the size of the input tree. The transducer M is similar to the i-ptt Msib of Example 2, viewing the nodes of the 
input tree as large cities that are ordered by document order; thus, the number of itineraries is indeed exponential in the 
size of the input tree. Note that by [19, Corollary 7.2] and [22, Theorem 6.18], dMToi properly contains the class DMSOT
of deterministic mso definable tree transductions (see also [10, Section 8]). Note also that, since dB is properly contained in 
dMToi by [22, Corollary 6.16], the second part of Corollary 42 strengthens the second part of Theorem 18. It is open whether 
or not B is contained in MToi .

We now turn to the inclusion I-PFT ⊆ TL. To prove that, we need a normal form for i-pft’s. We say that a rule of an
i-pft is initial if the state in its left-hand side is an initial state. We define an i-pft M = (	, �, Q , Q 0, C, ∅, C i, R, 0) with 
C = C i to be in normal form if its rules satisfy the following five requirements:

(1) Initial states do not appear in the right-hand side of a rule.
(2) All initial rules are of the form 〈q0, σ , 0, ∅〉 → 〈q, dropc〉 for some q0 ∈ Q 0, σ ∈ 	, q ∈ Q \ Q 0, and c ∈ C . Intuitively, 

M starts its computation by dropping a pebble on the root of the input tree.
(3) All non-initial rules have a left-hand side of the form 〈q, σ , j, {c}〉 with c ∈ C . Intuitively, M always observes the 

topmost pebble, i.e., that pebble is always at the position of the head.
(4) All non-initial non-output rules have a right-hand side 〈q′, α〉 with q′ ∈ Q \ Q 0 and α = stay or α = μ; dropc or 

α = liftc; μ where c ∈ C and μ ∈ {up, stay} ∪ {downi | i ∈ [1, mx	]}. We will identify stay; dropc with dropc and liftc; stay
with liftc . Intuitively, to force that M always observes the topmost pebble, M always drops a pebble after moving, and 
always moves after lifting a pebble. Note that, in a successful computation, M never lifts the pebble that it dropped with 
an initial rule.

(5) There is a function δ from C to {up, stay} ∪ {downi | i ∈ [1, mx	]} such that (i) if a rule of M has right-hand side 
〈q′, liftc; μ〉, then μ = δ(c), and (ii) for every rule 〈q, σ , j, {d}〉 → 〈q′, μ; dropc〉 of M, if μ = up then δ(c) = down j , if 
μ = stay then δ(c) = stay, and if μ = downi then δ(c) = up. Intuitively this means that M, after lifting a pebble, always 
knows where to find the new topmost pebble.
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This ends the definition of normal form. Obviously, it can also be defined for i-ptt’s and for i-pta’s. The i-pta in normal 
form can be viewed as a reformulation of the two-way backtracking pushdown tree automaton of [51]. The i-ptt in normal 
form can be viewed as a reformulation of the RT(P(S))-transducer of [13,23], where S is the storage type Tree-walk of [13].22

Lemma 43. For every i-pft M an equivalent i-pft M′ in normal form can be constructed. If M is deterministic, then so is M′. The 
same holds for i-ptt.

Proof. The idea of the construction is a simplified version of the one in the proof of Theorem 16, where “beads” are used 
to cover the shortest path between the head and the topmost pebble. Assuming that the i-pta A in that proof starts by 
dropping a pebble on the root (which is never lifted), the constructed i-pta A′ satisfies the above requirements on the rules. 
To show the details, we will repeat that construction, in a simplified form. Here, the only information a bead has to carry 
is the position of the previous pebble or bead. Moreover, we do not have to drop a bead on the position of the topmost 
pebble.

Let M be an i-pft with colour set C . We may obviously assume that M already satisfies the first two requirements 
above. We construct M′ with the same states and initial states as M, and with the colour set C ∪ B where B = {up} ∪
{downi | [1, mx	]}. The function δ of requirement (5) is defined by δ(d) = d for every d ∈ B , and δ(c) = stay for every c ∈ C . 
The rules of M′ are obtained from those of M as follows. The initial rules of M are also rules of M′ .

If 〈q, σ , j, ∅〉 → 〈q′, up〉 is a rule of M, then M′ has the rules 〈q, σ , j, {up}〉 → 〈q′, liftup; up〉 and 〈q, σ , j, {downi}〉 →
〈q′, up; dropdown j

〉 for every i. Also, if 〈q, σ , j, {c}〉 → 〈q′, up〉 is a rule of M, then M′ has the rule 〈q, σ , j, {c}〉 →
〈q′, up; dropdown j

〉.
Similarly, if 〈q, σ , j, ∅〉 → 〈q′, downi〉 is a rule of M, then M′ has the rules 〈q, σ , j, {downi}〉 → 〈q′, liftdowni ; downi〉 and 

〈q, σ , j, {μ}〉 → 〈q′, downi; dropup〉 for every μ ∈ {up} ∪ {downk | k �= i}. Also, if 〈q, σ , j, {c}〉 → 〈q′, downi〉 is a rule of M, 
then M′ has the rule 〈q, σ , j, {c}〉 → 〈q′, downi; dropup〉.

The remaining rules of M (viz. rules with right-hand side 〈q′, stay〉, output rules, rules that lift, and non-initial rules 
that drop) are treated as follows. If 〈q, σ , j, ∅〉 → ζ is such a rule of M, then M′ has the rules 〈q, σ , j, {μ}〉 → ζ for every 
bead μ ∈ B . If 〈q, σ , j, {c}〉 → ζ is such a rule of M, then it is also a rule of M′ .

It should be clear that M′ is equivalent to M. Whenever M observes the topmost pebble c, so does M′ . Whenever 
M does not observe c, M′ observes a bead that indicates the direction of the topmost pebble. Note that if M′ lifts pebble c
of M, the new topmost pebble/bead is always at the same position, because when c was dropped M′ was observing the 
topmost pebble/bead. �

The tl program that we will construct to simulate a given i-pft M will use mso formulas ϕ(x) and ψ(x, y) that closely 
resemble the tests and instructions in the left-hand and right-hand sides of the rules of M, respectively. Those tests and 
instructions are “local” in the sense that they only concern the node x, its parent, and its children. Thus, we say that a
tl program P is local if in the left-hand side of a rule it only uses a formula ϕσ, j(x) for σ ∈ 	 and j ∈ [0, mx	], where 
ϕσ,0(x) ≡ labσ (x) ∧ root(x) and ϕσ, j(x) ≡ labσ (x) ∧ child j(x) for j �= 0, and in the right-hand side of that rule it only uses 
the formulas up(x, y) (provided j �= 0), stay(x, y), and downi(x, y) for i ∈ [1, rank	(σ )].23 Thus, P also satisfies restriction 
(R2) in the definition of a ranked tl program. Note that macro tree transducers, as defined before Corollary 42, are local 
ranked tl programs. The classes of transductions realized by local tl programs will be decorated with a subscript �.

Lemma 44. I-PFT ⊆ TL� and I-dPFT ⊆ dTL� . Moreover, I-PTT ⊆ TL�r and I-dPTT ⊆ dTL�r .

Proof. Let M = (	, �, Q , Q 0, C, ∅, C i, R, 0) with C = C i be an i-pft in normal form. We construct a tl program P that is 
equivalent to M. The set of states of P is

Q 0 ∪ ((Q \ Q 0) × C) ∪ {q⊥}.
Each initial state has rank 0, each pair 〈q, c〉 has rank #(Q \ Q 0), and q⊥ has rank 0. The set of initial states of P is Q 0. The 
rules of P are defined as follows, where we denote a state 〈q, c〉 as qc . Let Q \ Q 0 = {q1, . . . , qn} where we fix the order 
q1, . . . , qn .

First, if 〈q0, σ , 0, ∅〉 → 〈q, dropc〉 is an initial rule of M, then P has the rule 〈q0, ϕσ,0(x)〉 → 〈qc, stay(x, y)〉(⊥, . . . , ⊥), 
where ⊥ abbreviates 〈q⊥, stay(x, y)〉. There are no rules of P with q⊥ in the left-hand side.

Second, let 〈q, σ , j, {c}〉 → ζ be a (non-initial) rule of M that does not contain a drop- or lift-instruction. Thus, 
ζ is of the form 〈p, stay〉, 〈p1, stay〉〈p2, stay〉, δ(〈p, stay〉), or ε, with p, p1, p2 ∈ Q and δ ∈ �.24 Then P has the rule 
〈qc, ϕσ, j(x)〉(z1, . . . , zn) → ζ ′ , where ζ ′ is obtained from ζ by replacing every 〈p, stay〉 by 〈pc, stay(x, y)〉(z1, . . . , zn).

22 See also [20, Section 3.3] where the tt is related to the RT(S)-transducer for S = Tree-walk.
23 We recall that root(x) ≡ ¬ ∃z(down(z, x)), childi(x) ≡ ∃z(downi(z, x)), up(x, y) ≡ down(y, x), and stay(x, y) ≡ x = y.
24 In the case where M is an i-ptt, ζ is of the form 〈p, stay〉 or δ(〈p1, stay〉, . . . , 〈pm, stay〉).
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Third, let 〈q, σ , j, {d}〉 → 〈p, μ; dropc〉 be a rule of M. Note that for every μ ∈ {up, stay} ∪ {downi | i ∈ [1, mx	]}, there is 
an mso formula μ(x, y). Then P has the rule

〈qd,ϕσ , j(x)〉(z1, . . . , zn) → 〈pc,μ(x, y)〉(s1, . . . , sn)

where si = 〈qd
i , stay(x, y)〉(z1, . . . , zn) for every i ∈ [1, n]; thus, the rule is

〈qd,ϕσ , j(x)〉(z1, . . . , zn) → 〈pc,μ(x, y)〉(〈qd
1, stay(x, y)〉(z1, . . . , zn), . . . , 〈qd

n, stay(x, y)〉(z1, . . . , zn)).

Fourth and final, if 〈q, σ , j, {c}〉 → 〈qi, liftc; μ〉 is a rule of M, then P has the rule

〈qc,ϕσ , j(x)〉(z1, . . . , zn) → zi .

Intuitively, P is in state qc when M is in state q and the topmost pebble of M is c. The parameter zi of qc contains the 
continuation of M’s computation just after pebble c is lifted and M goes into state qi . At the moment that M drops peb-
ble c, P does not know what the state qi of M will be after lifting c and thus prepares the continuation for every possible 
state. The correct continuation is then chosen by P when it simulates M’s lifting of c. Note that due to requirement (5) of 
the normal form, when M lifts a pebble, it returns to the same node where it decided to drop the pebble (at that node, or 
at the parent or at one of the children of that node).

Formally, we define a mapping ‘rep’ from the output forms of M (except the initial one) to those restricted output 
forms of P of which the outermost nodes are labeled by a symbol from � or by a configuration 〈q, u〉 where q is a state 
of P (thus, they are not labeled by a configuration 〈p, u〉 where p is a selector of P). As in the proof of Lemma 39, the 
�-labeled part of the output form is not changed. Thus, it remains to define ‘rep’ for the configurations of M that contain 
non-initial states, which are of the form 〈q, u, π(u, c)〉 because the topmost pebble is always at the position of the head. 
We define rep(q, u, π(u, c)) = 〈qc, u〉 rep′(π), where rep′ maps the pebble stacks of M to sequences of output forms of P , 
recursively as follows: rep′(ε) = (⊥, . . . , ⊥) and rep′(π(u, c)) = (s1, . . . , sn) where si = 〈〈qc

i , stay(x, y)〉, u〉 rep′(π) for every 
i ∈ [1, n]. Note that ‘rep’ is injective.

It is now straightforward to prove, for every q ∈ Q \ Q 0, every c ∈ C , every input tree t , and every output form s of P
(restricted as described above), that 〈qc, roott〉(⊥, . . . , ⊥) ⇒∗

t,P s if and only if there exists an output form s′ of M such 
that 〈q, roott , (roott , c)〉 ⇒∗

t,M s′ and rep(s′) = s. Since ‘rep’ is injective, s′ is in fact unique. Note that each computation 
step of M is simulated by two (or three) computation steps of P , where the second (and third) step executes a selector to 
satisfy the restriction on the output forms of P . Due to its special form, the execution of such a selector ψ(x, y) changes 
the label 〈〈q′, ψ(x, y)〉, u〉 of a node of the output form into 〈q′, u′〉 where u′ is the unique node of the input tree for which 
ψ(u, u′) holds.

Taking into account the initial rules of M, it should be clear that the above equivalence proves that τP = τM . �
Example 45. We illustrate Lemma 44 with the deterministic i-ptt Msib of Example 2. We first construct an i-ptt M′

sib
in normal form that is equivalent to Msib . We also allow tuples 〈q′, liftd; μ〉 in the output rules for any colour d, which 
can easily be handled too. The transducer M′

sib has a new initial state qin, in which it drops pebble � on the root, which 
also serves as the pebble ‘up’. The pebble ‘down1’ is denoted by ↓. The normal form function δ is defined by δ(�) = up, 
δ(↓) = down1, and δ(c) = stay for c ∈ {0, 1}. There are new states q0 and q1 in which M′

sib moves up, drops pebble ↓, and 
goes into the corresponding unbarred state. Thus the rules for them are

ρc,d : 〈qc,σ ,1, {d}〉 → 〈qc,up;drop↓〉
with σ ∈ 	 and d ∈ {�, ↓, 0, 1}. The other rules (with c = 1 or i = 0 in rule ρ4 as usual) are

ρ0 : 〈qin,σ1,0,∅〉 → 〈qstart,drop�〉
ρ1 : 〈qstart,σ1, j, {�}〉 → 〈qstart,down1;drop�〉
ρ2 : 〈qstart,σ0,1, {�}〉 → 〈q1, stay〉
ρ3 : 〈q0, λ0,1, {↓}〉 → 〈q0, stay〉
ρ4 : 〈qc, λi,1, {↓}〉 → 〈qi,dropc〉
ρ5 : 〈qc,σ1,0, {↓}〉 → r(〈qout, stay〉, 〈qnext, lift↓;down1〉)
ρ6 : 〈qout,σ1,0, {↓}〉 → σ1(〈qout, lift↓;down1〉)
ρ7 : 〈qout,σ1,1, {↓}〉 → 〈qout, lift↓;down1〉
ρ8 : 〈qout,σ1,1, {c}〉 → σ1(〈qout, liftc〉)
ρ9 : 〈qout,σ0,1, {�}〉 → σ0
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ρ10 : 〈qnext,σ1,1, {↓}〉 → 〈qnext, lift↓;down1〉
ρ11 : 〈qnext,σ1,1, {c}〉 → 〈qc, liftc〉
ρ12 : 〈qnext,σ0,1, {�}〉 → e

We now construct the deterministic tl program P corresponding to M′
sib. The states of M′

sib after lifting ↓ are qout and 
qnext. Thus, the states of P that are active when the topmost pebble is ↓ only need two parameters z1, z2 corresponding 
to qout and qnext. Similarly, the states of P that are active when the topmost pebble is c only need two parameters z1, z2
corresponding to qout and qc . The states of P that are active when the topmost pebble is � do not need parameters, because 
� is never lifted. Program P has the states qin, q�

start, q
↓
c , qd

c , qd
out, and qd

next, where c ∈ {0, 1} and d ∈ {�, ↓, 0, 1}. Note that 
the state q⊥ is superfluous. The initial state qin and all states with superscript � have rank 0, and the other states have 
rank 2.

Program P has the following rule corresponding to rule rc,d of M′
sib, with d �= �:

ρc,d : 〈qd
c ,ϕσ ,1(x)〉(z1, z2) → 〈q↓

c ,up(x, y)〉(〈qd
out, stay(x, y)〉(z1, z2), 〈qd

next, stay(x, y)〉(z1, z2))

and for d = � the same rule without the parameters (z1, z2). The other rules of P are

ρ0 : 〈qin,ϕσ1,0(x)〉 → 〈q�
start, stay(x, y)〉

ρ1 : 〈q�
start,ϕσ1, j(x)〉 → 〈q�

start,down1(x, y)〉
ρ2 : 〈q�

start,ϕσ0,1(x)〉 → 〈q�
1 , stay(x, y)〉

ρ3 : 〈q↓
0 ,ϕλ0,1(x)〉(z1, z2) → 〈q↓

0 , stay(x, y)〉(z1, z2)

ρ4 : 〈q↓
c ,ϕλi ,1(x)〉(z1, z2) → 〈qc

i , stay(x, y)〉(〈q↓
out, stay(x, y)〉(z1, z2), 〈q↓

c , stay(x, y)〉(z1, z2))

ρ5 : 〈q↓
c ,ϕσ1,0(x)〉(z1, z2) → r(〈q↓

out, stay(x, y)〉(z1, z2), z2)

ρ6 : 〈q↓
out,ϕσ1,0(x)〉(z1, z2) → σ1(z1)

ρ7 : 〈q↓
out,ϕσ1,1(x)〉(z1, z2) → z1

ρ8 : 〈qc
out,ϕσ1,1(x)〉(z1, z2) → σ1(z1)

ρ9 : 〈q�
out,ϕσ0,1(x)〉 → σ0

ρ10 : 〈q↓
next,ϕσ1,1(x)〉(z1, z2) → z2

ρ11 : 〈qc
next,ϕσ1,1(x)〉(z1, z2) → z2

ρ12 : 〈q�
next,ϕσ0,1(x)〉 → e

Applying rule ρ6 to the right-hand side of rule ρ5, we obtain the rule

ρ ′
5 : 〈q↓

c ,ϕσ1,0(x)〉(z1, z2) → r(σ1(z1), z2)

which is in fact rule ρ5 of program Psib of Example 38, if we identify the states q↓
c and qc . Rules ρ0 and ρ1 of P correspond 

to rule ρ1 of Psib in an obvious way (with q�
start and qstart identified). Since program P is deterministic, and its states 

generate trees (rather than forests), we can also apply rules ρ7 − ρ12 to the right-hand side of rule ρc,d , and we obtain the 
rules

ρ ′
c,↓ : 〈q↓

c ,ϕσ1,1(x)〉(z1, z2) → 〈q↓
c ,up(x, y)〉(z1, z2)

ρ ′
i,c : 〈qc

i ,ϕσ1,1(x)〉(z1, z2) → 〈q↓
i ,up(x, y)〉(σ1(z1), z2)

ρ ′
c,� : 〈q�

c ,ϕσ0,1(x)〉 → 〈q↓
c ,up(x, y)〉(σ0, e)

Applying ρ ′
1,� to the right-hand side of ρ2 we obtain

ρ ′
2 : 〈q�

start,ϕσ0,1(x)〉 → 〈q↓
1 ,up(x, y)〉(σ0, e)

which is rule ρ2 of Psib. Applying ρ ′
0,↓ to the right-hand side of ρ3 we obtain

ρ ′
3 : 〈q↓

0 ,ϕλ0,1(x)〉(z1, z2) → 〈q↓
0 ,up(x, y)〉(z1, z2)

which is rule ρ3 of Psib. Finally, applying rules ρ ′
i,c , ρ7, and ρ ′

c,↓ to the selectors in the right-hand side of rule ρ4, re-
spectively, we obtain the right-hand side 〈qi, up(x, y)〉(λi(z1), 〈qc, up(x, y)〉(z1, z2)) of rule ρ4 of Psib. Thus, program P is 
essentially the same as program Psib of Example 38. �
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Lemmas 39 and 44 together prove that tl programs have the same expressive power as i-pft’s. Additionally, they prove 
that for every tl program there is an equivalent local one.

Theorem 46. TL = TL� = I-PFT and dTL = dTL� = I-dPFT. Moreover, TLr = TL�r = I-PTT and dTLr = dTL�r = I-dPTT.

Since local tl programs satisfy restriction (R2) in the definition of a ranked tl program, the equation TL = TL� shows that 
the pattern matching aspect that is involved in the execution of selectors, can be viewed as an extended feature. Moreover, 
even the “jumps” in the execution of selectors, and the arbitrary mso head tests in the left-hand sides of rules, can be 
viewed as extended features of TL� .

Note that for tl
db

� programs the construction in the proof of Lemma 39 can easily be simplified to one that takes 
polynomial time and that results in an i-pft that does not use mso tests. That implies that the inverse type inference 
problem for such programs is solvable in 2-fold exponential time, and hence typechecking can be done in 3-fold exponential 
time (cf. Theorem 41).

The local ranked tl program is an obvious reformulation of the “macro tree-walking transducer” (2-mtt) of [37]. The 
inclusion TLr ⊆ TL�r is a (slightly stronger) version of [37, Theorem 5]. Moreover, the local ranked tl program is the same 
as the “0-pebble macro tree transducer” of [20, Section 5.1] and it is the CFT(S)-transducer of [23] for the storage type 
S = Tree-walk, both of which generalize the macro attributed tree transducer of [26,35] which additionally satisfies a 
noncircularity condition. It follows from Lemma 4 and Theorem 46 that TL�r ⊆ TT2, which was stated as an open problem 
in [20, Section 8] (where TL�r and TT are denoted 0-PMTT and 0-PTT, respectively). In view of Lemma 43, the equality 
TL�r = I-PTT is the same as the equality CFT(S) = RT(P(S)) of [23, Theorem 5.24] for S = Tree-walk, and similarly for the 
deterministic case.

13. A TL program in XSLT

In Tables 1 and 2 we listed a possible input document and the resulting output document for the i-ptt Msib of Ex-
ample 2. In this section we present in Table 7 an XSLT 1.0 program with the same structure as the tl program Psib of 
Example 38. In what follows we comment on the XSLT program and its relationship to Psib , abbreviated as P .

The first rule ρ1 of P corresponds to the first template of the XSLT program: this template initializes the algorithm by 
matching the root of the input document, jumping to the leaf by selecting the final stop, and invoking named template
start on it.

The second rule ρ2 of P corresponds to template start: it moves up, using the apply-templates instruction 
which selects the parent, and thus invokes the third template on that parent, which is the only template for nonroot 
document elements. It invokes that template with the appropriate parameters: nextstoplarge is 1 because large= 1
for the final stop, stoplist is a list containing only the final stop, and additionalresults is the single element 
<endofresults />.

The remaining rules of P correspond to the third template, which is applied to all nonfinal stops. That template takes a 
partial stop list stoplist (from the current stop to the final stop) and generates all allowed ways to complete that stop 
list using the stops between the current one and the initial one. Nested below the deepest element of the output, it includes 
the result tree fragment passed in additionalresults. The third template has three parameters:

nextstoplarge: a boolean indicating whether or not the “next” stop (i.e., the stop at the front of stoplist) is a 
large stop; it corresponds to states q1 and q0 in P , respectively,
stoplist: a partial list of stops (taken from the current stop to the final stop) for which this template will recursively 
generate all (allowed) ways in which it can be completed; it corresponds to parameter z1 in P ,
additionalresults: results that are to be appended to the results that this template generates; it corresponds to 
parameter z2 in P ,

where both stoplist and additionalresults are of type ‘result tree fragment’.
Corresponding to rule ρ5 of P , the third template, when invoked on the initial stop (for which initial= 1), has 

computed a complete stop list (after adding this stop) and outputs it: it copies the initial stop and nests the remainder 
of the stop list (i.e., the value of its parameter stoplist) in it; it also includes the additional results (i.e., the value of 
parameter additionalresults).

Corresponding to rules ρ3 and ρ4 of P , the third template, when invoked on an intermediate stop (for which 
not(initial= 1)), has not yet computed a complete stop list, and now calculates all allowed ways to complete it. Intu-
itively, it computes two result sets: one that does not add the current stop, and one that does. They are combined by passing 
the first result set as “additional results” to the calculation of the second one. Thus, the third template starts by computing 
the first result set, and, to abbreviate the remaining code, it assigns its value to a variable called results. In rules ρ3 and 
ρ4 of P this result set corresponds to the selector 〈qc, up(x, y)〉(z1, z2), where c = 0 in ρ3. In the case that large = 0
and nextstoplarge = 0, we are not allowed to stop here because that would create two consecutive small stops. Thus 
the template only outputs the results that it just stored in the variable (corresponding to rule ρ3 of P). In the case that
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Table 7
XSLT Program.
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>

<xsl:template match="/">
<xsl:for-each select="//stop[@final=1]">

<xsl:call-template name="start" />
</xsl:for-each>

</xsl:template>

<xsl:template name="start">
<xsl:apply-templates select="parent::stop">

<xsl:with-param name="nextstoplarge" select="@large" />
<xsl:with-param name="stoplist">

<xsl:copy>
<xsl:copy-of select="attribute::*" />

</xsl:copy>
</xsl:with-param>
<xsl:with-param name="additionalresults">

<endofresults />
</xsl:with-param>

</xsl:apply-templates>
</xsl:template>

<xsl:template match="stop">
<xsl:param name="nextstoplarge" />
<xsl:param name="stoplist" />
<xsl:param name="additionalresults" />
<xsl:if test="@initial = 1">

<result>
<xsl:copy>

<xsl:copy-of select="attribute::*" />
<xsl:copy-of select="$stoplist" />

</xsl:copy>
<xsl:copy-of select="$additionalresults" />

</result>
</xsl:if>
<xsl:if test="not(@initial = 1)">

<xsl:variable name="results">
<xsl:apply-templates select="parent::stop">

<xsl:with-param name="nextstoplarge" select="$nextstoplarge" />
<xsl:with-param name="stoplist" select="$stoplist" />
<xsl:with-param name="additionalresults" select="$additionalresults" />

</xsl:apply-templates>
</xsl:variable>
<xsl:if test="@large = 1 or $nextstoplarge = 1">

<xsl:apply-templates select="parent::stop">
<xsl:with-param name="nextstoplarge" select="@large" />
<xsl:with-param name="stoplist">

<xsl:copy>
<xsl:copy-of select="attribute::*" />
<xsl:copy-of select="$stoplist" />

</xsl:copy>
</xsl:with-param>
<xsl:with-param name="additionalresults" select="$results" />

</xsl:apply-templates>
</xsl:if>
<xsl:if test="@large = 0 and $nextstoplarge = 0">

<xsl:copy-of select="$results" />
</xsl:if>

</xsl:if>
</xsl:template>

</xsl:stylesheet>

large = 1 or nextstoplarge = 1, the template calculates all possible ways to complete the stop list that contain this 
stop, and includes as additional results those that are stored in the variable (corresponding to rule ρ4 of P).

14. Data complexity

In this section we show that the transduction of a deterministic ptt M can be realized in (1-fold) exponential time, in 
the sense that there is an exponential time algorithm that, for every given input tree t , computes a regular tree grammar G
that generates the language {τM(t)}. If t is in the domain of M, then G can be viewed as a DAG (directed acyclic graph) 
that defines the output tree τM(t), in the usual sense. Thus, producing the actual output tree would take 2-fold exponential 
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time. If t is not in the domain of M, then G generates the empty tree language (which can be decided in time linear in the 
size of G).

Theorem 47. For every deterministic ptt M there is an exponential time algorithm that, for given input tree t, computes a regular tree 
grammar G such that L(G) = {s | (t, s) ∈ τM}.

Proof. Let M = (	, �, Q , {q0}, C, Cv, C i, R, k) be a deterministic vki-ptt. For an input tree t ∈ T	 in the domain of M, let 
us consider the computation 〈q0, roott , ε〉 ⇒∗

t,M s, where s = τM(t), and let 〈q, u, π〉 be a configuration of M that occurs 
in that computation. We claim that the length of π is at most N = |Q | · (|C | + 1)k+1 · nk+2, where n is the size of t .

To prove this claim we define, as an auxiliary tool, the nondeterministic vki-pta A that is obtained from M by changing 
every output rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉) of M into the rules 〈q, σ , j, b〉 → 〈qi, stay〉 for all i ∈ [1, m]. 
Intuitively, whenever M branches, A nondeterministically follows one of those branches. Thus, all computations of A that 
start with 〈q0, roott , ε〉 are finite. Obviously, 〈q, u, π〉 occurs in such a computation of A. Let π = (v1, c1) · · · (vm, cm) and 
suppose that m > N . For every � ∈ [1, m] we define π� = (v1, c1) · · · (v�, c�). Then there exist configurations 〈q�, u�, π�〉, 
� ∈ [1, m], such that 〈q0, roott , ε〉 ⇒∗

t,A 〈q1, u1, π1〉 and 〈q�, u�, π�〉 ⇒∗
t,A 〈q�+1, u�+1, π�+1〉 for every � ∈ [1, m − 1], and 

such that, moreover, every configuration occurring in the computation 〈q�, u�, π�〉 ⇒∗
t,A 〈q�+1, u�+1, π�+1〉 has a pebble 

stack with prefix π� . Due to the choice of m, there exist i, j ∈ [1, m] with i < j such that qi = q j , ui = u j , (vi, ci) = (v j, c j), 
and for every v ∈ N(t) and c ∈ Cv: (v, c) occurs in πi if and only if (v, c) occurs in π j . This implies that the computation 
〈qi, ui, πi〉 ⇒∗

t,A 〈q j, u j, π j〉 can be repeated arbitrarily many times, leading to an infinite computation of A, which is a 
contradiction and proves the claim.

We now construct the regular tree grammar G . Its nonterminals are the configurations 〈q, u, π〉 of M on t
such that |π | ≤ N . Since N is polynomial in n, the number of nonterminals of G is exponential in n. The ini-
tial nonterminal of G is 〈q0, roott , ε〉. If 〈q, u, π〉 ⇒∗

t,M 〈q′, u′, π ′〉 ⇒t,M δ(〈q1, u′, π ′〉, . . . , 〈qm, u′, π ′〉), then 〈q, u, π〉 →
δ(〈q1, u′, π ′〉, . . . , 〈qm, u′, π ′〉) is a rule of G . To decide whether 〈q′, u′, π ′〉 ⇒t,M δ(〈q1, u′, π ′〉, . . . , 〈qm, u′, π ′〉) it suffices 
to inspect the output rules of M. To decide whether 〈q, u, π〉 ⇒∗

t,M 〈q′, u′, π ′〉 we construct from M and t an ordinary 
pushdown automaton P that simulates the non-output behaviour of M on t , as in the query evaluation paragraph at the 
end of Section 9. Since, as opposed to that paragraph, M also has visible pebbles, P should keep track of those pebbles 
in its finite state. Let � be the set of all mappings γ : Cv → N(t) ∪ {⊥} such that #({c ∈ Cv | γ (c) �= ⊥}) ≤ k. During P ’s 
computation, the mapping γ in its finite state indicates for every visible pebble whether it occurs in the current stack and, 
if so, on which node it is dropped. Thus, we define P to have state set Q × N(t) × � and pushdown alphabet N(t) × C . 
A configuration 〈q, u, π〉 of M is simulated by the configuration P(〈q, u, π〉) = 〈p, π〉 of P such that p = (q, u, γ ) where, 
for every c ∈ Cv, if γ (c) ∈ N(t) then (γ (c), c) occurs in π , and if γ (c) = ⊥ then c does not occur in π . The transitions 
of the automaton P are defined in such a way that P (with the empty string as input) has the same computation steps 
as M (without its output rules), i.e., such that 〈q, u, π〉 ⇒t,M 〈q′, u′, π ′〉 if and only if P(〈q, u, π〉) ⇒P P(〈q′, u′, π ′〉), 
where ⇒P is the computation step relation of P . For instance, let P be in state (q, u, γ ) and let the top element of its 
stack be (v, c). Let u have label σ and child number j, and let b consist of all c′ ∈ Cv with γ (c′) = u plus c if v = u. If 
〈q, σ , j, b〉 → 〈q′, dropd〉 is a rule of M such that d ∈ Cv, γ (d) = ⊥, and #({c′ ∈ Cv | γ (c′) �= ⊥}) < k, then P pushes (u, d)

on its stack and goes into state (q′, u, γ ′) where γ ′(d) = u and γ ′(c′) = γ (c′) for all c′ �= d. If 〈q, σ , j, b〉 → 〈q′, liftc〉 is a rule 
of M such that c ∈ C i and v = u, then P pops (v, c) from its stack and goes into state (q′, u, γ ). The transitions of P are 
defined similarly for the other non-output rules of M. It should be clear that P can be constructed in time polynomial in n. 
Since it can be decided in polynomial time for configurations 〈p, π〉 and 〈p′, π ′〉 of P whether 〈p, π〉 ⇒∗

P 〈p′, π ′〉, it can 
be decided whether 〈q, u, π〉 ⇒∗

t,M 〈q′, u′, π ′〉 in polynomial time. Hence the total time to construct G is exponential. �
Note that the first part of the above proof also shows that for every deterministic ptt the height of the output tree is 

exponential in the size of the input tree.
A natural question is whether Theorem 47 also holds for forest transducers, i.e., for deterministic pft’s. That is indeed 

the case (as the reader can easily verify), except that G is not a regular forest grammar, but a forest generating context-free 
grammar. To be precise, G is a context-free grammar of which every rule is of the form X0 → δ(X1) or X0 → X1 X2 or 
X → ε where δ is a symbol from an unranked alphabet. If L(G) = { f }, then G can still be viewed as a DAG that defines the 
forest f . Thus, in this sense, by Theorem 46, deterministic tl programs can be executed in exponential time, in accordance 
with the result of [33] that XSLT 1.0 programs can be executed in exponential time.

Another natural question is whether there exist interesting subclasses of ptt’s that can be realized in polynomial time. 
Here we discuss one such subclass. We define a ptt to be bounded if there exists m ∈N such that output rules can only be 
applied when the pebble stack contains at most m pebbles. Intuitively it means that the infinitely many invisible pebbles 
are mainly used to check mso properties of the observable configuration. Formally it can either be required as a dynamic 
property of the (successful) computations of the ptt or be incorporated statically in the semantics of the ptt. We now show 
that bounded ptt’s can be realized in polynomial time, even in the nondeterministic case. This generalizes the result for
v-ptt’s [41, Proposition 3.8].
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Theorem 48. For every bounded ptt M there is a polynomial time algorithm that, for given input tree t, computes a regular tree 
grammar G such that L(G) = {s | (t, s) ∈ τM}.

Proof. The construction of G is exactly the same as in the proof of Theorem 47, except that its nonterminals are now the 
configurations 〈q, u, π〉 of M on t such that |π | ≤ m.25 The number of nonterminals of G is therefore polynomial in the 
size of t , and since the pushdown automaton P can also be constructed (and tested) in polynomial time, the total time to 
construct G is polynomial. �

Again, the same result holds for pft’s, taking G to be a forest generating context-free grammar. Note that for a nonde-
terministic pft M and an input tree t , the set {s | (t, s) ∈ τM} is not necessarily a regular forest language.

Also, the same result holds for bounded ptt’s that use mso tests on the observable configuration. That is not immediate, 
because the construction in the proof of Theorem 16 does not preserve boundedness, due to the use of beads. However, it 
is easy to adapt the construction of the pushdown automaton P in the proof of Theorem 47 to incorporate the mso tests 
of the vki-ptt M. In fact, the observable configuration tree obs(t, π) can be constructed from t , from the mapping γ in 
the state of P , and from the top element of its stack, and then obs(t, π) can be tested in linear time using a deterministic 
bottom-up finite-state tree automaton. An example of bounded ptt’s (with mso tests) are the pattern matching ptt’s of 
Section 10. In that section, every ptt that matches an n-ary pattern is bounded, with bound n or even n − 1. Hence, pattern 
matching ptt’s can be evaluated in polynomial time. And the same is true for pattern matching pft’s, see Section 11.

15. Variations of decomposition

In this section we present a number of results the proofs of which are based on variations of the decomposition tech-
niques used in Section 4. In the first part of the section we consider deterministic ptt’s, and in the second part we consider
ptt’s with strong (visible) pebbles.

Deterministic PTT’s. As observed at the end of Section 4 it is open whether I-dPTT ⊆ dTT2. We first show that a subclass of 
I-dPTT is included in dTT2 and then we show that I-dPTT ⊆ dTT3. Hence, every deterministic ptt can be decomposed into 
deterministic tt’s.

Recall that dTTmso denotes the class of transductions that are realized by deterministic tt’s with mso head tests. By 
Lemma 12 it is a subclass of I-dPTT. We will show that such transducers can be decomposed into two deterministic tt’s of 
which the first never moves up. To do this we need a lemma with an alternative proof of the inclusion dTTmso ⊆ I-dPTT, 
showing that the resulting i-ptt uses its pebbles in a restricted way. The i-ptt that is constructed in the proof of Lemma 12
does not satisfy that restriction.

For the definition of normal form of an i-ptt see the paragraphs before Lemma 43. We now define an i-ptt (or i-pta) 
to be root-oriented if it satisfies requirements (1)−(3) of the normal form, and all non-initial non-output rules have a 
right-hand side of one of the following five forms: 〈q′, downi; dropc〉, 〈q′, liftc; up〉, 〈q′, liftc; dropd〉, or 〈q′, stay〉, where 
q′ ∈ Q \ Q 0, i ∈N and c,d ∈ C . Thus, except in an initial configuration, every pebble stack is of the form (u1, c1) · · · (un, cn)

where u1, . . . , un is the path from the root to the current node. The i-pta in the proof of Lemma 10 is root-oriented.
The next lemma follows from [10, Theorem 8.12], but we provide its proof for completeness sake. Let r I-dPTT denote the 

class of transductions realized by root-oriented deterministic i-ptt’s.26

Lemma 49. dTTmso ⊆ r I-dPTT.

Proof. Let M be a deterministic tt that uses a regular site T as mso head test. For simplicity we will assume that M
tests T in every rule. Let A = (	 × {0, 1}, P , F , δ) be a deterministic bottom-up finite-state tree automaton that recognizes 
mark(T ). As usual we identify the symbols (σ , 0) and σ . For every tree t ∈ T	 and every node u ∈ N(t), we define the set 
succt(u) of successful states of A at u to consist of all states p ∈ P such that A recognizes t when started at u in state p. To 
be precise, succt(roott) = F and if u has label σ ∈ 	(m) and i ∈ [1, m], then succt(ui) is the set of all states p ∈ P such that 
δ(σ , p1, . . . , pi−1, p, pi+1, . . . , pm) ∈ succt(u), where p j is the state in which A arrives at u j for every j ∈ [1, m] \ {i}.

We construct a root-oriented deterministic i-ptt M′ that stepwise simulates M and simultaneously keeps track of 
succt(v) for all nodes v on the path from the root to the current node u, by storing that information in its pebble colours. 
It uses the i-pta A′ of Lemma 10 (with A restricted to 	 × {0}) as a subroutine to compute the states in which A arrives 
at the children of u. Using these states and succt(u), it can easily test whether (t, u) ∈ T . Moreover, when moving down to 
a child ui of u it can use this information to compute succt(ui).

Formally, in addition to the pebble colours p1 · · · pm of A′ , the transducer M′ uses pebble colours (S, p1 · · · pm) where 
S ⊆ P . As states it uses (apart from its initial state) the states of M and states of the form (q̃, q) where q̃ is a state of M

25 Additionally, G has an initial nonterminal S with rules S → 〈q0, roott , ε〉 for every initial state q0 of M.
26 In [10, Chapter 8] root-oriented i-ptt’s are called tree-walking pushdown transducers, and r I-dPTT is denoted P-DTWT. They are the rt(p(tr))-

transducers of [23], also called indexed tree transducers.
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and q a state of A′; in fact, q is either the main state q◦ of A′ or it is q̄p for some p ∈ P . Initially, M′ drops pebble (F , ε)

on the root and goes into state (q̃0, q◦) where q̃0 is the initial state of M. This incorporates rule ρ1 of A′ . The other rules 
of M′ that correspond to A′ are as follows. First, the rule ρ2 of A′ together with the corresponding rule for pebble colour 
(S, p1 · · · pm), both for m < rank(σ ):

〈(q̃,q◦),σ , j, {p1 · · · pm}〉 → 〈(q̃,q◦),downm+1;dropε〉
〈(q̃,q◦),σ , j, {(S, p1 · · · pm)}〉 → 〈(q̃,q◦),downm+1;dropε〉.

Second, the rule ρ3 of A′ , for m = rank(σ ) and p = δ(σ , p1, . . . , pm):

〈(q̃,q◦),σ , j, {p1 · · · pm}〉 → 〈(q̃, q̄p), liftp1···pm ;up〉 if j �= 0.

Third, the rule r6 of A′ together with the corresponding rule for pebble colour (S, p1 · · · pm), both for m < rank(σ ):

〈(q̃, q̄p),σ , j, {p1 · · · pm}〉 → 〈(q̃,q◦), liftp1···pm ;dropp1···pm p〉
〈(q̃, q̄p),σ , j, {(S, p1 · · · pm)}〉 → 〈(q̃,q◦), lift(S,p1···pm);drop(S,p1···pm p)〉.

The subroutine A′ is always called at a node u where M′ observes a pebble of the form (S, ε), and when A′ is finished 
M′ is back at the same node u and observes the pebble (S, p1 · · · pm) where p1, . . . , pm are the states at which A arrives 
at the children of u.

Finally we consider the simulation of a step of M, which either occurs when the subroutine A′ is finished (instead 
of its rules ρ4 and ρ5), or just after the simulation of another step of M, in which it does not move down. Suppose 
that M has a rule 〈q̃, σ , j, T 〉 → ζ and that δ((σ , 1), p1, . . . , pm) ∈ S , or suppose that it has a rule 〈q̃, σ , j, ¬T 〉 → ζ and 
δ((σ , 1), p1, . . . , pm) /∈ S . Then M′ has the following two rules, for m = rank(σ ):

〈(q̃,q◦),σ , j, {(S, p1 · · · pm)}〉 → ζ ′

〈q̃,σ , j, {(S, p1 · · · pm)}〉 → ζ ′

such that

(1) if ζ = 〈q̃′, up〉, then ζ ′ = 〈q̃′, lift(S,p1···pm); up〉,
(2) if ζ = 〈q̃′, downi〉, then ζ ′ = 〈(q̃′, q◦), downi; drop(S ′,ε)〉, where S ′ = {p ∈ P | δ(σ , p1, . . . , pi−1, p, pi+1, . . . , pm) ∈ S}, and
(3) ζ ′ = ζ otherwise.

This ends the formal description of M′ . In general, M uses regular sites T1, . . . , Tn as mso head tests, and correspondingly 
M′ has pebble colours of the form (S1, . . . , Sn, p1 · · · pm) where Si is a set of states of an automaton Ai recognizing 
mark(Ti). �

Let dTT↓ denote the class of transductions realized by deterministic tt’s that do not use the up-instruction. Such trans-
ducers are equivalent to classical deterministic top-down tree transducers. The next lemma is shown in [10, Theorem 8.15]
but we provide its proof again, to show the connection to Lemma 4.

Lemma 50. r I-dPTT ⊆ dTT↓ ◦ dTT.

Proof. Let M be a root-oriented deterministic i-ptt. Looking at the proof of Lemma 4, it should be clear that, for every input 
tree t , the simulating transducer M′ only visits those nodes of t′ that correspond to a sequence of instructions of M that 
starts with a drop-instruction and then consists alternatingly of a down-instruction and a drop-instruction. Consequently, 
the “preprocessor” N can be adapted so as to generate just that part of t′ . The new N does not need the states f i any 
more, but just has the initial state g and the state f . Its rules are

〈g,σ , j〉 → σ ′(⊥m, 〈 f , stay〉γ )

〈 f ,σ , j〉 → σ ′
0, j(〈g,down1〉, . . . , 〈g,downm〉,⊥γ ,⊥)

where m is the rank of σ and ⊥n abbreviates the sequence ⊥, . . . , ⊥ of length n. Note that the child number j is irrelevant. 
With this new, total deterministic preprocessor N the proof of Lemma 4 is still valid. �

The following corollary was shown in [10, Theorem 8.22], but we repeat it here for completeness sake, cf. Corollary 42.

Corollary 51. r I-dPTT = dTT↓ ◦ dTT = dMToi .
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Proof. The inclusion dTT↓ ◦ dTT ⊆ dMToi follows from the inclusions dTT ⊆ dMToi , shown in [20, Theorem 35 for n = 0: 
Lemma 34 and Theorem 31], and dTT↓ ◦ dMToi ⊆ dMToi , shown in [22, Theorem 7.6(3)]. By Lemma 50 it now suffices to 
show that dMToi ⊆ r I-dPTT (which strengthens the second inclusion of Corollary 42). There are two ways of proving this, 
which are essentially the same. First, the proof of Lemma 39 can be adapted in a straightforward way.27 Second, the equality 
r I-dPTT = dMToi is shown for total functions in [23, Theorem 5.16]. By [22, Theorem 6.18], every transduction τ ∈ dMToi

is of the form τ1 ◦ τ2 where τ1 is the identity on a regular tree language R and τ2 ∈ dMToi is a total function. Thus, τ2 is 
in r I-dPTT. This implies that τ1 ◦ τ2 is in r I-dPTT: the i-ptt just starts by checking that the input tree is in R , using the 
root-oriented i-ptt A′ in the proof of Lemma 10 as a subroutine. �

We now turn to the decomposition of an arbitrary deterministic i-ptt into deterministic tt’s.

Lemma 52. I-dPTT ⊆ tdTTmso ◦ dTT.

Proof. Let M = (	, �, Q , {q0}, C, ∅, C i, R, 0) be a deterministic i-ptt with C = C i . We may assume that there is a mapping 
χ : C → Q such that χ(c) = q′ for every rule 〈q, σ , j, b〉 → 〈q′, dropc〉 of M. If not, then we change C into C × Q and we 
change every rule 〈q, σ , j, b〉 → 〈q′, dropc〉 into 〈q, σ , j, b〉 → 〈q′, drop(c,q′)〉 and every rule 〈q, σ , j, {c}〉 → 〈q′, liftc〉 into all 
the rules 〈q, σ , j, {(c, p)}〉 → 〈q′, lift(c,p)〉. Moreover, we may assume that C = [1, γ ] for some γ ∈N .

As in the proof of Lemma 50 we consider the proof of Lemma 4 and adapt the preprocessor N to the needs of M. 
Every copy of the input tree that is generated by N corresponds to a unique potential pebble stack π of M. The simulating 
deterministic tt M′ walks on that copy whenever M has pebble stack π . The idea is now to construct a variation N ′
of N that only generates those copies of the input tree t that correspond to reachable pebble stacks. A pebble stack π is 
reachable (on t) if M has a reachable output form that contains a configuration 〈q, v, π〉 for some q ∈ Q and v ∈ N(t). 
For a given t in the domain of M, the number of reachable stacks is finite because M is deterministic and thus has a 
unique computation on t . Consequently N ′ can preprocess t deterministically. Then we can define a total deterministic 
preprocessor N ′′ that starts by performing an mso head test whether or not the input tree is in the domain of M (which 
is regular by Corollary 9). If it is, then N ′′ calls N ′ , and if it is not, then N ′′ outputs ⊥ and halts.

As an auxiliary tool, we define (as in the proof of Theorem 47) the nondeterministic i-pta A that is obtained from M
by changing every output rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉) of M into the rules 〈q, σ , j, b〉 → 〈qi, stay〉 for 
i ∈ [1, m]. Intuitively, whenever M branches, A nondeterministically follows one of those branches. Obviously a nonempty 
pebble stack π with top element (u, c) is reachable if and only if 〈χ(c), u, π〉 is a reachable configuration of A (see 
footnote 9). Note that 〈χ(c), u, π〉 is the configuration of M just after dropping pebble c at node u.

For pebble colour c, we consider the site Tc consisting of all pairs (t, u) such that one-pebble stack (u, c) is reachable, 
i.e., such that A has a computation starting in the initial configuration and ending in the configuration 〈χ(c), u, (u, c)〉. It is 
not difficult to see that Tc is a regular site. In fact, mark(Tc) is the domain of an i-pta B with stack tests that simulates A; 
whenever it arrives at the marked node u in state χ(c) and it observes pebble c, then it may lift the pebble, check that its 
stack is empty, and accept. Stack tests are allowed by Lemma 1, and the domain of B is regular by Corollary 9.

We now turn to reachable pebble stacks with more than one pebble, i.e., of the form π(u, c)(v, d). Assuming that we 
already know that π(u, c) is reachable, we can find out whether π(u, c)(v, d) is reachable through a regular trip, as follows. 
For pebble colours c and d, we consider the trip Tc,d consisting of all triples (t, u, v) such that A has a computation on t
starting in configuration 〈χ(c), u, (u, c)〉 and ending in configuration 〈χ(d), v, (u, c)(v, d)〉; moreover, in every intermediate 
configuration the bottom element of the pebble stack must be (u, c). The trip Tc,d is regular because mark(T ) is the domain 
of an i-pta B′ with stack tests that first walks to the marked node u. Then B′ simulates A, starting in state χ(c), interpreting 
the mark of u as pebble c (which cannot be lifted). Similar to B above, whenever B′ arrives at the marked node v in 
state χ(d) and it observes pebble d, then it may lift the pebble, check that the stack is empty, and accept. Obviously, if 
π(u, c) is reachable, then π(u, c)(v, d) is reachable if and only if (t, u, v) ∈ Tc,d . Let Bc,d be a (nondeterministic) ta with
mso head tests that computes Tc,d , as in Proposition 14.

The new preprocessor N ′ is a deterministic tt with mso head tests that works in the same way as N but only creates 
the copies of the input tree t that correspond to reachable pebble stacks. Initially it uses the test Tc at node u to decide 
whether it has to create a copy of t corresponding to pebble stack (u, c). If the test is positive, then, just as N , it creates a 
copy of t by walking from u to every other node v of t , copying v to the output. Now recall that N walks from u to v along 
the shortest (undirected) path in t . Thus, by Proposition 14, N ′ can simulate the behaviour of ta Bc,d from u to v , for every 
pebble colour d (using a subset construction as in the proof of Theorem 16). Thus, arriving at v it can use the trip Tc,d to 
decide whether it has to create a copy of t corresponding to pebble stack (u, c)(v, d). At the next level it simulates all Bd,d′
for every d′ ∈ C , etcetera.

More formally, N ′ has initial state g , and all other states are of the form (q, c, S1, . . . , Sγ ) where q is a state of N , c ∈ C , 
and Sd is a set of states of Bc,d for every d ∈ C = [1, γ ]. We will call them “extended” states in what follows. To describe the 

27 The transducer M uses an additional pebble �, which it drops initially on the root and whenever it moves down (instead of calling subroutine Sq′,ψ ). 
When necessary it replaces � by a pebble ([s1], . . . , [sm]). When subroutine S is in state [zi ] for some parameter zi , it lifts � and moves up where it finds 
a pebble ([s1], . . . , [sm]).
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rules of N ′ , we first recall the rules of the transducer N from the proof of Lemma 4. Apart from the rules 〈 f , σ , j〉 → ⊥, 
N has the rules

ρg : 〈g,σ , j〉 → σ ′(〈g,down1〉, . . . , 〈g,downm〉, 〈 f , stay〉γ )

ρ f : 〈 f ,σ , j〉 → σ ′
0, j(〈g,down1〉, . . . , 〈g,downm〉, 〈 f , stay〉γ , ξ j)

ρ f i : 〈 f i,σ , j〉 → σ ′
i, j(〈g,down1〉, . . . , 〈g,downi−1〉,⊥,

〈g,downi+1〉, . . . , 〈g,downm〉, 〈 f , stay〉γ , ξ j)

where ξ j = 〈 f j, up〉 for j �= 0, and ξ0 = ⊥.
The rules of N ′ for state g are obtained from rule ρg by adding all possible combinations of the mso head tests Tc and 

their negations to the left-hand side. In the right-hand side, the sequence 〈 f , stay〉γ should be replaced by the sequence 
ζ1, . . . , ζγ where ζc = 〈( f , c, Ic,1, . . . , Ic,γ ), stay〉 if Tc is true, Ic,d being the set of initial states of Bc,d , and ζc = ⊥ if Tc is 
false.28 The rules of N ′ for an “extended” state (q, c, S1, . . . , Sγ ) are obtained from rule ρq as follows. In the left-hand side 
change q into (q, c, S1, . . . , Sγ ). Moreover, add all mso head tests of Bc,d for every d ∈ C . In the right-hand side change 
every occurrence of a state q′ �= f into the extended state (q′, c, S ′

1, . . . , S
′
γ ) where the set S ′

d is obtained from the set Sd

by simulating Bc,d appropriately, moving down to the �-th child if q′ = g in 〈g, down�〉 and moving up if q′ = f j . Moreover, 
the sequence 〈 f , stay〉γ should be replaced by ζ1, . . . , ζγ where ζd = 〈( f , d, Id,1, . . . , Id,γ ), stay〉 if Sd contains a final state 
of Bc,d , and ζd = ⊥ otherwise (where Id,d′ is defined similarly to Ic,d above).

It should be clear that N ′ produces an output for every input tree t on which M has finitely many reachable pebble 
stacks. Thus, N ′ preprocesses t appropriately and the deterministic tt M′ in the proof of Lemma 4 can simulate M
on τN ′ (t). Hence τM′ (τN ′ (t)) = τM(t) for every t in the domain of M. �

It is easy to adapt the proof of Theorem 17 to the case where the first (deterministic) tt M1 uses mso head tests; those 
tests can also be executed by the constructed i-ptt M, by Lemma 12. Moreover, that proof can also easily be adapted to the 
case where the second transducer M2 is a root-oriented i-ptt. From this and Lemmas 49 and 52 we obtain the following 
characterizations of I-dPTT as a corollary. We do not know whether similar characterizations hold for I-PTT.

Theorem 53. I-dPTT = dTTmso ◦ dTT = dTTmso ◦ dTTmso = dTTmso ◦ r I-dPTT.

Proof. Let us show for completeness sake that dTT ◦ r I-dPTT ⊆ I-dPTT. The proof of Theorem 17 can easily be generalized 
to a root-oriented i-ptt M2, because the path from the root of s to the current node v of M2 is represented by the pebble 
stack of the constructed transducer M, and so the pebbles of M2 can also be stored in the pebble stack of M. For each 
node on that path, the stack contains a pebble with the rule of M1 that generates that node, with its child number, and 
with the pebble that M2 drops on that node.

Formally, the pebble colours of M are now triples (ρ, i, c) where c is a pebble colour of M2, and the states of M are 
the states of M2 and all 4-tuples (p, i, c, q) where c is again a pebble colour of M2. The initial state of M is now the one 
of M2, and if M2 has an initial rule 〈q0, δ, 0, ∅〉 → 〈q, dropc〉, then M has the rule 〈q0, δ, 0, ∅〉 → 〈(p0, 0, c, q), stay〉. The 
rules of M that simulate M1 are defined as in the proof of Theorem 17, replacing i by i, c everywhere for each c. The rules 
of M that simulate the non-initial rules of M2 are defined as follows. Let 〈q, δ, i, {c}〉 → ζ be a non-initial rule of M2
and let ρ : 〈p, σ , j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) be an output rule of M1. Then M has the rule 〈q, σ , j, {(ρ, i, c)}〉 →
ζ ′ where ζ ′ is defined as follows. If ζ = 〈q′, down�; dropd〉, then ζ ′ = 〈(p�, �, d, q′), stay〉. If ζ = 〈q′, liftc; up〉, then ζ ′ =
〈q′, lift(ρ,i,c); to-top〉. If ζ = 〈q′, liftc; dropd〉, then ζ ′ = 〈q′, lift(ρ,i,c); drop(ρ,i,d)〉. In the remaining cases, ζ ′ = ζ . �

As another corollary we obtain from the three Lemmas 49, 50, and 52 that I-dPTT ⊆ dTT3. Moreover, I-dPTT ⊆ dMT2
oi

by 
the second equality of Corollary 51. Together with Theorem 46, that implies that dTL�r ⊆ dMT2

oi
, which was stated as an 

open problem in [20, Section 8] (where dTL�r and dMToi are denoted 0-DPMTT and DMTT, respectively).

Corollary 54. I-dPTT ⊆ dTT↓ ◦ dTT ◦ dTT ⊆ dMToi ◦ dMToi .

We are now able to prove the deterministic analogue of Theorem 5 for ptt’s with at least one visible pebble.

Theorem 55. For every k ≥ 1, Vk I-dPTT ⊆ dTTk+2 .

Proof. Since it follows from Lemma 3 and Corollary 54 that Vk I-dPTT ⊆ tdTTk−1 ◦ tdTT ◦ dTT↓ ◦ dTT ◦ dTT, it suffices to show 
that tdTT ◦ dTT↓ ⊆ dTT. For the sake of the proof of Lemma 61, we will show more generally that for all deterministic

28 More precisely, Ic,d consists of all initial states of Bc,d , plus all states that Bc,d can reach from an initial state by applying a relevant rule with a 
stay-instruction.
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tt’s M1 and M2 such that M2 does not use the up-instruction, a deterministic tt M can be constructed such that 
τM(t) = τM2 (τM1 (t)) for every input tree t in the domain of M1. This can be proved by a straightforward product 
construction, which is an easy adaptation of the construction in the proof of Theorem 17. Since transducer M2 never moves 
up, there is no need to backtrack on the computation of M1. Therefore, the constructed transducer M only considers the 
topmost pebble. Since that pebble is always at the position of the head, its colour can as well be stored in the finite state 
of M. Hence M can be turned into a tt rather than an i-ptt.

Formally, let M1 = (	, �, P , {p0}, R1) and M2 = (�, �, Q , {q0}, R2). The deterministic tt M has input alphabet 	 and 
output alphabet �. Its states are of the form (p, i, q) or (ρ, i, q), where p ∈ P , i ∈ [0, mx�], q ∈ Q , and ρ is an output 
rule of M1, i.e., a rule of the form 〈p, σ , j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉). Its initial state is (p0, 0, q0). As in the proof 
of Theorem 17, state (p, i, q) is used by M when simulating the computation of M1 that generates the i-th child of the 
current node of M2 (keeping the state q of M2 in memory). A state (ρ, i, q) is used by M when simulating a computation 
step of M2 on the node that M1 has generated with rule ρ . The rules of M are defined as follows.

First the rules that simulate M1. Let ρ : 〈p, σ , j〉 → ζ be a rule in R1. If ζ = 〈p′, α〉, where α is a move instruction, then 
M has the rules 〈(p, i, q), σ , j〉 → 〈(p′, i, q), α〉 for every i ∈ [0, mx�] and q ∈ Q . If ρ is an output rule, then M has the 
rules 〈(p, i, q), σ , j〉 → 〈(ρ, i, q), stay〉 for every i and q as above.

Second the rules that simulate M2. Let 〈q, δ, i〉 → ζ be a rule in R2 and let ρ : 〈p, σ , j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) be 
an output rule in R1 (with the same δ). Then M has the rule 〈(ρ, i, q), σ , j〉 → ζ ′ where ζ ′ is obtained from ζ by changing 
every 〈q′, stay〉 into 〈(ρ, i, q′), stay〉, and every 〈q′, down�〉 into 〈(p�, �, q′), stay〉. �

Since the topmost pebble of a v-ptt can be replaced by an invisible pebble, we obtain from Theorem 55 that Vk-dPTT ⊆
dTTk+1, which was proved in [20, Theorem 10].

Theorem 55 allows us to show that, in the deterministic case, k + 1 visible pebbles are more powerful than k visible 
pebbles.

Theorem 56. For every k ≥ 0, Vk I-dPTT � Vk+1I-dPTT.

Proof. It follows from Theorem 55 and Corollary 54 (and the inclusion dTT ⊆ dMToi in Corollary 51) that Vk I-dPTT ⊆ dMTk+2
oi

for every k ≥ 0. But it is proved in [20, Theorem 41] that, for every k ≥ 1, Vk-dPTT is not included in dMTk
oi

. Hence, since 
the topmost pebble of a v-ptt can be replaced by an invisible pebble, Vk I-dPTT is not included in dMTk+1

oi
. �

The above proof also shows that Theorem 55 is optimal, in the sense that, for every k ≥ 1, Vk I-dPTT is not included in 
dTTk+1.

Another consequence of Theorem 55 is that, by the results of [36], all total deterministic vi-pft transformations for which 
the size of the output document is linear in the size of the input document, can be programmed in TL. Let LSI be the class 
of all total functions ϕ for which there exists a constant c ∈N such that |ϕ(t)| ≤ c · |t| for every input tree t .

Theorem 57. For every k ≥ 0,

VkI-dPTT ∩ LSI ⊆ I-dPTT = dTLr and VkI-dPFT ∩ LSI ⊆ I-dPFT = dTL.

Proof. It is shown in [36] that dMTk
oi

∩ LSI ⊆ dMToi for every k ≥ 1. By Theorem 55 and Corollary 51, Vk I-dPTT ⊆ dMTk+2
oi

. 
And by Corollary 42 and Theorem 46, dMToi ⊆ I-dPTT = dTLr. This proves the first inclusion. To prove the second inclusion, 
let ϕ ∈ Vk I-dPFT ∩ LSI. Obviously, ϕ ◦ enc is also in LSI, and ϕ ◦ enc ∈ Vk I-dPTT ◦ I-dPTT by Lemma 33(2). Hence ϕ ◦ enc ∈
dMTk+4

oi
⊆ I-dPTT, as above. In other words, ϕ ∈ I-dPTT ◦ dec. Consequently, by Lemma 33(1) and Theorem 46, ϕ ∈ I-dPFT =

dTL. �
In fact, Vk I-dPTT∩LSI is the class of total functions in the class DMSOT of deterministic mso definable tree transductions 

discussed after Corollary 42, and similarly, Vk I-dPFT ∩ LSI is the class of total functions in the class of deterministic mso

definable tree-to-forest transductions (which equals DMSOT ◦ dec, because both dec and enc are mso definable).
For the reader familiar with results about attribute grammars (which are a well-known compiler construction tool) and 

related formalisms, we now briefly discuss the relationship between those results and some of the above. As explained 
in detail in [20, Section 3.2], the total deterministic tree-walking tree transducer, i.e., the tdtt, is essentially a notational 
variant of the attributed tree transducer (at) of [25,26], except that the at is in addition required to be “noncircular”, which 
means that no configuration can generate an output form in which that same configuration occurs. As observed at the 
end of Section 12, the deterministic i-ptt has the same expressive power as the deterministic tl program that is local 
and ranked, which corresponds to the macro attributed tree transducer (mat) of [26,35] in the same way, i.e., the mat is 
the “noncircular” tdtl�r program. Since r I-dPTT = dMToi by Corollary 51, Lemma 49 (dTTmso ⊆ r I-dPTT) is closely related 
to the well-known fact that at (with look-ahead) can be simulated by deterministic macro tree transducers. Lemma 50
(r I-dPTT ⊆ dTT↓ ◦ dTT) is related to the fact that every total deterministic macro tree transducer can be decomposed into 
a deterministic top-down tree transducer followed by a YIELD mapping, which can be realized by an at. Theorem 53
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(I-dPTT = dTTmso ◦dTT = dTTmso ◦ r I-dPTT) is closely related to the fact that every mat can be decomposed into two at’s, and 
that the composition of an at and a total deterministic macro tree transducer can be simulated by a mat, as shown in [35, 
Theorem 4.8] and its proof (see also [26, Corollary 7.30]). The inclusion tdTT ◦ dTT↓ ⊆ dTT in the proof of Theorem 55 is 
closely related to the closure of at under right-composition with deterministic top-down tree transducers, as shown in [25, 
Theorem 4.3] (see also [35, Lemma 4.11] and [26, Lemma 5.46]). We finally mention that the class DMSOT of deterministic
mso definable tree transductions is properly included in dTTmso (see [10, Theorems 8.6 and 8.7]), as shown for attribute 
grammars (with look-ahead) in [6].

Strong pebbles. In the literature there are pebble automata with weak and strong pebbles. Weak pebbles (which are the 
pebbles considered until now) can only be lifted when the reading head is at the position where they were dropped, 
whereas strong pebbles can also be lifted from a distance, i.e., when the reading head is at any other position. So, strong 
pebbles are more like dogs that can be whistled back, or like pointers that can be erased from memory. Formally, we define 
a pebble colour c to be strong as follows. For a rule 〈q, σ , j, b〉 → 〈q′, liftc〉 we do not require any more that c ∈ b. If the 
rule is relevant to configuration 〈q, u, π〉, then it is applicable whenever the topmost element of the pebble stack is (v, c)
for some node v (not necessarily equal to u). That top pebble is then popped from the stack, i.e., π = π ′(v, c) where π ′ is 
the new stack. Strong pebbles were investigated, e.g., in [8,16,27,43,48].

It turns out that strong invisible pebbles are too strong, in the sense that they allow the recognition of nonregular tree 
languages, cf. the paragraph after Theorem 11. For example, the nonregular language {an#bn | n ∈ N} can be accepted by 
an i-pta with strong pebbles as follows. After checking that the input string w is in a∗#b∗ , the automaton drops a pebble 
on # and walks to the left, dropping a pebble on every a. Next it walks to the end of w , and then walks to the left, lifting 
a pebble (from a distance) for every b it passes. It accepts w if it arrives at # and observes a pebble on #.

Thus, we will only consider the pta and ptt with strong visible pebbles, abbreviated as v
+

i-pta and v
+

i-ptt (and similarly 
for the classes of transductions they realize). Obviously, Vk I-PTT ⊆ V+

k I-PTT for every k ≥ 0. We do not know whether the 
inclusion is proper.

Let us first show that the v
+

i-pta and v
+

i-ptt can perform stack tests.

Lemma 58. Let k ≥ 0. For every v
+
k i-pta with stack tests A an equivalent (ordinary) v

+
k i-pta A′ can be constructed in polynomial 

time. The construction preserves determinism and the absence of invisible pebbles. The same holds for the corresponding ptt’s.

Proof. Let A = (	, Q , Q 0, F , C, Cv, C i, R, k). We construct A′ in the same way as in the proof of Lemma 1, except that it 
additionally keeps track of the visible pebbles in its own stack, in the order in which they were dropped, cf. the construction 
of a counting pta after Lemma 1. Thus, its states are of the form (q, γ , ϕ) where q ∈ Q , γ ∈ C ∪ {ε}, and ϕ ∈ (C ′

v)
∗ =

(Cv × (C ∪ {ε}))∗ is a string without repetitions of length ≤ k. Its initial states are (q, ε, ε) with q ∈ Q 0.
The rules of A′ are defined as follows. Let 〈q, σ , j, b, γ 〉 → 〈q′, α〉 be a rule of A, let ϕ be a string over C ′

v as 
above, and let b′ be (the graph of) a mapping from b to C ∪ {ε}. If α is a move instruction, then A′ has the rule 
〈(q, γ , ϕ), σ , j, b′〉 → 〈(q′, γ , ϕ), α〉 (and similarly for an output rule of a ptt). If α = dropc , then A′ has the rule 
〈(q, γ , ϕ), σ , j, b′〉 → 〈(q′, c, ϕ′), drop(c,γ )〉 where ϕ′ = ϕ if c ∈ C i and ϕ′ = ϕ(c, γ ) otherwise (provided |ϕ| < k and (c, γ )

does not occur in ϕ). Now let α = liftc and γ = c. If c ∈ C i and (c, γ ′) ∈ b′ , then A′ has the rule 〈(q, γ , ϕ), σ , j, b′〉 →
〈(q′, γ ′, ϕ), lift(c,γ ′)〉. If c ∈ Cv, then A′ has the rule 〈(q, γ , ϕ(c, γ ′)), σ , j, b′〉 → 〈(q′, γ ′, ϕ), lift(c,γ ′)〉 for every γ ′ ∈ C ∪ {ε}
such that (c, γ ′) does not occur in ϕ (with |ϕ| < k). �

Using this lemma, we now show that every v
+

-ptt can be decomposed into tt’s, as already shown in [27] in a different 
way.29

Lemma 59. For every k ≥ 1, V+
k -PTT ⊆ TT ◦ V+

k−1-PTT. For fixed k, the construction takes polynomial time.

Proof. Let M = (	, �, Q , Q 0, C, Cv, C i, R, k) be a v
+
k -ptt with C i = ∅. The construction is similar to the one in the proof 

of Lemma 3, except that we use the nondeterministic “multi-level” preprocessor N of the proof of Lemma 4, for which we 
assume that Cv = [1, γ ].

By Lemma 58 we may assume that the simulating transducer M′ can perform stack tests. As in the proof of Lemma 3, 
M′ starts by simulating M on the top level of the preprocessed version t′ of the input tree t . When M drops the first 
pebble c on node u, M′ enters the second level copy t̂u of t corresponding to c, but it also stores c in its finite state. When 
M wants to lift pebble c and can actually do so because the pebble stack of M′ is empty, M′ removes c from its finite 
state and continues simulating M on t̂u . Note that since c can be lifted from a distance, M′ cannot return to the top level 
without loosing its current position. When M again drops a pebble d on some second-level node that corresponds to a 
node v of t , M′ enters the third level copy t̂v corresponding to d, and stores d in its finite state. Thus, whenever M drops 
a bottom pebble, M′ moves one level down in the “tree of trees” t′ .

29 In that paper the authors “think that those proofs cannot be generalized for the strong pebble case because the mapping EncPeb [· · · ] is strongly based 
on weak pebble handling”, where ‘those proofs’ mainly refers to the proof of [20, Lemma 9] in which the preprocessor is called EncPeb, see Lemma 3.
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It should be noted that we could as well have taken γ = 1 for N and let M′ enter the unique copy of t when it drops 
a pebble c, because M′ keeps c in its finite state. However, the present construction simplifies the proof of Theorem 62.

Although the above description should be clear, let us give the formal details. As in the proof of Lemma 4, the output 
alphabet � of N is the union of {⊥}, {σ ′ | σ ∈ 	}, and {σ ′

i, j | σ ∈ 	, i ∈ [0, rank	(σ )], j ∈ [0, mx	]} where, for every σ ∈ 	

of rank m, σ ′ has rank m + γ and σ ′
i, j has rank m + γ + 1. As in the proof of Lemma 3, the v

+
k−1-ptt M′ has input 

alphabet �, set of states Q ∪ (Q × Cv), and the same initial states and pebble colours as M. The rules of M′ are defined 
as follows. Let 〈q, σ , j, b〉 → ζ be a rule of M with rank	(σ ) = m.

First, we consider the behaviour of M′ in state q, where we assume that b = ∅. Then M′ has the rules 〈q, σ ′, j, ∅〉 → ζ1, 
〈q, σ ′

0, j, j
′, ∅〉 → ζ2, and 〈q, σ ′

i, j, j
′, ∅〉 → ζ3,i for every i ∈ [1, m] and j′ ∈ [1, mx�], where ζ1 is obtained from ζ by changing 

〈q′, dropc〉 into 〈(q′, c), downm+c〉 for every q′ ∈ Q and c ∈ Cv, ζ2 is obtained from ζ1 by changing up into downm+γ +1, and 
ζ3,i is obtained from ζ2 by changing downi into up. Thus, whenever the pebble stack of M is empty, M′ simulates M on 
a copy of the input tree t in t′ , until M drops a pebble c ∈ Cv. Then M′ steps to the next level, and stores c in its finite 
state.

Second, we consider the behaviour of M′ in state (q, c), where c ∈ Cv. Rules of M′ that have σ ′
0, j in their left-hand 

side are defined under the proviso that c ∈ b, and the other rules under the proviso that c /∈ b. If ζ = 〈q′, liftc〉, then M′ has 
the rules 〈(q, c), σ ′, j, b, ε〉 → 〈q′, stay〉, 〈(q, c), σ ′

0, j, m + c, b \ {c}, ε〉 → 〈q′, stay〉, and 〈(q, c), σ ′
i, j, j

′, b, ε〉 → 〈q′, stay〉 for 
every i ∈ [1, m] and j′ ∈ [1, mx�], where ε is the stack test that checks emptiness of the stack of M′ . Thus, when M lifts 
pebble c (at the position of c or from a distance), M′ removes c from memory and knows that the pebble stack of M is 
empty. Otherwise, M′ has the rules 〈(q, c), σ ′, j, b〉 → ζc,1, 〈(q, c), σ ′

0, j, m + c, b \ {c}〉 → ζc,2, and 〈(q, c), σ ′
i, j, j

′, b〉 → ζc,3,i

for every i ∈ [1, m] and j′ ∈ [1, mx�], where ζc,1 is obtained from ζ by changing every occurrence of a state q′ into (q′, c), 
ζc,2 is obtained from ζc,1 by changing up into downm+γ +1, and ζc,3,i is obtained from ζc,2 by changing downi into up. Thus, 
M′ simulates M on a copy of the input tree in t′ , assuming that c is present on the node with label σ ′

0, j and absent on 
the other nodes, until c is lifted by M. �

The next result is an immediate consequence of Lemma 59. It was proved in [27, Theorem 6.5(5)], generalizing the same 
result for weak pebbles in [20, Theorem 10] (cf. Theorem 55). It implies that Propositions 6(2) and 7(2) also hold for strong 
pebbles. Thus, for ptt’s without invisible pebbles, the inverse type inference problem and the typechecking problem are 
solvable for strong pebbles in the same time as for weak pebbles (cf. [27, Theorem 6.7 and 6.9]). Note that it also implies 
that the domains of v

+
-ptt’s are regular (cf. Corollary 9), which was proved in [27, Corollary 6.8] and [44, Theorem 4.7].

Theorem 60. For every k ≥ 0, V+
k -PTT ⊆ TTk+1 . For fixed k, the construction takes polynomial time.

To prove a similar result for deterministic ptt’s with strong pebbles, we need the next small lemma.

Lemma 61. For every k ≥ 1, (tdTTmso)k ⊆ dTT↓ ◦ dTTk.

Proof. We will show by induction on k that for every τ ∈ (tdTTmso)k there exist τ0 ∈ dTT↓ and τ1, . . . , τk ∈ dTT such that 
τ = τ0 ◦ τ1 ◦ · · · ◦ τk . Note that since τ is a total function, every output tree of τ0 ◦ τ1 ◦ · · · ◦ τi−1 is in the domain of τi , 
for every i ∈ [1, k]. For k = 1 the statement is immediate from the inclusion dTTmso ⊆ dTT↓ ◦ dTT, which follows from 
Lemmas 49 and 50. Now consider τ ∈ (tdTTmso)k+1. By induction and the case k = 1, τ = τ0 ◦ τ1 ◦ · · · ◦ τk ◦ τ ′

0 ◦ τ ′
1 with 

τ0, τ ′
0 ∈ dTT↓ and τ1, . . . , τk, τ ′

1 ∈ dTT. Since every output tree of τ0 ◦ τ1 ◦ · · · ◦ τk−1 is in the domain of τk , we can replace 
τk ◦ τ ′

0 by any transduction τ ′ such that τ ′(t) = τ ′
0(τk(t)) for every t in the domain of τk . Since τk ∈ dTT and τ ′

0 ∈ dTT↓ , we 
can take τ ′ ∈ dTT by the proof of Theorem 55. �

Theorem 60 was also shown in [20, Theorem 10] for weak pebbles in the deterministic case. Here we need one more 
deterministic tt.

Theorem 62. For every k ≥ 1, V+
k -dPTT ⊆ dTT↓ ◦ dTTk+1 .

Proof. By Lemma 61 it suffices to show that V+
k -dPTT ⊆ tdTTmso ◦ V+

k−1-dPTT for every k ≥ 1. The proof of this inclusion is 
obtained from the proof of Lemma 59 by changing the preprocessor N in a similar way as in the proof of Lemma 52.

For the given deterministic v
+
k -ptt M we assume that C i = ∅ and C = Cv = [1, γ ]. As in the proof of Lemma 52, we 

may assume that there is a mapping χ : C → Q that specifies the state of M after dropping a pebble (because we may 
also assume that M keeps track in its finite state of the pebbles in its stack, in the order in which they were dropped, cf. 
the proof of Lemma 58).

The new preprocessor N ′ is constructed in the same way as in the proof of Lemma 52, with a different definition of 
the trips Tc,d . For c ∈ C , the site Tc is defined as in that proof, i.e., it consists of all pairs (t, u) such that the configuration 
〈χ(c), u, (u, c)〉 is reachable by the automaton A associated with M, which now is a nondeterministic v

+
k -pta. The automa-

ton B recognizing mark(Tc) is a v
+

-pta with stack tests (see Lemma 58). When it arrives at the marked node u in state χ(c)
k
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and observes c, it may check that c is the top pebble, lift it, check that the stack is now empty, and accept. For c, d ∈ C , the 
trip Tc,d now consists of all triples (t, u, v) such that A has a computation on t starting in configuration 〈χ(c), u, (u, c)〉
and ending in configuration 〈χ(d), v, (v, d)〉, with at least one computation step. It should be clear that there is a v

+
k -pta

B′ with stack tests that recognizes mark(Tc,d): it starts by dropping c on marked node u in state χ(c), and then behaves 
similarly to B (with respect to v and d).

For every input tree t in the domain of M, the preprocessor N ′ produces the appropriate output. In fact, if N ′ would 
not produce output, then there would be an infinite sequence (u1, c1), (u2, c2), . . . such that (t, u1) ∈ Tc1 and (t, ui, ui+1) ∈
Tci ,ci+1 for every i ≥ 1. But that would imply the existence of an infinite computation of M on t that starts in the initial 
configuration, contradicting the determinism of M. �

Next, we decompose arbitrary v
+

i-ptt’s. To do that we need two tt’s at each decomposition step rather than one.

Lemma 63. For every k ≥ 1, V+
k I-PTT ⊆ TT ◦ TT ◦ V+

k−1I-PTT. For fixed k, the construction takes polynomial time.

Proof. The proof of Lemma 59 is also valid for v
+

i-ptt, provided every reachable pebble stack of the given transducer has a 
visible bottom pebble (for the definition of reachable pebble stack see the proof of Lemma 52). Thus, it suffices to construct 
for every v

+
k i-ptt M a tt N and a v

+
k i-ptt M′ with that property, such that τN ◦ τM′ = τM .

Let M = (	, �, Q , Q 0, C, Cv, C i, R, k). The construction is similar to the one in the proof of Lemma 4. In particular, we 
assume that C i = [1, γ ] and we use the same nondeterministic “multi-level” preprocessor N of that proof. The simulating 
transducer M′ works in the same way as the one in the proof of Lemma 4 as long as the pebble stack of M consists of 
invisible pebbles only. Thus, during that time the pebble stack of M′ is empty. As soon as M drops a visible pebble c, 
M′ stays in the same copy of the input tree and also drops c. After that, M′ just simulates M on that copy until M lifts c. 
Then M′ also lifts c and returns to the first mode until M again drops a visible pebble. Note that when M drops c, all 
invisible pebbles on the input tree become unobservable until c is lifted.

Formally, the set of states of M′ is the union of Q (used in the first mode) and Q × Cv (used in the second mode). 
The rules for the first mode are the same as in the proof of Lemma 4, with the empty set of pebble colours added to 
each left-hand side. Now let 〈q, σ , j, b〉 → ζ be a rule of M and rank	(σ ) = m. In what follows, i ranges over [1, m] and 
j′ over [1, mx�], as usual. With the following rules M′ switches from the first to the second mode, where we assume 
that ζ = 〈q′, dropc〉 with c ∈ Cv: if b = {d} with d ∈ C i , then it uses the rule 〈q, σ0, j, m + d, ∅〉 → 〈(q′, c), dropc〉, and if 
b = ∅, then it uses the rules 〈q, σ ′, j, ∅〉 → 〈(q′, c), dropc〉 and 〈q, σi, j, j′, ∅〉 → 〈(q′, c), dropc〉. The rules for the second 
mode are as follows, for every c ∈ Cv. We first assume that ζ does not contain the instruction liftc . Then M′ has the rules 
〈(q, c), σ ′, j, b〉 → ζ1, 〈(q, c), σ0, j, j′, b〉 → ζ2, and 〈(q, c), σi, j, j′, b〉 → ζ3,i , where ζ1 is obtained from ζ by changing every 
state q′ into (q′, c), ζ2 is obtained from ζ1 by changing up into downm+γ +1, and ζ3,i is obtained from ζ2 by changing 
downi into up. Finally, if ζ = 〈q′, liftc〉, then M′ switches from the second to the first mode with the following rules: 
〈(q, c), σ ′, j, b〉 → ζ , 〈(q, c), σ0, j, j′, b〉 → ζ , and 〈(q, c), σi, j, j′, b〉 → ζ . �

The next result is immediate from Lemmas 63 and 4. It implies, by Propositions 6(1) and 7(1), that the inverse type 
inference problem and the typechecking problem are solvable for ptt’s with k strong visible pebbles, in (2k + 2)-fold and 
(2k + 3)-fold exponential time, respectively. It also implies that the domains of v

+
i-ptt’s are regular, cf. Corollary 9.

Theorem 64. For every k ≥ 0, V+
k I-PTT ⊆ TT2k+2 . For fixed k, the construction takes polynomial time.

Applying the techniques in the proofs of Lemma 52 and Theorem 62 to the proof of Lemma 63, and using Lemmas 52
and 61, we obtain that every deterministic v

+
i-ptt can be decomposed into deterministic tt’s, cf. Theorem 55. The formal 

proof is straightforward.

Theorem 65. For every k ≥ 0, V+
k I-dPTT ⊆ dTT↓ ◦ dTT2k+2 .

We do not know whether these results are optimal, i.e., whether the exponent 2k + 2 can be lowered.

16. Conclusion

We have shown in Theorem 5 that Vk I-PTT ⊆ TTk+2, but we do not know whether this is optimal, i.e., whether or not 
Vk I-PTT ⊆ TTk+1. Since the results on typechecking in Section 5 are based on this decomposition, we also do not know 
whether the time bound for typechecking vki-ptt’s, as stated in Theorem 8, is optimal. Using the results of [48], it can be 
shown that the time bound for inverse type inference is optimal, cf. the discussion after [14, Corollary 1].

We have shown in Theorem 29 that all mso definable n-ary patterns can be matched by deterministic vn−2i-ptt’s, but we 
do not know whether this is optimal, i.e., whether or not it can be done with less than n − 2 pebbles. In particular, we do 
not know whether or not all mso definable ternary patterns can be matched by i-ptt’s (or, by tl programs), cf. Theorem 57. 
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In Section 10 we have suggested ways of reducing the number of visible pebbles in special cases. Given an mso formula ϕ , 
can one compute the minimal number of visible pebbles that is needed to match the pattern ϕ?

The language tl can be extended with visible pebbles, in an obvious way. The resulting “pebble tl programs” are closely 
related to the pebble macro tree transducers that were introduced in [20]. What is the relationship between the k-pebble 
macro tree transducer and the vki-ptt? Is there an analogon of Theorem 46? It is not clear whether the proof of Theorem 46
can be generalized to the addition of visible pebbles.

We have shown in Theorem 56 that Vk I-dPTT � Vk+1I-dPTT, i.e., that k + 1 visible pebbles are more powerful than k, 
in the deterministic case. We do not know whether this holds for the nondeterministic transducers, i.e., whether or not 
the inclusion Vk I-PTT ⊆ Vk+1I-PTT is proper. We also do not know whether every functional vki-ptt can be simulated by a 
deterministic one, where a ptt M is functional if τM is a function. If so, then the inclusion would of course be proper.

Is it decidable for a given deterministic vk+1i-ptt M whether or not τM is in Vk I-dPTT? If so, then one could compute 
the minimal number of visible pebbles needed to realize the transformation τM by a ptt. Obviously, that would answer the 
above question for the pattern ϕ in the affirmative.

It is proved in [8] that the v
+
k -pta has the same expressive power as the vk-pta, i.e., that strong pebbles are not more 

powerful than weak pebbles. We do not know whether or not the v
+
k -ptt is more powerful than the vk-ptt, and neither 

whether or not the v
+
k i-ptt is more powerful than the vki-ptt.
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