
Theoretical Computer Science 728 (2018) 29–99
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Multiple context-free tree grammars:
Lexicalization and characterization

Joost Engelfriet a, Andreas Maletti b,∗, Sebastian Maneth c

a LIACS, Leiden University, P.O. Box 9512, 2300 RA Leiden, the Netherlands
b Institute of Computer Science, Universität Leipzig, P.O. Box 100 920, 04009 Leipzig, Germany
c Department of Mathematics and Informatics, Universität Bremen, P.O. Box 330 440, 28334 Bremen, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 October 2017
Accepted 11 March 2018
Available online 9 April 2018
Communicated by D. Perrin

Keywords:
Lexicalization
Expressive power
Context-free tree language
Multiple context-free language
Finite ambiguity
Mild context-sensitivity

Multiple (simple) context-free tree grammars are investigated, where “simple” means
“linear and nondeleting”. Every multiple context-free tree grammar that is finitely
ambiguous can be lexicalized; i.e., it can be transformed into an equivalent one (generating
the same tree language) in which each rule of the grammar contains a lexical symbol.
Due to this transformation, the rank of the nonterminals increases at most by 1, and the
multiplicity (or fan-out) of the grammar increases at most by the maximal rank of the
lexical symbols; in particular, the multiplicity does not increase when all lexical symbols
have rank 0. Multiple context-free tree grammars have the same tree generating power
as multi-component tree adjoining grammars (provided the latter can use a root-marker).
Moreover, every multi-component tree adjoining grammar that is finitely ambiguous can be
lexicalized. Multiple context-free tree grammars have the same string generating power as
multiple context-free (string) grammars and polynomial time parsing algorithms. A tree
language can be generated by a multiple context-free tree grammar if and only if it
is the image of a regular tree language under a deterministic finite-copying macro tree
transducer. Multiple context-free tree grammars can be used as a synchronous translation
device.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Multiple context-free (string) grammars (MCFG) were introduced in [88] and, independently, in [93] where they are
called (string-based) linear context-free rewriting systems (LCFRS). They are of interest to computational linguists because
they can model cross-serial dependencies, whereas they can still be parsed in polynomial time and generate semi-linear
languages. Multiple context-free tree grammars were introduced in [57], in the sense that it is suggested in [57, Section 5]
that they are the hyperedge-replacement context-free graph grammars in tree generating normal form, as defined in [27].
Such graph grammars generate the same string languages as MCFGs [21,95]. It is shown in [57] that they generate the
same tree languages as second-order abstract categorial grammars (2ACG), generalizing the fact that MCFGs generate the
same string languages as 2ACGs [82]. It is also observed in [57] that the set-local multi-component tree adjoining grammar
(MC-TAG, see [53,94]), well-known to computational linguists, is roughly the monadic restriction of the multiple context-free
tree grammar, just as the tree adjoining grammar (TAG, see [49,51]) is roughly the monadic restriction of the (linear and

* Corresponding author.
E-mail addresses: j .engelfriet @liacs .leidenuniv.nl (J. Engelfriet), maletti @informatik.uni -leipzig .de (A. Maletti), maneth @uni -bremen .de (S. Maneth).
https://doi.org/10.1016/j.tcs.2018.03.014
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.03.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:j.engelfriet@liacs.leidenuniv.nl
mailto:maletti@informatik.uni-leipzig.de
mailto:maneth@uni-bremen.de
https://doi.org/10.1016/j.tcs.2018.03.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2018.03.014&domain=pdf

30 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
nondeleting) context-free tree grammar, see [37,61,71]. We note that the multiple context-free tree grammar could also be
called the tree-based LCFRS; such tree grammars were implicitly envisioned already in [93].

In this paper we define the multiple context-free tree grammars (MCFTG) in terms of familiar concepts from tree lan-
guage theory (see, e.g., [41,42]), and we base our proofs on elementary properties of trees and tree homomorphisms. Thus,
we do not use other formalisms such as graph grammars, λ-calculus, or logic programs. Since the relationship between
MCFTGs and the above type of graph grammars is quite straightforward, it follows from the results of [27] that the tree
languages generated by MCFTGs can be characterized as the images of the regular tree languages under deterministic finite-
copying macro tree transducers (see [26,34,39]). However, since no full version of [27] ever appeared in a journal, we
present that characterization here (Theorem 77). It generalizes the well-known fact that the string languages generated by
MCFGs can be characterized as the yields of the images of the regular tree languages under deterministic finite-copying
top-down tree transducers, cf. [95]. These two characterizations imply (by a result from [26]) that the MCFTGs have the
same string generating power as MCFGs, through the yields of their tree languages. We also give a direct proof of this fact
(Corollary 71), and show how it leads to polynomial time parsing algorithms for MCFTGs (Theorem 73). All trees that have
a given string as yield, can be viewed as “syntactic trees” of that string. A parsing algorithm computes, for a given string,
one syntactic tree (or all syntactic trees) of that string in the tree language generated by the grammar. It should be noted
that, due to its context-free nature, an MCFTG, like a TAG, also has derivation trees (or parse trees), which show the way in
which a tree is generated by the rules of the grammar. A derivation tree can be viewed as a meta level tree and the derived
syntactic tree as an object level tree, cf. [51]. In fact, the parsing algorithm computes a derivation tree (or all derivation
trees) for the given string, and then computes the corresponding syntactic tree(s).

We define the MCFTG as a straightforward generalization of the MCFG, based on tree substitution rather than string
substitution, where a (second-order) tree substitution is a tree homomorphism. However, our formal syntactic definition of
the MCFTG is closer to the one of the context-free tree grammar (CFTG) as in, e.g., [31,37,42,58,61,81,91]. Just as for the
MCFG, the semantics of the MCFTG is a least fixed point semantics, which can easily be viewed as a semantics based on
parse trees (Theorem 9). Moreover, we provide a rewriting semantics for MCFTGs (similar to the one for CFTGs and similar
to the one in [78] for MCFGs) leading to a usual notion of derivation, for which the derivation trees then equal the parse
trees (Theorem 20). Intuitively, an MCFTG G is a simple (i.e., linear and nondeleting) context-free tree grammar (spCFTG) in
which several nonterminals are rewritten in one derivation step. Thus every rule of G is a sequence of rules of an spCFTG,
and the left-hand side nonterminals of these rules are rewritten simultaneously. However, a sequence of nonterminals can
only be rewritten if (earlier in the derivation) they were introduced explicitly as such by the application of a rule of G .
Therefore, each rule of G must also specify the sequences of (occurrences of) nonterminals in its right-hand side that may
later be rewritten. This restriction is called “locality” in [53,78,94].

Apart from the above-mentioned results (and some related results), our main result is that MCFTGs can be lexicalized
(Theorem 45). Let us consider an MCFTG G that generates a tree language L(G) over the ranked alphabet �, and let � ⊆ �

be a given set of lexical items. We say that G is lexicalized (with respect to �) if every rule of G contains at least one
lexical item (or anchor). Lexicalized grammars are of importance for several reasons. First, a lexicalized grammar is often
more understandable, because the rules of the grammar can be grouped around the lexical items. Each rule can then be
viewed as lexical information on its anchor, demonstrating a syntactical construction in which the anchor can occur. Second,
a lexicalized grammar defines a so-called dependency structure on the lexical items of each generated object, allowing to
investigate certain aspects of the grammatical structure of that object, see [64]. Third, certain parsing methods can take
significant advantage of the fact that the grammar is lexicalized, see, e.g., [86]. In the case where each lexical item is a
symbol of the string alphabet (i.e., has rank 0), each rule of a lexicalized grammar produces at least one symbol of the
generated string. Consequently, the number of rule applications (i.e., derivation steps) is clearly bounded by the length of
the input string. In addition, the lexical items in the rules guide the rule selection in a derivation, which works especially
well in scenarios with large alphabets (cf. the detailed account in [10]).

We say that G is finitely ambiguous (with respect to �) if, for every n ≥ 0, L(G) contains only finitely many trees
with n occurrences of lexical items. For simplicity, let us also assume here that every tree in L(G) contains at least one
lexical item. Obviously, if G is lexicalized, then it is finitely ambiguous. Our main result is that for a given MCFTG G it is
decidable whether or not G is finitely ambiguous, and if so, a lexicalized MCFTG G ′ can be constructed that is (strongly)
equivalent to G , i.e., L(G ′) = L(G). Moreover, we show that G ′ is grammatically similar to G , in the sense that their derivation
trees are closely related: every derivation tree of G ′ can be translated by a finite-state tree transducer into a derivation
tree of G for the same syntactic tree, and vice versa. To be more precise, this can be done by a linear deterministic
top-down tree transducer with regular look-ahead (LDTR-transducer). We say that G and G ′ are LDTR-equivalent. Since
the class of LDTR-transductions is closed under composition, this is indeed an equivalence relation for MCFTGs. Note that,
due to the LDTR-equivalence of G ′ and G , any parsing algorithm for G ′ can be turned into a parsing algorithm for G
by translating the derivation trees of G ′ in linear time into derivation trees of G , using the LDTR-transducer. Thus, the
notion of LDTR-equivalence is similar to the well-known notion of cover for context-free grammars (see, e.g., [46,74]). For
context-free grammars, no LDTR-transducer can handle the derivation tree translation that corresponds to the transformation
into Greibach Normal Form. In fact, our lexicalization of MCFTGs generalizes the transformation of a context-free grammar
into Operator Normal Form as presented in [46], which is much simpler than the transformation into Greibach Normal
Form.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 31
The multiplicity (or fan-out) of an MCFTG is the maximal number of nonterminals that can be rewritten simultaneously
in one derivation step. The lexicalization of MCFTGs, as discussed above, increases the multiplicity of the grammar by at
most the maximal rank of the lexical symbols in �. When viewing an MCFTG as generating a string language, consisting of
the yields of the generated trees, it is natural that all lexical items are symbols of rank 0, which means that they belong
to the alphabet of that string language. The lexicalization process is then called strong lexicalization, because it preserves
the generated tree language (whereas weak lexicalization just requires preservation of the generated string language). Thus,
strong lexicalization of MCFTGs does not increase the multiplicity. In particular spCFTGs, which are MCFTGs of multiplicity 1,
can be strongly lexicalized as already shown in [70]. Note that all TAG tree languages can be generated by spCFTGs [61].
Although TAGs can be weakly lexicalized (see [36]), they cannot be strongly lexicalized, which was unexpectedly shown
in [65]. Thus, from the lexicalization point of view, spCFTGs have a significant advantage over TAGs. The strong lexicalization
of MCFTGs (with lexical symbols of rank 0) is presented without proof (and without the notion of LDTR-equivalence) in [25].

The width of an MCFTG is the maximal rank of its nonterminals. The lexicalization of MCFTGs increases the width of the
grammar by at most 1.

In addition to the above results we compare the MCFTGs with the MC-TAGs and prove that they have (“almost”) the same
tree generating power, as also presented in [25]. It is shown in [61] that “non-strict” TAGs, which are a slight generalization
of TAGs, generate the same tree languages as monadic spCFTGs, where ‘monadic’ means width at most 1; i.e., all nontermi-
nals have rank 1 or 0. We confirm and strengthen the above-mentioned observation in [57] by showing that both MCFTGs
and monadic MCFTGs have the same tree generating power as non-strict MC-TAGs (Theorems 50 and 62), with a polynomial
increase of multiplicity. Since the constructions preserve lexicalized grammars, we obtain that non-strict MC-TAGs can be
(strongly) lexicalized. Note that by a straightforward generalization of [65] it can be shown that non-strict TAGs cannot
be strongly lexicalized. Then we show that even (strict) MC-TAGs have the same tree generating power as MCFTGs (Theo-
rem 59). To be precise, if L is a tree language generated by an MCFTG, then the tree language #(L) = {#(t) | t ∈ L} can be
generated by an MC-TAG, where # is a “root-marker” of rank 1. This result settles a problem stated in [94, Section 4.5].1 It
also implies that, as opposed to TAGs, MC-TAGs can be (strongly) lexicalized (Theorem 61).

It is shown in [60,96] that 2ACGs, and in particular tree generating 2ACGs, can be lexicalized (for � = �). Although
2ACGs and MCFTGs generate the same tree languages, this does not imply that MCFTGs can be lexicalized. It is shown
in [83] that multi-dimensional TAGs can be strongly lexicalized. Although it seems that for every multi-dimensional TAG
there is an MCFTG generating the same tree language (see the Conclusion of [58]), nothing else seems to be known about
the relationship between multi-dimensional TAGs and MC-TAGs or MCFTGs.

The structure of this paper is as follows. Section 2 consists of preliminaries, mostly on trees and tree homomorphisms.
Since a sequence of nonterminals of an MCFTG generates a sequence of trees, we also consider sequences of trees, called
forests. The substitution of a forest for a sequence of symbols in a forest is realized by a tree homomorphism. In Section 3
we define the MCFTG, its least fixed point semantics (in terms of forest substitution), its derivation trees, and its derivations.
Every derivation tree yields a tree, called its value, and the tree language generated by the grammar equals the set of values
of its derivation trees. The set of derivation trees is itself a regular tree language. We recall the notion of an LDTR-transducer,
and we define two MCFTGs to be LDTR-equivalent if there is a value-preserving LDTR-transducer from the derivation trees
of one grammar to the other, and vice versa. Section 4 contains a number of normal forms. For every MCFTG we construct
an LDTR-equivalent MCFTG in such a normal form. In Section 4.1 we discuss some basic normal forms, such as permutation-
freeness which means that application of a rule cannot permute subtrees. In Section 4.2 we prove that every MCFTG can be
transformed into Growing Normal Form (generalizing the result of [90,91] for spCFTGs). This means that every derivation
step increases the sum of the number of terminal symbols and the number of “big nonterminals” (which are the sequences
of nonterminals that form the left-hand sides of the rules of the MCFTG). It even holds for finitely ambiguous MCFTGs, with
‘terminal’ replaced by ‘lexical’ (Theorem 38). Thus, this result is already part of our lexicalization procedure. Moreover, we
prove that finite ambiguity is decidable. Section 5 is devoted to the remaining, main part of the lexicalization procedure. It
shows that every MCFTG in (lexical) Growing Normal Form can be transformed into an LDTR-equivalent lexicalized MCFTG.
The intuitive idea is to transport certain lexical items from positions in the derivation tree that contain more than one
lexical item (more precisely, that are labeled with a rule of the grammar that contains more than one lexical item), up to
positions that do not contain any lexical item. In Section 6.1 we prove that MCFTGs have the same tree generating power
as non-strict MC-TAGs. We define non-strict MC-TAGs as a special type of MCFTGs, namely “footed” ones, which (as in [61])
are permutation-free MCFTGs such that in every rule the arguments of each left-hand side nonterminal are all passed to
one node in the right-hand side of the rule. Then we prove in Section 6.2 that (strict) MC-TAGs have the same tree gen-
erating power as MCFTGs, as explained above, and we show that MC-TAGs can be strongly lexicalized. In Section 6.3 we
observe that every MC-TAG (and hence every MCFTG) can be transformed into an equivalent MCFTG of width at most 1,
which is in contrast to the fact that spCFTGs (and arbitrary context-free tree grammars) give rise to a strict hierarchy with
respect to width, as shown in [30, Theorem 6.5] (see also [67, Lemma 24]). In all the results of Section 6 the constructed
grammar is LDTR-equivalent to the given one. In Section 7.1 we define the multiple context-free (string) grammar (MCFG)
as the “monadic case” of the MCFTG, which means that all terminal and nonterminal symbols have rank 1, except for a

1 In the first paragraph of that section, Weir states that “it would be interesting to investigate whether there exist LCFRS’s with object level tree sets that
cannot be produced by any MCTAG.”

32 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
special terminal symbol and the initial nonterminal symbol that have rank 0. We prove (using permutation-freeness) that
every tree language L(G) that is generated by an MCFTG G can also be generated by an MCFG, provided that we view
every tree as a string in the usual way (Theorem 68). Using this we show that yd(L(G)), which is the set of yields of the
trees in L(G), can also be generated by an MCFG G ′ and, in fact, every MCFG string language is of that form. Since, more-
over, the derivation trees of G and G ′ are related by LDTR-transducers (in a way similar to LDTR-equivalence), this result
can be used to transform any polynomial time parsing algorithm for MCFGs into a polynomial time parsing algorithm for
MCFTGs, as discussed in Section 7.2. In Section 8 we recall the notion of macro tree transducer, and show that the tree
translation that computes the value of a derivation tree of an MCFTG G can be realized by a deterministic finite-copying
macro tree transducer (DMTfc-transducer). This implies that L(G) is the image of a regular tree language (viz. the set of
derivation trees of G) under a DMTfc-transduction. Vice versa, every such image can be generated by an MCFTG that can
be obtained by a straightforward product construction. From this characterization of the MCFTG tree languages we obtain
a number of other characterizations (including those for the MCFG string languages), known from the literature. Thus, they
are the tree/string languages generated by context-free graph grammars, they are the tree/string languages generated by
2ACGs, and they are the tree/string languages obtained as images of the regular tree languages under deterministic MSO-
definable tree/tree-to-string transductions (where MSO stands for Monadic Second-Order logic). Section 9 is based on the
natural idea that, since every “big nonterminal” of an MCFTG generates a forest, i.e., a sequence of trees, we can also use
an MCFTG to generate a set of pairs of trees (i.e., a tree translation) and hence, taking yields, to realize a string trans-
lation. We study the resulting translation device in Section 9 and call it an MCFT-transducer. It generalizes the (binary)
rational tree translation of [79] (called synchronous forest substitution grammar in [69]) and the synchronous context-free
tree grammar of [73]. We prove two results similar to those in [73]. The first result characterizes the MCFT-transductions
in terms of macro tree transducers, generalizing the characterization of the MCFTG tree languages of Section 8. We show
that the MCFT-transductions are the bimorphisms determined by the DMTfc-transductions as morphisms (Theorem 82).
The second result generalizes the parsing result for MCFTGs in Section 7. It shows that any polynomial time parsing al-
gorithm for MCFGs can be transformed into a polynomial time parsing algorithm for MCFT-transducers (Theorem 83). For
an MCFT-transducer M , the algorithm parses a given input string w and translates it into a corresponding output string;
more precisely, the algorithm computes all pairs (t1, t2) in the transduction of M such that the yield of t1 is w . Finally, in
Section 10, we consider two generalizations of the MCFTG for which the basic semantic definitions are essentially still valid.
In both cases the generalized MCFTG is able to generate an unbounded number of copies of a subtree, by allowing several
occurrences of the same nonterminal (in the first case) or the same variable (in the second case) to appear in the right-
hand side of a rule. Consequently, the resulting tree languages need not be semi-linear anymore. The first generalization
is the parallel MCFTG (or PMCFTG), which is the obvious generalization of the well-known parallel MCFG of [88]. Roughly
speaking, in a parallel MCFTG (or parallel MCFG), whenever two occurrences of the same nonterminal are introduced in a
derivation step, these occurrences must be rewritten in exactly the same way in the remainder of the derivation. We did
not study the lexicalization of PMCFTGs, but for all the other results on MCFTGs there are analogous results for PMCFTGs
with almost the same proofs. The second generalization, which we briefly consider, is the general (P)MCFTG, for which we
drop the restriction that the rules must be linear (in the variables). Thus a general (P)MCFTG can copy subtrees during one
derivation step. General MCFTGs are discussed in [8]. The general MCFTGs of multiplicity 1 are the classical IO context-free
tree grammars. The synchronized-context-free tree languages of [7] (which are defined by logic programs) lie between the
MCFTG tree languages and the general PMCFTG tree languages. The general PMCFTG tree languages can be characterized as
the images of the regular tree languages under arbitrary deterministic macro tree transductions, but otherwise we have no
results for general (P)MCFTGs.

As observed above, part of the results in this paper were first presented in [27], [70], and [25].

2. Preliminaries

We denote the set {1, 2, 3, . . . } of positive integers by N and the set of nonnegative integers by N0 = N ∪ {0}. For
every n ∈ N0, we let [n] = {i ∈ N | i ≤ n}. For a set A, we denote its cardinality by |A|. A partition of A is a set � of subsets
of A such that each element of A is contained in exactly one element of �; we allow the empty set ∅ to be an element
of �. For two functions f : A → B and g : B → C (where A, B , and C are sets), the composition g ◦ f : A → C of f and g is
defined as usual by (g ◦ f)(a) = g(f (a)) for every a ∈ A.

2.1. Sequences and strings

Let A be a (not necessarily finite) set. When we view A as a set of basic (i.e., indecomposable) elements, we call
A an alphabet and each of its elements a symbol. Note that we do not require alphabets to be finite; finiteness will be
explicitly mentioned.2 For every integer n ∈ N0, we denote by An the n-fold Cartesian product of A containing sequences

2 Infinite alphabets are sometimes convenient. For instance, it is natural to view the infinite set {x1, x2, . . . } of variables occurring in trees as an alphabet,
see Section 2.3. We will use grammars with infinite alphabets as a technical tool in Section 3.3 to define the derivations of usual grammars, which of
course have finite alphabets.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 33
of length n over A; i.e., An = {(a1, . . . , an) | a1, . . . , an ∈ A} and A0 = {()} contains only the empty sequence (), which we
also denote by ε. Moreover, we let A+ = ⋃

n∈N An and A∗ = ⋃
n∈N0

An . When A is viewed as an alphabet, the sequences
in A∗ are also called strings. Let w = (a1, . . . , an) be a sequence (or string). Its length n is denoted by |w|. For i ∈ [n],
the i-th element of w is ai . The elements of w are said to occur in w . The set {a1, . . . , an} of elements of w will be
denoted by occ(w). The sequence w is repetition-free if no element of A occurs more than once in w; i.e., |occ(w)| = n.
A permutation of w is a sequence (ai1 , . . . , ain) of the same length such that {i1, . . . , in} = [n]. Given another sequence
v = (a′

1, . . . , a
′
m) the concatenation w · v , also written just w v , is simply (a1, . . . , an, a′

1, . . . , a
′
m). Moreover, for every n ∈N0,

the n-fold concatenation of w with itself is denoted by wn , in particular w0 = ε. As usual, we identify the sequence (a)

of length 1 with the element a ∈ A it contains, so A = A1 ⊆ A+ . Consequently, we often write the sequence (a1, . . . , an)

as a1 · · ·an . However, if the a1, . . . , an are themselves sequences, then a1 · · ·an will always denote their concatenation and
never the sequence (a1, . . . , an) of sequences.

Notation. In the following we will often denote sequences over a set A by the same letters as the elements of A. For
instance, we will write a = (a1, . . . , an) with a ∈ A+ and ai ∈ A for all i ∈ [n]. It should hopefully always be clear whether a
sequence over A or an element of A is meant. We will consider sequences over several different types of sets, and it would
be awkward to use different letters, fonts, or decorations (like a and �a) for all of them.

Homomorphisms. Let A and B be sets. A (string) homomorphism from A to B is a mapping h : A → B∗ . It determines
a mapping h∗ : A∗ → B∗ which is also called a (string) homomorphism and which is defined inductively as follows for
w ∈ A∗:

h∗(w) =
{
ε if w = ε

h(a) · h∗(v) if w = av with a ∈ A and v ∈ A∗.

We note that h∗ and h coincide on A and that h∗(w v) = h∗(w) · h∗(v) for all w, v ∈ A∗ . In certain particular cases, which
will be explicitly mentioned, we will denote h∗ simply by h, for readability.3 A homomorphism over A is a homomorphism
from A to itself. We will often use the following homomorphism from A to B , in the special case where B ⊆ A. For a string
w over A, the yield of w with respect to B , denoted ydB(w), is the string over B that is obtained from w by erasing all
symbols not in B . Formally, ydB is the homomorphism from A to B such that ydB(a) = a if a ∈ B and ydB(a) = ε otherwise,
and we define ydB(w) = yd∗

B(w). Thus,

ydB(w) =

⎧⎪⎨
⎪⎩

ε if w = ε

a ydB(v) if w = av with a ∈ B and v ∈ A∗

ydB(v) if w = av with a ∈ A \ B and v ∈ A∗.

Note that ydA is the identity on A∗ . In Section 2.2 we will define trees as a special kind of strings, and we will use a special
case of ydB to define the yield of a tree (in the usual sense).

Context-free grammars. We assume that the reader is familiar with context-free grammars [3], which are presented here as
systems G = (N, �, S, R) containing a finite alphabet N of nonterminals, a finite alphabet � of terminals that is disjoint
to N , an initial nonterminal S ∈ N , and a finite set R of rules of the form A → w with a nonterminal A ∈ N and a string
w ∈ (N ∪ �)∗ . Each nonterminal A generates a language L(G, A), which is given by L(G, A) = {w ∈ �∗ | A ⇒∗

G w} using the
reflexive, transitive closure ⇒∗

G of the usual rewriting relation

⇒G = {(u Av, uw v) | u, v ∈ (N ∪ �)∗, A → w ∈ R}
of the context-free grammar G . The language generated by G is L(G) = L(G, S). The nonterminals A, A′ ∈ N are aliases
if {w | A → w ∈ R} = {w | A′ → w ∈ R}, which yields that L(G, A) = L(G, A′). It is well known that for every context-free
grammar G = (N, �, S, R) there is an equivalent one G ′ = (N ′, �, S1, R ′) such that w does not contain any nonterminal more
than once for every rule A → w ∈ R ′ . This can be achieved by introducing sufficiently many aliases as follows. Let m be the
maximal number of occurrences of a nonterminal in the right-hand side of a rule in R . We replace each nonterminal A by
new nonterminals A1, . . . , Am , and take S1 to be the new initial nonterminal. In addition, we replace each rule A → w by
all the rules Ai → w ′ , where i ∈ [m] and w ′ is obtained from w by replacing the j-th occurrence of each nonterminal B
in w by B j . Thus, A1, . . . , Am are aliases. As an example, the grammar G with rules S → σ S S and S → a is transformed
into the grammar G ′ with rules S1 → σ S1 S2, S2 → σ S1 S2, S1 → a, and S2 → a. It should be clear that L(G ′) = L(G), and
in fact, the derivation trees of G and G ′ are closely related (by simply introducing appropriate subscripts in the derivation
trees of G or removing the introduced subscripts from the derivation trees of G ′).

3 There will be four such cases only: yield functions ‘yd’ (see the remainder of this paragraph), rank functions ‘rk’ (see the first paragraph of Section 2.2),
injections ‘in’ (see the first paragraph of Section 2.3), and tree homomorphisms ĥ (see the third paragraph of Section 2.3).

34 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
2.2. Trees and forests

A ranked set, or ranked alphabet, is a pair (�, rk�), where � is a (possibly infinite) set and rk� : � → N0 is a mapping
that associates a rank to every element of �. In what follows the elements of � will be called symbols. For all k ∈ N0, we
let �(k) = {σ ∈ � | rk�(σ) = k} be the set of all symbols of rank k. We sometimes indicate the rank k of a symbol σ ∈ �

explicitly, as in σ (k) . Moreover, as usual, we just write � for the ranked alphabet (�, rk�), and whenever � is clear from
the context, we write ‘rk’ instead of ‘rk� ’. If � is finite, then we denote by mrk� the maximal rank of the symbols in �; i.e.,
mrk� = max{rk(σ) | σ ∈ �}. The mapping rk∗ from �∗ to N∗

0, as defined in the paragraph on homomorphisms in Section 2.1,
will also be denoted by ‘rk’. It associates a multiple rank (i.e., a sequence of ranks) to every sequence of elements of �. The
union of ranked alphabets (�, rk�) and (�, rk�) is (� ∪�, rk� ∪ rk�); it is again a ranked alphabet provided that the same
rank rk�(γ) = rk�(γ) is assigned to all symbols γ ∈ � ∩ �.

We build trees over the ranked alphabet � such that the nodes are labeled by elements of � and the rank of the
node label determines the number of its children. Formally we define trees as nonempty strings over � as follows. The
set T� of trees over � is the smallest set T ⊆ �+ such that σ t1 · · · tk ∈ T for all k ∈ N0, σ ∈ �(k) , and t1, . . . , tk ∈ T . As
usual, we will also denote the string σ t1 · · · tk by the term σ(t1, . . . , tk). If we know that t ∈ T� and t = σ(t1, . . . , tk),
then it is clear that k ∈ N0, σ ∈ �(k) , and t1, . . . , tk ∈ T� , so unless we need stronger assumptions, we will often omit the
quantifications of k, σ , and t1, . . . , tk . It is well known that if σ w ∈ T� with k ∈ N0, σ ∈ �(k) , and w ∈ �∗ , then there are
unique trees t1, . . . , tk ∈ T� such that w = t1 · · · tk . Any subset of T� is called a tree language over �. A detailed treatment
of trees and tree languages is presented in [41] (see also [16,42]).

Trees can be viewed as node-labeled graphs in a well-known way. As usual, we use Dewey notation to address the nodes
of a tree; these addresses will be called positions. Formally, a position is an element of N∗ . Thus, it is a sequence of positive
integers, which, intuitively, indicates successively in which subtree the addressed node can be found. More precisely, the
root is at position ε, and the position pi with p ∈ N∗ and i ∈ N refers to the i-th child of the node at position p. The
set pos(t) ⊆ N∗ of positions of a tree t ∈ T� with t = σ(t1, . . . , tk) is defined inductively by

pos(t) = {ε} ∪ {ip | i ∈ [k], p ∈ pos(ti)} .

The tree t associates a label to each of its positions, so it induces a mapping t : pos(t) → � such that t(p) is the label
of t at position p. Formally, if t = σ(t1, . . . , tk), then t(ε) = σ and t(ip) = ti(p). For nodes p, p′ ∈ pos(t), we say as usual
that p′ is an ancestor of p if p′ is a prefix of p; i.e., there exists w ∈ N∗ such that p = p′w . A leaf of t is a position
p ∈ pos(t) with t(p) ∈ �(0) . The yield of t , denoted by yd(t), is the sequence of labels of its leaves, read from left to right.
However, as usual, we assume the existence of a special symbol e of rank 0 that represents the empty string and is omitted
from yd(t). Thus, we can formally define yd(t) = yd�(0)\{e}(t), where ydB is defined in the paragraph on homomorphisms in
Section 2.1.

A forest is a sequence of trees; i.e., an element of T ∗
� . Note that every tree of T� is a forest of length 1. A forest can be

viewed as a node-labeled graph in a natural way, for instance by connecting the roots of its trees by “invisible” #-labeled
directed edges, in the given order. This leads to the following obvious extension of Dewey notation to address the nodes
of a forest. Formally, from now on, a position is an element of the set {#n p | n ∈ N0, p ∈ N∗} ⊆ (N ∪ {#})∗ , where # is a
special symbol not in N. Intuitively, the root of the j-th tree of a forest is at position # j−1 and, as before, the position pi
refers to the i-th child of the node at position p. For each forest t = (t1, . . . , tm) with m ∈ N0 and t1, . . . , tm ∈ T� , the
set pos(t) of positions of t is defined by pos(t) = ⋃m

j=1{# j−1 p | p ∈ pos(t j)}. Moreover, for every j ∈ [m] and p ∈ pos(t j),
we let t(# j−1 p) = t j(p) be the label of t at position # j−1 p.4 Let 	 ⊆ � be a selection of symbols. For every t ∈ T ∗

� , we
let pos	(t) = {p ∈ pos(t) | t(p) ∈ 	} be the set of all 	-labeled positions of t . For every σ ∈ �, we simply write posσ (t)
instead of pos{σ }(t), and we say that σ occurs in t if posσ (t) �= ∅. The set of symbols in 	 that occur in t is denoted
by occ	(t); i.e., occ	(t) = {t(p) | p ∈ pos	(t)}.5 The forest t is uniquely 	-labeled if no symbol in 	 occurs more than once
in t; i.e., |posω(t)| ≤ 1 for every ω ∈ 	. It is well known, and can easily be proved by induction on the structure of t , that
|pos(t)| + m ≤ 2 · |pos�(0) (t)| + |pos�(1) (t)| for every forest t ∈ T ∗

� of length m.

Regular tree grammars. A regular tree grammar (in short, RTG) over � is a context-free grammar G = (N, �, S, R) such that
N is a ranked alphabet with rk(A) = 0 for every A ∈ N , � is a ranked alphabet, and w is a tree in T N∪� for every
rule A → w in R . Throughout this paper we assume that G is in normal form; i.e., that all its rules are of the form
A → σ(A1, . . . , Ak) with k ∈ N0, A, A1, . . . , Ak ∈ N , and σ ∈ �(k) . The language L(G) generated by an RTG G is a regular
tree language. The class of all regular tree languages is denoted by RT. We assume the reader to be familiar with regular
tree grammars [42, Section 6], and also more or less familiar with (linear, nondeleting) context-free tree grammars [42,
Section 15], which we formally define in Section 3.

Finite tree automata. A deterministic bottom-up finite tree automaton is a tuple A = (P , F , �, δ) where P is a finite set of states,
F ⊆ P is the set of final states, � is a ranked alphabet, and δ is a family (δσ)σ∈� of mappings δσ : Pk → P for every σ ∈ �

4 These definitions are consistent with those given in the previous paragraph for trees, which are forests of length 1.
5 Note that occ(t) = {t1, . . . , tm} by Section 2.1. This will, however, never be used.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 35
of rank k. The mapping δ̂ : T� → P is recursively defined by δ̂(σ (t1, . . . , tk)) = δσ (δ̂(t1), . . . , ̂δ(tk)) for every σ ∈ � of rank k.
For every p ∈ P we define Lp(A) = {t ∈ T� | δ̂(t) = p}, and L(A) = ⋃

p∈F Lp(A) is the tree language recognized by A. We
assume the reader to be familiar with finite tree automata [42, Section 5]. Note that a tree language is regular if and only if
it can be recognized by a deterministic bottom-up finite tree automaton.

2.3. Substitution

In this subsection we define and discuss first- and second-order substitution of trees and forests. To this end, we use
a fixed countably infinite alphabet X = {x1, x2, . . . } ∪ {�} of variables, which is disjoint to the ranked alphabet �, and for
every k ∈ N0 we let Xk = {xi | i ∈ [k]} be the first k variables from X . Note that X0 = ∅. The use of the special variable �
will be explained in Section 5 (before Lemma 43). For Z ⊆ X , the set T�(Z) of trees over � with variables in Z is defined
by T�(Z) = T�∪Z , where every variable x ∈ Z has rank 0. Thus, the variables can only occur at the leaves. We will be
mainly interested in the substitution of patterns. For every k ∈ N0, we define the set P�(Xk) of k-ary patterns to consist of
all trees t ∈ T�(Xk) such that each variable of Xk occurs exactly once in t; i.e., |posx(t)| = 1 for every x ∈ Xk .6 Consequently,
P�(X0) = T�(X0) = T� , and for all distinct i, j ∈ N0 the sets P�(Xi) and P�(X j) are disjoint. This allows us to turn the
set P�(X) = ⋃

k∈N0
P�(Xk) of all patterns into a ranked set such that P�(X)(k) = P�(Xk) for every k ∈ N0; in other words,

for every t ∈ P�(X) let rk(t) be the unique integer k ∈ N0 such that t ∈ P�(Xk).7 Since ‘rk’ also denotes rk∗ (see the
first paragraph of Section 2.2), ‘rk’ is also a mapping from P�(X)∗ to N∗

0. There is a natural rank-preserving injection
in : � → P�(X) of the alphabet � into the set of patterns, which is given by in(σ) = σ(x1, . . . , xk) for every k ∈ N0 and
σ ∈ �(k) . Note that in(σ) = σ if k = 0. The mapping in∗ from �∗ to P�(X)∗ , as defined in Section 2.1, will also be denoted
by ‘in’. It is a rank-preserving injection that associates a sequence of patterns to every sequence of elements of �.

We start with first-order substitution, in which variables are replaced by trees. For a tree t ∈ T�(X), a set Z ⊆ X of
variables, and a mapping f : Z → T�(X), the first-order substitution t[f], also written as t[z ← f (z) | z ∈ Z], yields the tree
in T�(X) obtained by replacing in t every occurrence of z by f (z) for every z ∈ Z . Formally, t[f] is defined by induction on
the structure of t as follows:

t[f] =
{

f (z) if t = z with z ∈ Z

σ(t1[f], . . . , tk[f]) if t = σ(t1, . . . , tk) with σ ∈ � ∪ X , σ /∈ Z .

We note that t[f] = h∗(t), where h is the string homomorphism over � ∪ X such that h(α) = f (α) if α ∈ Z and h(α) = α
otherwise.

Whereas we replace X-labeled nodes (which are leaves) in first-order substitution, in second-order substitution we
replace �-labeled nodes (which can also be internal nodes); i.e., nodes with a label in �(k) for some k ∈ N0. Such a node
is replaced by a k-ary pattern, in which the variables x1, . . . , xk are used as unique placeholders for the k children of
the node. In fact, second-order substitutions are just tree homomorphisms. Let � and � be ranked alphabets. A (simple)
tree homomorphism from � to � is a rank-preserving mapping h : � → P�(X); i.e., rk(h(σ)) = rk(σ) for every σ ∈ �.8

It determines a mapping ĥ : T�(X) → T�(X), and we will use ĥ also to denote the mapping (ĥ)∗ : T�(X)∗ → T�(X)∗ as
defined in the paragraph on homomorphisms in Section 2.1. Roughly speaking, for a tree (or forest) t , the tree (or forest) ĥ(t)
is obtained from t by replacing, for every p ∈ posσ (t) with label σ ∈ �(k) , the subtree at position p by the pattern h(σ),
into which the k subtrees at positions p1, . . . , pk are (first-order) substituted for the variables x1, . . . , xk , respectively. Since
h(σ) is a pattern, these subtrees can neither be copied nor deleted, but they can be permuted. Thus, the pattern h(σ) is
“folded” into t at position p. Formally, the mapping ĥ, which we also call tree homomorphism, is defined inductively as
follows for t ∈ T�(X):

ĥ(t) =
{

x if t = x with x ∈ X

h(σ)[xi ← ĥ(ti) | 1 ≤ i ≤ k] if t = σ(t1, . . . , tk) with σ ∈ �.

Clearly, ĥ(t) only depends on the values of h for the symbols occurring in t; in other words, if g is another tree ho-
momorphism from � to � such that g(σ) = h(σ) for every σ ∈ occ�(t), then ĝ(t) = ĥ(t). We additionally observe that
ĥ(t) = δ(ĥ(t1), . . . , ̂h(tk)) if t = σ(t1, . . . , tk) and h(σ) = in(δ) for some δ ∈ �. A tree homomorphism h is a projection if for
every σ ∈ � there exists δ ∈ � such that h(σ) = in(δ). Thus, a projection is just a relabeling of the nodes of the trees. For a
ranked alphabet �, a tree homomorphism over � is a tree homomorphism from � to itself.

The following lemma states elementary properties of (simple) tree homomorphisms. They can easily be proved by in-
duction on the structure of trees in T�(X) and then extended to forests in T�(X)∗ .

6 Note that the variable � does not occur in patterns.
7 Since P�(X) ⊆ (� ∪ X)∗ by definition, every pattern t ∈ P�(X) also has a multiple rank rk�∪X (t) ∈ N

∗
0. This will, however, never be used. We also

observe that we will not consider trees over the ranked set P�(X).
8 Since h(σ) is a pattern for every σ ∈ �, the tree homomorphism h is simple; i.e., linear and nondeleting. This is the only type of tree homomorphism

considered in this paper (except briefly in the last section).

36 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Lemma 1. Let h be a tree homomorphism from � to �, and let t ∈ T�(X)∗ and u = ĥ(t).

(1) |posx(u)| = |posx(t)| for every x ∈ X.
(2) |posδ(u)| = ∑

σ∈�|posσ (t)| · |posδ(h(σ))| for every δ ∈ �.

By the first statement of this lemma, tree homomorphisms preserve patterns and their ranks; i.e., ĥ(t) ∈ P�(Xk) for
all t ∈ P�(Xk). Moreover, ĥ(t) ∈ P�(X)∗ and rk(ĥ(t)) = rk(t) for all t ∈ P�(X)∗ . Next, we recall two other easy properties of
tree homomorphisms. Namely, they distribute over first-order substitution, and they are closed under composition (see [4,
Corollary 8(5)]).

Lemma 2. Let h be a tree homomorphism from � to �, let t ∈ T�(X), and let f : Z → T�(X) for some Z ⊆ X. Then we have
ĥ(t[f]) = ĥ(t)[ĥ ◦ f].

Lemma 3. Let h1 and h2 be tree homomorphisms from � to 	 and from 	 to �, respectively, and let h = ĥ2 ◦ h1 , which is a tree
homomorphism from � to �. Then ĥ = ĥ2 ◦ ĥ1 .

These lemmas have straightforward proofs. Lemma 2 can be proved by induction on the structure of t , and then Lemma 3
can be proved by showing that ĥ(t) = ĥ2(ĥ1(t)), again by induction on the structure of t , using Lemma 2 in the induction
step.

In the remainder of this subsection we consider tree homomorphisms over �. Let t be a forest in T�(X)∗ and let
σ = (σ1, . . . , σn) ∈ �n with n ∈ N0 be a repetition-free sequence of symbols in �. Moreover, let u = (u1, . . . , un) be a forest
in P�(X)n such that rk(u) = rk(σ).9 The second-order substitution t[σ ← u] yields the forest ĥ(t) ∈ T�(X)∗ , where h is
the tree homomorphism over � corresponding to [σ ← u], which is defined by h(σi) = ui for i ∈ [n] and h(τ) = in(τ)

for τ ∈ � \ {σ1, . . . , σn}. If t ∈ P�(X)∗ , then t[σ ← u] ∈ P�(X)∗ and rk(t[σ ← u]) = rk(t) by Lemma 1(1). Obviously, the
order of the symbols and trees in σ and u is irrelevant: if σ ′ = (σi1 , . . . , σin) and u′ = (ui1 , . . . , uin), where (i1, . . . , in) is a
permutation of (1, . . . , n), then t[σ ′ ← u′] = t[σ ← u]. Thus, the use of sequences is just a way of associating each symbol σi
with its replacing tree ui . Clearly, t[σ ← u] = t if no symbol of σ occurs in t; i.e., if occ�(t) ∩ occ(σ) = ∅. We also note that
t[σ ← in(σ)] = t and in(σ)[σ ← u] = u. Finally t[σ ← u] = t1[σ ← u] · t2[σ ← u] if t = t1t2 for forests t1 and t2.

In the next lemma, we state some additional elementary properties of second-order substitution.

Lemma 4. Let t ∈ T�(X)∗ be a forest and σ1, σ2 ∈ �∗ be repetition-free sequences of symbols. Moreover, let u1, u2 ∈ P�(X)∗ be
forests of patterns such that rk(u1) = rk(σ1) and rk(u2) = rk(σ2).

(1) If occ(σ1) ∩ occ(σ2) = ∅ (i.e., σ1σ2 is repetition-free), then

t[σ1 ← u1][σ2 ← u2] = t[σ1σ2 ← u1[σ2 ← u2] · u2].
(2) If occ(σ1) ∩ occ(σ2) = ∅ and occ�(u1) ∩ occ(σ2) = ∅, then

t[σ1 ← u1][σ2 ← u2] = t[σ1σ2 ← u1u2].
(3) If occ(σ1) ∩ occ(σ2) = ∅ and occ�(u2) ∩ occ(σ1) = ∅, then

t[σ1 ← u1][σ2 ← u2] = t[σ2 ← u2][σ1 ← u1[σ2 ← u2]].
(4) If occ�(t) ∩ occ(σ2) ⊆ occ(σ1), then

t[σ1 ← u1][σ2 ← u2] = t[σ1 ← u1[σ2 ← u2]].

Proof. Let h1 and h2 be the tree homomorphisms over � that correspond to [σ1 ← u1] and [σ2 ← u2], as defined above.
Moreover, let h be the tree homomorphism that corresponds to [σ1σ2 ← u1[σ2 ← u2] · u2]. Provided that σ1σ2 is repetition-
free, it is easy to check that h = ĥ2 ◦ h1, and hence ĥ = ĥ2 ◦ ĥ1 by Lemma 3. This shows the first equality. If additionally
no symbol of σ2 occurs in u1, then u1[σ2 ← u2] = u1, which shows the second equality. The third equality is a direct
consequence of the first two because t[σ1σ2 ← u1[σ2 ← u2] · u2] = t[σ2σ1 ← u2 · u1[σ2 ← u2]]. To prove the fourth equal-
ity, let g be the tree homomorphism that corresponds to [σ1 ← u1[σ2 ← u2]]. By Lemma 3, it now suffices to show that
ĥ2(h1(σ)) = g(σ) for every σ ∈ occ�(t). This is obvious for σ ∈ occ(σ1). If σ ∈ occ�(t) \ occ(σ1) then, by assumption,
σ /∈ occ(σ2), and so both sides of the equation are equal to in(σ). �

9 Recall that this means that ui ∈ P�(Xrk(σi)) for every i ∈ [n].

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 37
In particular, Lemma 4(3) implies that t[σ1 ← u1][σ2 ← u2] = t[σ2 ← u2][σ1 ← u1] provided that occ(σ1) ∩ occ(σ2) = ∅,
occ�(u2) ∩ occ(σ1) = ∅, and occ�(u1) ∩ occ(σ2) = ∅. This is called the confluence or commutativity of substitution in [11].
Similarly, Lemma 4(4) is called the associativity of substitution in [11]. As shown in the proof above, these two properties
of substitution are essentially special cases of the composition of tree homomorphisms as characterized in Lemma 3.

Above, we have defined the substitution of a forest (of patterns) for a repetition-free sequence over �. In the next
section we also need to simultaneously substitute several forests for several such sequences. That leads to the following
formal definitions, which may now seem rather superfluous. Let L = {σ1, . . . , σk} be a finite subset of �∗ such that σ1 · · ·σk
is repetition-free, where σ1 · · ·σk = ε if k = 0. A (second-order) substitution function for L is a mapping f : L → P�(X)∗ such
that rk(f (σ)) = rk(σ) for every σ ∈ L. For a forest t ∈ P�(X)∗ , the simultaneous second-order substitution t[f], also written
as t[σ ← f (σ) | σ ∈ L], yields t[f] = t[σ1 · · ·σk ← f (σ1) · · · f (σk)]. Clearly, t[f] does not depend on the given order of the
elements in L. In the special case L ⊆ � we obtain a notion of second-order substitution that does not involve sequences,
with f : L → P�(X). In that case we have t[f] = t[(σ1, . . . , σk) ← (f (σ1), . . . , f (σk))].

3. Multiple context-free tree grammars

In this section we introduce the main formalism discussed in this paper: the multiple context-free tree grammars. In the
first subsection we define their syntax and least fixed point semantics and in the second and third subsection we discuss
two alternative semantics, namely their derivation trees and their derivations, respectively. In the second subsection we also
define the notion of LDTR-equivalence of multiple context-free tree grammars, which formalizes grammatical similarity.

3.1. Syntax and least fixed point semantics

We start with the syntax of multiple context-free tree grammars, which we explain after the formal definition. The
definition of their semantics follows after that explanation. Then we give two examples.

Definition 5. A multiple context-free tree grammar (in short, MCFTG) is a system G = (N, N , �, S, R) such that

• N is a finite ranked alphabet of nonterminals,
• N ⊆ N+ is a finite set of big nonterminals, which are nonempty repetition-free sequences of nonterminals, such that

occ(A) �= occ(A′) for all distinct A, A′ ∈N ,
• � is a finite ranked alphabet of terminals such that � ∩ N = ∅ and mrk� ≥ 1,10

• S ∈N ∩ N(0) is the initial (big) nonterminal (of length 1 and rank 0), and
• R is a finite set of rules of the form A → (u, L), where A ∈ N is a big nonterminal, u ∈ P N∪�(X)+ is a uniquely

N-labeled forest (of patterns) such that rk(u) = rk(A), and L ⊆N is a set of big nonterminals such that {occ(B) | B ∈L}
is a partition of occN (u).11 �

For a given rule ρ = A → (u, L), the big nonterminal A, denoted by lhs(ρ), is called the left-hand side of ρ , the forest u,
denoted by rhs(ρ), is called the right-hand side of ρ , and the big nonterminals of L, denoted by L(ρ), are called the links
of ρ .

The multiplicity of the MCFTG G , which is denoted by μ(G), is the maximal length of its big nonterminals. The width
of G , which is denoted by θ(G), is the maximal rank of its nonterminals. And the rule-width of G , which is denoted
by λ(G), is the maximal number of links of its rules. Thus μ(G) = max{|A| | A ∈N }, θ(G) = mrkN = max{rk(A) | A ∈ N}, and
λ(G) = max{|L(ρ)| | ρ ∈ R}. In the literature on MCFG and LCFRS, multiplicity and rule-width are often called “fan-out” and
“rank”, respectively; to understand “rank”, see Section 3.2.

Next, we define two syntactic restrictions. An MCFTG G is a multiple regular tree grammar (in short, MRTG) if θ(G) = 0, and
it is a (simple) context-free tree grammar (in short, spCFTG) if μ(G) = 1; i.e., N ⊆ N . In an MRTG all nonterminals thus have
rank 0, and in an spCFTG all big nonterminals are nonterminals since their length is exactly 1. Consequently, in an spCFTG
we may simply assume that N = N , and thus there is no need to specify N for it. In the literature, a rule A → (u, L) of
an spCFTG is usually written as in(A) → u, in which in(A) = A(x1, . . . , xrk(A)) and L can be omitted because it must be
equal to occN (u). Since the right-hand side u of this rule is a pattern, our context-free tree grammars are simple; i.e., linear
and nondeleting.

Let us discuss the requirements on the components of G in more detail. Each big nonterminal is a nonempty repetition-
free sequence A = (A1, . . . , An) of nonterminals from N . Repetition-freeness of A requires that all these nonterminals Ai are
distinct (cf. Section 2.1). The requirement that ‘occ’ is injective on N (i.e., that occ(A) �= occ(A′) for all distinct A, A′ ∈ N)
means that N can be viewed as consisting of sets of nonterminals, where each set is equipped with a fixed linear order
(viz. the set occ(A) = {A1, . . . , An} with the order � such that A1 � · · · � An). Moreover, since the alphabet N is ranked,

10 To avoid trivialities, we do not consider the case where all symbols of � have rank 0.
11 Thus, occN (u) = ⋃

B∈L occ(B) and occ(B) ∩ occ(B ′) = ∅ for all distinct B, B ′ ∈ L.

38 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Fig. 1. Rules of the MRTG G of Example 6.

every big nonterminal A has a (multiple) rank rk(A) = (rk(A1), . . . , rk(An)) ∈ Nn
0 (cf. Section 2.2), and similarly, every for-

est u = (u1, . . . , un) with u1, . . . , un ∈ P N∪�(X) has a (multiple) rank rk(u) = (rk(u1), . . . , rk(un)) ∈ Nn
0 (cf. Section 2.3).

Thus, a rule A → (u, L) of G is of the form (A1, . . . , An) → ((u1, . . . , un), L) where n ∈ N0, Ai ∈ N and ui ∈ P N∪�(Xrk(Ai))

for every i ∈ [n], and L ⊆ N . The use of sequences is irrelevant; it is just a way of associating each Ai ∈ occ(A) with the
corresponding pattern ui , thus facilitating the formal description of the syntax and semantics of G . Additionally, in the
above rule, u is uniquely N-labeled, which means that also in u no nonterminal occurs more than once (cf. Section 2.2).
This requirement, which is not essential but technically convenient, is similar to the restriction discussed for context-free
grammars at the end of Section 2.1. Moreover, the set {occ(B) | B ∈ L} forms a partition of occN (u). Since each big non-
terminal B is repetition-free, ‘occ’ is injective on N , and u is uniquely N-labeled, we obtain that each big nonterminal
from L occurs “spread-out” exactly once in u and no other nonterminals occur in u. More precisely, for each big nontermi-
nal B = (C1, . . . , Cm) ∈ L with C1, . . . , Cm ∈ N , there is a unique repetition-free sequence pB = (p1, . . . , pm) ∈ posN(u)m of
positions such that (u(p1), . . . , u(pm)) = (C1, . . . , Cm), and we have that occ(pB) ∩ occ(pB ′) = ∅ for every other B ′ ∈ L and
posN (u) = ⋃

B∈L occ(pB). Note that if L = {B1, . . . , Bk} with B1, . . . , Bk ∈ N , then the concatenation B1 · · · Bk ∈ N∗ of the
elements of L is repetition-free and occ(B1 · · · Bk) = occN(u).

Intuitively, the application of the above rule ρ = A → (u, L) consists of the simultaneous application of the n spCFTG
rules Ai(x1, . . . , xrk(Ai)) → ui to an occurrence of the “spread-out” big nonterminal A = (A1, . . . , An) and the introduction
of (occurrences of) the new “spread-out” big nonterminals from L. Every big nonterminal B = (C1, . . . , Cm) ∈ L, as above,
can be viewed as a link between the positions p1, . . . , pm of u with labels C1, . . . , Cm as well as a link between the corre-
sponding positions after the application of ρ (see Fig. 1). The rule ρ can only be applied to positions with labels A1, . . . , An

that are joined by such a link. Thus, rule applications are “local” in the sense that a rule can rewrite only nonterminals
that were previously introduced together in a single step of the derivation, just as for the local unordered scattered context
grammar of [78], which is equivalent to the multiple context-free (string) grammar. However, since it is technically a bit
problematic to define such derivation steps between trees in T N∪� that are not necessarily uniquely N-labeled (because it
additionally requires to keep track of each link as a sequence of positions rather than as a big nonterminal), we prefer to
define the language generated by the MCFTG G through a least fixed point semantics similar to that of multiple context-free
(string) grammars in [88]. As will be discussed in Section 3.2, this is closely related to a semantics in terms of derivation
trees, similar to that of (string-based) linear context-free rewriting systems in [93]. The derivations of an MCFTG will be
considered in Section 3.3.

In an spCFTG, a nonterminal A of rank k can be viewed as a generator of trees in P�(Xk) using derivations that start
with A(x1, . . . , xk). In the same fashion, a big nonterminal A of an MCFTG generates nonempty forests in P�(X)∗ of the
same rank as A, as defined next. Let G = (N, N , �, S, R) be an MCFTG. For every big nonterminal A ∈N we define the forest
language generated by A, denoted by L(G, A), as follows. For all big nonterminals A ∈ N simultaneously, L(G, A) ⊆ P�(X)∗
is the smallest set of forests such that for every rule A → (u, L) ∈ R , if f : L → P�(X)∗ is a substitution function for L
such that f (B) ∈ L(G, B) for every B ∈ L, then u[f] ∈ L(G, A). Note that u[f] is a simultaneous second-order substitution
as defined at the end of Section 2.3. The fact that f is a substitution function for L means that rk(f (B)) = rk(B) for
every B ∈L, which implies that rk(t) = rk(A) for every t ∈ L(G, A); in particular, t is a nonempty forest of the same length
as A. The tree language L(G) generated by G is defined by L(G) = L(G, S) ⊆ T� . Two MCFTGs G1 and G2 are equivalent if
L(G1) = L(G2).12 A tree language is multiple context-free (multiple regular, (simple) context-free) if it is generated by an MCFTG
(MRTG, spCFTG). The corresponding class of generated tree languages is denoted by MCFT (MRT, CFTsp).

As observed above, each big nonterminal can be viewed as a nonempty subset of N , together with a fixed linear order on
its elements. It is easy to see that the tree language L(G) generated by G does not depend on that order. For a given big non-
terminal A = (A1, . . . , An) and a given permutation A′ = (Ai1 , . . . , Ain) of A, we can change every rule A → ((u1, . . . , un), L)

into the rule A′ → ((ui1 , . . . , uin), (L \ {A}) ∪ {A′}), provided that we also change L(ρ) into (L(ρ) \ {A}) ∪ {A′} for every
other rule ρ ∈ R .

The restriction that the right-hand side of a rule of G must be uniquely N-labeled can be compensated for by the
appropriate use of aliases. Two big nonterminals A, A′ ∈N are said to be aliases if

{(u,L) | A → (u,L) ∈ R} = {(u,L) | A′ → (u,L) ∈ R} .

12 When viewing G1 and G2 as specifications of the string languages yd(L(G1)) and yd(L(G2)), they are strongly equivalent if L(G1) = L(G2) and weakly
equivalent if yd(L(G1)) = yd(L(G2)).

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 39
Fig. 2. Rules of the MCFTG G of Example 7.

It is not difficult to see that L(G, A) = L(G, A′) for aliases A and A′ . Of course, in examples, we need not specify the
rules of an alias (but we often will). Additionally, to improve the readability of examples, we will write a rule A → (u, L)

as in(A) → u and specify L separately. Recall from Section 2.3 that if A = (A1, . . . , An) and rk(Ai) = ki for every i ∈ [n],
then in(A) = (A1(x1, . . . , xk1), . . . , An(x1, . . . , xkn)). If all the big nonterminals of G are mutually disjoint, in the sense that
they have no nonterminals in common (i.e., occ(B) ∩ occ(B ′) = ∅ for all distinct B, B ′ ∈N), then it is not even necessary to
specify L because it clearly is equal to {B ∈ N | occ(B) ⊆ occN (u)}.

Example 6. We first consider the MRTG G = (N, N , �, S, R) such that (i) N = {S, A, B, A′, B ′}, (ii) N = {S, (A, B), (A′, B ′)},
and (iii) � = {σ (2), π(2), π̄ (2), a(0)}. Thus, μ(G) = 2. And θ(G) = 0 because G is a multiple regular tree grammar. The big
nonterminal (A′, B ′) is an alias of (A, B). The set R contains the rules (illustrated in Fig. 1)

S → σ(A, B) (A, B) → (π(A, A′), π̄ (B, B ′)) (A′, B ′) → (π(A, A′), π̄ (B, B ′))

(A, B) → (a,a) (A′, B ′) → (a,a) .

Since the big nonterminals in N are mutually disjoint, the set L of links of each rule is uniquely determined. In fact,
L = {(A, B)} for the leftmost rule in the first line, L = {(A, B), (A′, B ′)} for the two remaining rules in the first line, and
L = ∅ for the two rules in the second line. The tree language L(G) generated by G consists of all trees σ(t, ̄t), where t is
a tree over {π, a} and t̄ is the same tree with every π replaced by π̄ . For readers familiar with the multiple context-free
grammars of [88] we note that this tree language can be generated by such a grammar with nonterminals S and C , where
C corresponds to our big nonterminal (A, B) and its alias, using the three rules

• S → f [C] with f (x11, x12) = σ x11x12,
• C → g[C, C] with g(x11, x12, x21, x22) = (πx11x21, π̄x12x22), and
• C → (a, a).

Note that the variables x11, x12, x21, and x22 of [88] correspond to our nonterminals A, B , A′, and B ′ , respectively. In fact,
every tree language in MRT can be generated by a multiple context-free grammar, just as every regular tree language can
be generated by a context-free grammar (see Section 2.2). We will prove in Section 7 (Theorem 68) that this even holds for
MCFT. �
Example 7. As a second example we consider the MCFTG G = (N, N , �, S, R) such that

• N = {S(0), A(0), B(1), B ′ (1), T (1)
1 , T (0)

2 , T (0)
3 } and N = {S, A, B, B ′, (T1, T2, T3)}, and

• � = {σ (2), α(1), β(1), γ (1), τ (0), ν(0)}.

Consequently, μ(G) = 3 and θ(G) = 1. The (big) nonterminal B ′ is an alias of B . The set R consists of the following
rules ρ1, . . . , ρ6 and the two rules ρ ′

3 and ρ ′
4 with left-hand side B ′ (illustrated in Fig. 2).

ρ1 : S → α(A) ρ2 : A → T1(σ (B(T2), T3))

ρ3 : B(x1) → σ(B(x1), B ′(A)) ρ ′
3 : B ′(x1) → σ(B(x1), B ′(A))

ρ4 : B(x1) → x1 ρ ′
4 : B ′(x1) → x1

ρ5 : (T1(x1), T2, T3) → (α(T1(β(x1))), α(T2), γ (T3)) ρ6 : (T1(x1), T2, T3) → (x1, τ , ν) .

Since, again, all big nonterminals in N are mutually disjoint, the sets of links of these rules are uniquely determined. They
are, in fact, as follows:

40 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
L(ρ1) = {A} L(ρ3) = L(ρ ′
3) = {B, B ′, A} L(ρ2) = {B, (T1, T2, T3)}

L(ρ4) = L(ρ ′
4) = L(ρ6) = ∅ L(ρ5) = {(T1, T2, T3)} .

Let T = (T1, T2, T3). The rule ρ6 shows that (x1, τ , ν) ∈ L(G, T). We can write the rule ρ5 also as T → (αT1βx1, αT2, γ T3).
Substituting (x1, τ , ν) for T in u5 = rhs(ρ5) we obtain that L(G, T) also contains the forest

u5[(T1, T2, T3) ← (x1, τ , ν)] = (αβx1, ατ , γ ν) .

Then, substituting this forest for T in u5 we obtain that L(G, T) also contains (ααββx1, αατ, γ γ ν). Continuing in this
way we see that L(G, T) = {(αnβnx1, αnτ , γ nν) | n ∈ N0}. If we temporarily view A as a terminal, then B(x1) generates
all trees t ∈ T{σ ,A,x1} such that the left-most leaf of t has label x1 and all other leaves have label A. The right-hand
side u2 = T1(σ (B(T2), T3)) of ρ2 generates all trees u2[B ← t, T ← t′] with t as above and t′ ∈ L(G, T); i.e., all trees
αnβnσ(t[x1 ← αnτ], γ nν). This should give an idea of the form of the trees in L(G, A), and hence of the trees in L(G). �
3.2. Derivation trees

The least fixed point semantics of an MCFTG G = (N, N , �, S, R) naturally leads to the notion of a derivation tree of G .
Intuitively, it is a tree d of which each node p is labeled with some rule ρ of G , such that each child of p corresponds
to a link of ρ and is labeled with a rule of which the left-hand side is that link. Thus, it makes sense to view the set R
as a ranked alphabet, such that the rank of ρ is its number of links. Also, in order to fix the correspondence between the
children and the links, it is convenient to order the links of ρ in some fixed way. That turns d into a tree in T R . We will,
however, also allow a leaf of d to be labeled with an element of N (viewing it as a symbol of rank 0 in this context),
representing a big nonterminal to which no rule has yet been applied.

Formally, we assume that for every rule ρ of G , the links in L(ρ) are linearly ordered by an arbitrary, fixed order �.
Whenever we write L(ρ) = {B1, . . . , Bk} with Bi ∈ N for all i ∈ [k], we will assume that B1 � · · · � Bk . The derivation tree
grammar of G is the RTG Gder = (Nder, R, S, Rder) defined as follows.13 First, Nder = N ; i.e., its nonterminals (of rank 0)
are the big nonterminals of G . Its initial nonterminal is S , which is the initial (big) nonterminal of G . Second, its terminal
ranked alphabet is the set R of rules of G such that the rule ρ has rank rk(ρ) = |L(ρ)|.14 Finally, the set Rder consists
of all rules A → ρ(B1, . . . , Bk) such that ρ ∈ R , lhs(ρ) = A, and L(ρ) = {B1, . . . , Bk}. For A ∈ N , a derivation tree of G of
type A is a tree d ∈ TN∪R such that A ⇒∗

Gder
d. Obviously, every derivation tree has a unique type, viz. lhs(d(ε)); i.e., the

left-hand side of the rule that labels its root. We will denote the set of derivation trees of G of type A by DL(Gder, A). Note
that L(Gder, A) = DL(Gder, A) ∩ T R . To capture the semantics of G , only the derivation trees in L(Gder) ⊆ T R are relevant,
but we will need the other derivation trees for technical reasons in proofs. As in the case of context-free grammars, it can
be checked locally whether a tree d ∈ TN∪R is a derivation tree. In fact, let us say that the type of a position p ∈ pos(d)

is either d(p) if d(p) ∈ N , or lhs(d(p)) if d(p) ∈ R . Then d is a derivation tree if and only if for every position p ∈ posR(d)

with L(d(p)) = {B1, . . . , Bk}, the child pi of p has type Bi for every i ∈ [k].
The value of a derivation tree d of type A, denoted by val(d), is a forest in P N∪�(X)+ of the same rank as A in G , and

is defined inductively as follows. If d = A ∈ N , then val(d) = in(A). If d = ρ(d1, . . . , dk) for some ρ = A → (u, L) ∈ R with
L = {B1, . . . , Bk} (and thus di is of type Bi for every i ∈ [k]), then val(d) = u[Bi ← val(di) | 1 ≤ i ≤ k]. The value val(d) of the
derivation tree d can clearly be computed in linear time. We also observe here that its computation can be realized by a
macro tree transducer [13,34] (see Lemma 74 in Section 8). Since that macro tree transducer is finite-copying, ‘val’ can also
be realized by a deterministic MSO-transducer (see [26]).

Example 8. The derivation tree grammar Gder of the grammar G of Example 7 has the following eight rules, where we let
T = (T1, T2, T3) and the linear order of the links of each rule of G is fixed as indicated in Example 7:

S → ρ1(A) A → ρ2(B, T)

B → ρ3(B, B ′, A) B ′ → ρ ′
3(B, B ′, A)

B → ρ4 B ′ → ρ ′
4

T → ρ5(T) T → ρ6 .

Rules of Example 7:

ρ1 : S → α(A) ρ2 : A → T1(σ (B(T2), T3))

ρ3 : B(x1) → σ(B(x1), B ′(A)) ρ ′
3 : B ′(x1) → σ(B(x1), B ′(A))

ρ4 : B(x1) → x1 ρ ′
4 : B ′(x1) → x1

ρ5 : (T1(x1), T2, T3) → (α(T1(β(x1))), α(T2), γ (T3)) ρ6 : (T1(x1), T2, T3) → (x1, τ , ν) .

An example of a derivation tree of type A is d = ρ2(ρ3(ρ4, B ′, A), ρ5(ρ6)), which is shown in Fig. 3. Obviously, val(ρ4) = x1

and we have val(ρ6) = (x1, τ , ν). Then val(ρ5(ρ6)) is obtained by substituting (x1, τ , ν) for T = (T1, T2, T3) in the right-
hand side of rule ρ5. We saw in Example 7 that the result is (αβx1, ατ, γ ν). Similarly, val(ρ3(ρ4, B ′, A)) is obtained

13 See Section 2.2 for the definition of a regular tree grammar (RTG). Note that, in this paper, RTGs are in normal form.
14 Note that, therefore, the rule-width of G (as defined after Definition 5) is λ(G) = mrkR , the maximal rank of its rules.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 41
Fig. 3. Derivation tree of the MCFTG G of Example 7 and illustration of the (bottom-up) computation of its value.

from rhs(ρ3) by substituting val(ρ4) = x1 for B (and simultaneously substituting in(B ′) for B ′ and in(A) for A, with-
out effect). The result is σ(x1, B ′(A)). Finally, val(d) is obtained from rhs(ρ2) by substituting σ(x1, B ′(A)) for B and
(αβx1, ατ, γ ν) for T . Hence val(d) = αβ(σ (σ (ατ , B ′(A)), γ ν)). The process is illustrated in Fig. 3. An example of a deriva-
tion tree in L(Gder, S) is

d′ = ρ1(d[(B ′, A) ← (ρ ′
4, ρ2(ρ4,ρ6))]) = ρ1(ρ2(ρ3(ρ4,ρ

′
4,ρ2(ρ4,ρ6)),ρ5(ρ6))) .

Clearly val(ρ ′
4) = x1 and val(ρ2(ρ4, ρ6)) = σ(τ , ν). It is straightforward to compute

val(d′) = ααβ(σ (σ (ατ ,σ (τ , ν)), γ ν)) = α(val(d)[(B ′, A) ← (x1, σ (τ , ν))]) ,

which shows that ‘val’ distributes over substitution. �
From the least fixed point semantics we immediately obtain a characterization by derivation trees.

Theorem 9. L(G, A) = val(L(Gder, A)) for every A ∈N . In particular, L(G) = val(L(Gder)).

Proof. Obviously, the sets val(L(Gder, A)) satisfy the fixed point requirement for all A ∈ N , which says that for every
rule ρ = A → (u, L) ∈ R and substitution function f for L such that f (B) is in val(L(Gder, B)) for every B ∈ L, we have
that u[f] ∈ val(L(Gder, A)). In fact, if L = {B1, . . . , Bk} and f (Bi) = val(di) for all i ∈ [k], then u[B ← f (B) | B ∈ L] is equal
to val(ρ(d1, . . . , dk)) by definition of ‘val’. This shows that L(G, A) ⊆ val(L(Gder, A)) for every A ∈N . In the other direction,
it is easy to show that val(d) ∈ L(G, A) for every d ∈ L(Gder, A) and every A ∈ N by induction on the structure of the
derivation tree d. �

This theorem implies that the emptiness problem is decidable for L(G) and L(G, A). In fact, L(G) = ∅ if and only
if L(Gder) = ∅, which is decidable because Gder is an RTG; and similarly for L(G, A). It is now also very easy to see
that L(G, A) = L(G, A′) for aliases A and A′: if ρ = A → (u, L) and ρ ′ = A′ → (u, L) are rules and d = ρ(d1, . . . , dk) is
in L(Gder, A), then d′ = ρ ′(d1, . . . , dk) is in L(Gder, A′) and val(d) = val(d′), under the assumption that L has the same linear
order in ρ and ρ ′ .

We will need three simple properties of derivation trees, which are stated in the next three lemmas. The first is a
generalization of Lemma 1(2) and states that for every derivation tree of G , the number of occurrences of a terminal
in val(d) is the sum of its occurrences in the right-hand sides of the rules that occur in d. Also, the number of occurrences
of a nonterminal in val(d) is equal to the number of its “occurrences” (as part of a big nonterminal) in d.

Lemma 10. Let d ∈ DL(Gder, A) with A ∈N , and let σ ∈ � and C ∈ N.

(1) |posσ (val(d))| = ∑
p∈posR (d)|posσ (rhs(d(p)))|.

(2) |posC (val(d))| = ∑
B∈NC

|posB(d)|, where NC = {B ∈N | C ∈ occ(B)}.
(3) val(d) ∈ T� if and only if d ∈ T R .

Proof. The proofs of (1) and (2) can be achieved by induction on the structure of d. They are obvious for d = A ∈ N be-
cause we obtain 0 = 0 in (1), 1 = 1 in (2) if C ∈ occ(A), and 0 = 0 in (2) otherwise. Let us now consider d = ρ(d1, . . . , dk)

for some rule ρ = A → (u, L) with L = {B1, . . . , Bk}. By the definition of ‘val’ we have val(d) = u[Bi ← val(di) | 1 ≤ i ≤ k],

42 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
which equals the second-order substitution u[B1 · · · Bk ← val(d1) · · ·val(dk)] by the definition of simultaneous second-order
substitution. Let h be the tree homomorphism over N ∪ � corresponding to [B1 · · · Bk ← val(d1) · · ·val(dk)]. It is now
straightforward to prove (1) and (2) using Lemma 1(2) and the induction hypotheses for d1, . . . , dk . It follows from (2)
that

occN(val(d)) =
⋃

B∈occN (d)

occ(B) ,

which proves (3). �

The second property is that ‘val’ distributes over second-order substitution, of which an example was presented at the
end of Example 8. It can be viewed as a generalization of Lemma 4(4). For convenience, and because it is all we will need,
we only prove this for the case where just one big nonterminal is replaced.

Lemma 11. Let A, B ∈ N , and let d ∈ DL(Gder, A) and d′ ∈ DL(Gder, B) be derivation trees of type A and B such that B ∈ occN (d).
Then val(d[B ← d′]) = val(d)[B ← val(d′)].

Proof. As in Lemma 10, we proceed by induction on the structure of d. For d = A ∈ N both sides of the equation are
equal to val(d′) if B = A and equal to in(A) otherwise. Now we consider d = ρ(d1, . . . , dk) for some ρ = A → (u, L) with
L = {B1, . . . , Bk}. Then

val(d)[B ← val(d′)]
= u[B1 · · · Bk ← val(d1) · · · val(dk)] [B ← val(d′)]
= u

[
B1 · · · Bk ← (val(d1) · · · val(dk))[B ← val(d′)]]

= u
[

B1 · · · Bk ← val(d1)[B ← val(d′)] · · · val(dk)[B ← val(d′)]]
= u

[
B1 · · · Bk ← val(d1[B ← d′]) · · · val(dk[B ← d′])]

= val(ρ(d1[B ← d′], . . . ,dk[B ← d′]))
= val(d[B ← d′]) ,

where the second equality is by Lemma 4(4) and the fourth by the induction hypotheses. �

We will use the following simple third property in the proofs of Lemmas 29 and 33.

Lemma 12. Let F ⊆ R, N ′ ⊆N , and DB = DL(Gder, B) ∩ TN ′∪F for every big nonterminal B ∈N . Moreover, let A ∈N , t ∈ val(DA),
and L〈A,t〉 = {d ∈DA | val(d) = t}. If val(DB) is finite for every B ∈N , then L〈A,t〉 is a regular tree language.

Proof. An RTG for L〈A,t〉 has the nonterminals 〈B, v〉 with B ∈N and v ∈ val(DB), of which the nonterminal 〈A, t〉 is initial.
For every rule ρ = B → (u, L) of G with ρ ∈ F and L = {B1, . . . , Bk}, it has all the rules 〈B, v〉 → ρ(〈B1, v1〉, . . . , 〈Bk, vk〉)
such that vi ∈ val(DBi) for every i ∈ [k], and v = u[Bi ← vi | 1 ≤ i ≤ k]. Moreover, for every B ∈ N ′ it has the
rule 〈B, in(B)〉 → B . This grammar can be viewed as a deterministic bottom-up finite tree automaton that, for every deriva-
tion tree d ∈ TN ′∪F , computes the type of d and its value val(d). �

Let us turn to the comparison of the derivation trees of two MCFTGs G and G ′ . We can define G and G ′ to be
“X -equivalent”, where X is a class of tree transductions closed under composition, if there are value-preserving tree trans-
ductions in X from the derivation trees of each grammar to those of the other grammar. The idea here is that G and G ′ are
grammatically closely related if X is a relatively simple class of tree transductions. Thus, if G and G ′ are X -equivalent, then
they are not only (strongly) equivalent, i.e., generate the same (syntactic, object level) trees, but in addition their derivation
trees (or parse trees, meta level trees) can easily be transformed into each other. Thus, by varying the class X , we obtain
new notions of equivalence that are stronger than strong equivalence, and hence allow a more fine grained analysis of gram-
mar transformations. For our purposes we choose the quite simple class X = LDTR of tree transductions that are realized
by linear deterministic top-down tree transducers with regular look-ahead. Our motivation for choosing this class is two-
fold. First, it will mean that our lexicalization algorithm involves a grammar transformation that is essentially simpler than
the transformation of context-free grammars into Greibach Normal Form.15 Second, when G and G ′ are LDTR-equivalent
a parsing algorithm for G can easily be transformed into a parsing algorithm for G ′ , due to the similarity of their parse

15 For instance, in [60] a variant of the Greibach Normal Form transformation is used to lexicalize 2ACGs.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 43
trees; in fact, this new notion of X -equivalence is a straightforward generalization of the notion of cover that is used in
parsing theory of context-free grammars [46,74]. We come back to these two issues after defining LDTR-transducers and
LDTR-equivalence formally.

To define tree transducers we use the infinite alphabet Y = {y1, y2, . . . } of input variables to avoid confusion with the
set X of variables used in MCFTGs (the set X will also be used as output variables, or parameters, for macro tree transducers
in Section 8). For every k ∈N0, we let Yk = {yi | i ∈ [k]}.

A linear deterministic top-down tree transducer with regular look-ahead (in short, LDTR-transducer) from 	 to � is a system
M = (Q , 	, �, q0, R), where Q is a finite set of states, 	 and � are finite ranked alphabets of input and output symbols with
Q ∩ � = ∅, q0 ∈ Q is the initial state, and R is a finite set of rules. Each rule in R is of the form

〈q, ω(y1 : L1, . . . , yk : Lk) : L0〉 → ζ ,

where q ∈ Q , k ∈ N0, ω ∈ 	(k) , L0, L1, . . . , Lk are regular tree languages over 	 (specified, e.g., by RTGs), and ζ ∈ T(Q ×Yk)∪�

using the ranked alphabet Q × Yk , in which every element has rank 0. Additionally, we require that each y ∈ Yk occurs
at most once in ζ (linearity property), and that if 〈q, ω(y1 : L′

1, . . . , yk : L′
k) : L′

0〉 → ζ ′ is another rule in R (for the same
q and ω), then there exists an index 0 ≤ i ≤ k such that Li ∩ L′

i = ∅ (determinism property). If Li = T	 in the above rule, then
we omit ‘ : Li ’. An LDTR-transducer is called an LDT-transducer (without regular look-ahead) if Li = T	 for every 0 ≤ i ≤ k
in every rule.

For every input tree s ∈ T	 and every state q ∈ Q , we define the q-translation of s by M , denoted by Mq(s), inductively
as follows. If s = ω(s1, . . . , sk), the above rule is in R , s ∈ L0, and si ∈ Li for every i ∈ [k], then

Mq(s) = ζ [〈q′, yi〉 ← Mq′(si) | q′ ∈ Q , 1 ≤ i ≤ k] .

We observe that Mq(s) is undefined if there does not exist an appropriate rule or, using the rule above, Mq′(si) is un-
defined for some 〈q′, yi〉 that occurs in ζ . Moreover, the tree transduction realized by M , also denoted by M , is the partial
function M : T	 → T� , which is given by M(s) = Mq0(s) for every s ∈ T	 . The tree M(s), provided it is defined, is also called
the translation of s by M .

For the sake of intuition, we also provide a rewriting semantics for M . An output form of M is a tree in T(Q ×T)∪� , where
Q × T	 is viewed as a ranked set in which every element has rank 0. For output forms t1 and t2 we define the computation
step t1 ⇒M t2 if there exist q ∈ Q and s = ω(s1, . . . , sk) ∈ T	 such that 〈q, s〉 occurs in t1, the above rule is in R , s ∈ L0,
si ∈ Li for every i ∈ [k], and t2 = t1[〈q, s〉 ← ζ ′] where ζ ′ = ζ [〈q′, yi〉 ← 〈q′, si〉 | q′ ∈ Q , 1 ≤ i ≤ k]. It is straightforward to
show that M(s) = t if and only if 〈q0, s〉 ⇒∗

M t , for every s ∈ T	 and t ∈ T� .
Since L0 ∩ {ω(s1, . . . , sk) | ∀i ∈ [k] : si ∈ Li} is a regular tree language, we may as well assume that every rule of M is

of the form 〈q, ω(y1, . . . , yk) : L〉 → ζ for a regular tree language L over 	. Moreover, since the regular tree languages are
recognized by deterministic bottom-up finite tree automata (see Section 2.2), it is straightforward to prove that for every
LDTR-transducer M there is a deterministic bottom-up finite tree automaton A = (P , F , 	, δ) such that in every rule of M as
above, L = Lp(A) for some p ∈ P (the set F of final states being irrelevant). The present rule format is, however, convenient
in concrete constructions of LDTR-transducers.

We denote by LDTR the class of all tree transductions realized by LDTR-transducers. Note that every tree homomor-
phism ĥ from 	 to � can be realized by an LDT-transducer with one state q and with the rules

〈q, ω(y1, . . . , yk)〉 → h(ω)[xi ← 〈q, yi〉 | 1 ≤ i ≤ k]
for every k ∈N0 and ω ∈ 	(k) . We need the following two basic properties of LDTR.

Proposition 13. LDTR is closed under composition.

Proof. This is stated after [17, Theorem 2.11]. Part (2) of its proof shows the statement because the constructions in the
proofs of [17, Lemmas 2.9 and 2.10] preserve linearity. �

An LDTR-transducer M is a finite-state relabeling if, in each of its rules as above, ζ is of the form σ(〈q1, y1〉, . . . , 〈qk, yk〉)
for some σ ∈ �(k) and q1, . . . , qk ∈ Q . Such a transducer just changes the labels of the nodes of the input tree. Note that
every projection is a finite-state relabeling.

Proposition 14. For every LDTR-transducer M = (Q , 	, �, q0, R) there is a polynomial time algorithm that, for every RTG H over �

as input, outputs an RTG H ′ over 	 that satisfies L(H ′) = M−1(L(H)). If M is a finite-state relabeling, then there is a linear time
algorithm for the same task.

Proof. It is well known that the class RT is closed under inverse LDTR-transductions [17, Lemma 1.2 and Theorem 2.6]. We
now show that the transformation can be realized in polynomial time, for fixed M . By [17, Theorem 2.8] and (the proof
of) [15, Theorem 3.5], the transduction M can be written as the “bimorphism” {(π̂ (t), ̂h(t)) | t ∈ K }, where K is a regular tree

44 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Fig. 4. Translating left-recursive into right-recursive trees.

language over a finite alphabet �, π is a projection from � to 	, and h is a tree homomorphism from � to �. Therefore
M−1(L(H)) = π̂ (ĥ−1(L(H)) ∩ K). Hence, since the intersection with K and the projection π̂ can be realized in linear time
because K and π are fixed, we may assume in the remainder of this proof that M is a tree homomorphism h from 	 to �.

Now let H = (N, �, S, R H). As mentioned at the end of Section 2.2, we assume that H is in normal form; i.e., that
the rules in R H are of the form A0 → σ(A1, . . . , Am) with m ∈ N0, σ ∈ �(m) , and A1, . . . , Am ∈ N . We construct the RTG
H ′ = (N, 	, S, R ′) such that for every k ∈ N0, ω ∈ 	(k) , and A0, A1, . . . , Ak ∈ N , if A0 ⇒∗

H h(ω)[xi ← Ai | 1 ≤ i ≤ k], then the
rule A0 → ω(A1, . . . , Ak) is in R ′ . It is straightforward to show that L(H ′, A) = ĥ−1(L(H, A)) for every A ∈ N . It should be
clear that the construction of H ′ takes polynomial time (in the size of H). In fact, it takes time O (nk) where n is the size
of H and k = mrk	 + 1 (and recall that mrk	 is the maximal rank of the symbols in). If M is a finite-state relabeling,
then it can be checked that h is also a projection. Hence the set R ′ can be constructed such that if h(ω) = in(σ) and
A0 → σ(A1, . . . , Ak) is in R H , then A0 → ω(A1, . . . , Ak) is in R ′ . That construction only takes linear time. �

We now define X -equivalence of MCFTGs G and G ′ for X = LDTR. However, for future use, we give a more general
definition that involves a tree transformation ϕ and implies that L(G ′) = ϕ(L(G)).

Definition 15. Let G = (N, N , �, S, R) and G ′ = (N ′, N ′, �′, S ′, R ′) be MCFTGs, and let ϕ be a mapping from T� to T�′ .
The grammar G ′ is LDTR-ϕ-equivalent to the grammar G if there exist tree transductions M : T R → T R ′ and M ′ : T R ′ → T R

in LDTR such that

(1) M(d) ∈ L(G ′
der) and val(M(d)) = ϕ(val(d)) for every d ∈ L(Gder), and vice versa,

(2) M ′(d′) ∈ L(Gder) and ϕ(val(M ′(d′))) = val(d′) for every d′ ∈ L(G ′
der).

In particular, M(d) must be defined for every d ∈ L(Gder), and similarly for M ′(d′).
The grammars G and G ′ are LDTR-equivalent if � = �′ and ϕ is the identity on T� . �
It directly follows from item (1) and Theorem 9 that ϕ(L(G)) ⊆ L(G ′), and L(G ′) ⊆ ϕ(L(G)) follows from item (2). Hence

L(G ′) = ϕ(L(G)). In particular, LDTR-equivalent MCFTGs are equivalent. Since LDTR is closed under composition by Propo-
sition 13, LDTR-equivalence of MCFTGs is an equivalence relation. That is, of course, not true for LDTR-ϕ-equivalence in
general.

It should be noted that the notion of LDTR-ϕ-equivalence is independent of the linear order of the links in the rules
of G and G ′ . In fact, if ρ = A → (u, L) is a rule of G with L = {B1, . . . , Bk} and we change that order into {Bi1 , . . . , Bik },
where (i1, . . . , ik) is a permutation of (1, . . . , k), then a tree homomorphism h over R can transform the old derivation trees
into the new ones via h(ρ) = ρ(xi1 , . . . , xik). That proves the observation because tree homomorphisms are in LDTR and
LDTR is closed under composition. Thus, whenever we construct a new grammar G or G ′ , we can choose those orders in a
convenient way.

As observed above, LDTR-equivalent grammars G and G ′ are grammatically closely related by means of the LDTR-trans-
ducers M and M ′ . Consequently, their parsing problems are closely related as well because the transducer M ′ transforms
a derivation tree of G ′ with value t ∈ T� in linear time into one of G with the same value t . Moreover, if H ′ is an RTG
that generates all derivation trees of G ′ with value t , then an RTG H can be constructed in polynomial time that generates
all derivation trees of G with value t . This follows from Proposition 14 because L(H) = M−1(L(H ′)) ∩ L(Gder). The parsing
problem for MCFTGs will be discussed in more detail in Section 7.2.

An important example of a tree transduction that cannot be realized by an LDTR-transducer is the transforma-
tion of a left-recursive tree into a right-recursive tree with the same yield. More precisely, for the ranked alphabet
� = {σ (2), a(0), b(0)}, the tree transformation

τ = {(σm+nambn+1, (σa)m(σb)nb) | m ≥ 1,n ≥ 0} ,

which translates the left-recursive tree σm+nambn+1 into the right-recursive tree (σa)m(σb)nb (see Fig. 4), cannot be
realized by any LDTR-transducer; i.e., τ /∈ LDTR. Intuitively, since an LDTR-transducer reads its input tree top-down and
simultaneously produces its output top-down, it cannot realize τ for the same reason that a finite-state string transducer
cannot translate the string bn+1am into the string ambn+1, which can be proved by a classical pumping argument; if there

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 45
Fig. 5. A naive (leftmost) derivation of the grammar G of Example 7, corresponding to the derivation tree in Example 8 and in Fig. 3. All big nonterminals
of G are mutually disjoint and all the trees in this derivation are uniquely N-labeled.

would be such a string transducer, then the language {bn+1ambn+1am | m ≥ 1, n ≥ 0} would be linear context-free. Similarly,
and more generally, we can show that there is no yield-preserving LDTR-transducer that translates the derivation trees of
the left-recursive context-free grammar G� with rules S → Sb, S → ab, S → T b, T → T a, and T → aa into the derivation
trees of an equivalent context-free grammar in Greibach Normal Form. In other words, the transformation of a context-free
grammar into Greibach Normal Form involves a grammatical transformation of derivation trees that cannot be realized by
any LDTR-transducer. For the interested reader we prove this in the next lemma, which will not be used in the remainder
of the paper.

An LDTR-transducer M is yield-preserving if yd(M(s)) = yd(s) for every input tree s. We say that a tree t is a GNF tree if
the first child of each non-leaf of t is a leaf of t . Let G� be the above left-recursive context-free grammar.

Lemma 16. There is no yield-preserving LDTR-transducer that translates the derivation trees of G� into GNF trees.

Proof. The derivation trees of G� are of the form Sn+1T m−1ambn+1 with m ≥ 1 and n ≥ 0. Let h be the tree homomor-
phism from the ranked alphabet 	 = {α(1), β(1), e(0)} to the ranked alphabet {S(2), T (2), a(0), b(0)} such that h(β) = S(x1, b),
h(α) = T (x1,a), and h(e) = a. Obviously, ĥ translates the tree βn+1αm−1e into the above derivation tree of G� . Thus, since
every tree homomorphism is in LDTR, and LDTR is closed under composition by Proposition 13, it suffices to prove that there
is no LDTR-transducer M such that M(βn+1αm−1e) is a GNF tree with yield ambn+1 for all m ≥ 1 and n ≥ 0. Assume that
M = (Q , 	, �, q0, R) is such a transducer. As discussed before Proposition 13, we may assume that there is a deterministic
bottom-up finite tree automaton A = (P , F , 	, δ) such that every rule of M is of the form 〈q, ω(y1, . . . , yk) : L〉 → ζ where
L = Lp(A) = {t ∈ T	 | δ̂(t) = p} for some p ∈ P . Let μ be the maximal length of the right-hand sides of the rules of M . We
now consider an input tree s = βn+1αm−1e with n > |Q | · |P | and m > (n + 1) · μ.

We first observe that for all s0 ∈ β∗ and s1 ∈ T	 , if s = s0s1, then there is an output form of the form u〈q, s1〉v such
that q ∈ Q , u, v ∈ �∗ , and 〈q0, s〉 ⇒∗

M u〈q, s1〉v . In fact, since M is linear, every output form that is reachable from 〈q0, s〉
contains at most one element of Q × T	 . Moreover, after processing s0, the (unique) output form of M must contain at
least one such element, because it cannot yet have output all a’s of M(s), of which there are more than |s0| · μ.

By the usual pumping argument, the choice of n implies that there exist s0, s1 ∈ β∗ , s2 ∈ T	 , q ∈ Q , u, v, u′, v ′ ∈ �∗ ,
and w ∈ T� such that s = s0s1s2, |s1| > 0, and δ̂(s1s2) = δ̂(s2), and moreover 〈q0, s〉 ⇒∗

M u〈q, s1s2〉v , 〈q, s1s2〉 ⇒∗
M u′〈q, s2〉v ′ ,

and 〈q, s2〉 ⇒∗
M w . Thus, M(s) = uu′w v ′v and yd(uu′w v ′v) = ambn+1. Suppose that u′ contains a ‘b’. Then uu′ contains

all a’s, contradicting the fact that m > |s0s1| · μ. Now suppose that u′ contains an ‘a’. Then we can pump s1, keeping the
same number of α’s in the input, but increasing the number of a’s in the output. In fact, M(s0s1s1s2) = uu′u′w v ′v ′v
and occ{α}(s0s1s1s2) = m − 1, but occ{a}(uu′u′w v ′v ′v) > m, contradicting the assumption about M . Thus, u′ does not
contain symbols of rank 0. Suppose now that u′ = ε. Then also v ′ = ε, because both u′w v ′ and w are trees. Hence
M(s0s1s1s2) = M(s), and so occ{β}(s0s1s1s2) > n + 1, but occ{b}(M(s0s1s1s2)) = n + 1. This is again a contradiction, and
so u′ �= ε. Since u′w v ′ is a subtree of the GNF tree M(s), there are σ ∈ � of rank k > 0, c ∈ {a, b}, and t2, . . . , tk ∈ T�

such that u′ w v ′ = σ ct2 · · · tk . Hence u′ = σ . But then M(s0s1s1s2) = uu′u′w v ′v ′v is not a GNF tree because it contains two
consecutive σ ’s. This is the final contradiction. �

3.3. Derivations

In this subsection we present a rewriting semantics of MCFTGs, inspired by the level grammars of [89]. The definitions
and results of this subsection will not be utilized in the other sections, but we hope that they improve the intuition of the
reader concerning MCFTGs.

Let G = (N, N , �, S, R) be an MCFTG. In a naive approach we would define the derivation steps of G on trees t ∈ T N∪�

and the application of a rule A → (u, L) to t leading to a derivation step t ⇒ t[A ← u], provided that occ(A) ⊆ occN (t). Such
a naive derivation is shown in Fig. 5 for the grammar G of Example 7. Assuming that all big nonterminals of G are mutually
disjoint (as in Example 7), this naive derivation step works if A occurs exactly once in t (e.g., when t is uniquely N-labeled).

46 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Fig. 6. Derivation of the grammar G of Example 7; naive in the top part and as formalized in the bottom part.

However, it fails if A occurs several times in t because the rule is then applied to all occurrences simultaneously. Moreover,
if A = (A1, A2) with A1, A2 ∈ N , then it is unclear which occurrences of A1 and A2 are linked. If not all big nonterminals
of G are mutually disjoint, then it is not clear at all which nonterminals in t are linked (even when t is uniquely N-labeled).
Thus, we additionally have to keep track of how the nonterminal occurrences in t are linked together to form occurrences
of big nonterminals. To facilitate this, we change for each position p ∈ posN(t) of t the label t(p) into an appropriate
label 〈t(p), �〉, where � ∈ N∗ is a position, which is also called link identifier. Nonterminal occurrences with the same link
identifier � are linked, and we only derive uniquely (N × N∗)-labeled trees. We note that the positions p and � need not
coincide. In fact, � is a position of the derivation tree corresponding to the derivation.

We need additional notation for the formalization. As in the previous subsection, we assume that for every rule ρ of G
the set L(ρ) of links is linearly ordered. For a big nonterminal A = (A1, . . . , An) ∈N and a link identifier � ∈N∗ , we define

A ⊗ � = (〈A1, �〉, . . . , 〈An, �〉) ∈ (N ×N∗)+ .

Moreover, for � ∈N∗ and a rule ρ = A → (u, L) ∈ R with L = {B1, . . . , Bk}, we define

(u,L) ⊗ � = u[Bi ← in(Bi ⊗ �i) | 1 ≤ i ≤ k] .

Note that (u, L) ⊗ � is a forest obtained from u by appropriately relabeling its N-labeled positions.
Now let t1, t2 ∈ T(N×N∗)∪� be trees, ρ = A → (u, L) ∈ R be a rule, and � ∈ N∗ be a link identifier. We define the derivation

step t1 ⇒ρ,�

G t2 if occ(A ⊗ �) = occN×{�}(t1) and t2 = t1[A ⊗ � ← (u, L) ⊗ �]. Intuitively, A ⊗ � occurs in t1 (and no other
nonterminals with link identifier � occur in t1) and the occurrence of A ⊗ � is replaced by (u, L) ⊗ �. We write t1 ⇒G t2 if
there exist ρ and � such that t1 ⇒ρ,�

G t2.

Example 17. Let us consider the derivation tree d = ρ1(ρ2(ρ3(B, B ′, ρ2(B, T)), T)) of the grammar G of Examples 7 and 8,
where T = (T1, T2, T3). Starting with S and successively applying the rules ρ1, ρ2, ρ3, and ρ2 according to the naive ap-
proach yields the derivation presented in the top part of Fig. 6. It can be checked that the final tree in this derivation
is val(d). However, now we are in trouble because B , T1, T2, and T3 occur twice. With the help of the derivation steps as
defined above and the shorthand C� for 〈C, �〉 with C ∈ N and � ∈ N∗ we obtain the derivation presented in the bottom
part of Fig. 6. In its final tree the occurrences B111 and B1131 of B can be rewritten independently, and the occurrences

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 47
of T are distinguished as T ⊗ 12 = (T 12
1 , T 12

2 , T 12
3) and T ⊗ 1132 = (T 1132

1 , T 1132
2 , T 1132

3) and can be rewritten indepen-
dently by ρ5 or ρ6. Note that 111 = (1, 1, 1) and 1131 = (1, 1, 3, 1) are the positions of d with label B , 12 = (1, 2) and
1132 = (1,1,3,2) are the positions of d with label T , and 112 = (1, 1, 2) is the unique position of d with label B ′ . �

We wish to prove that L(G) = {t ∈ T� | S ⊗ε ⇒∗
G t}; note that S ⊗ε = 〈S, ε〉. To that end, we define an infinite MCFTG G∞

using the properly annotated nonterminals and show that it is equivalent to G . An infinite MCFTG is defined as in Defini-
tion 5 except that N , N , and R are allowed to be infinite (and similarly, in an infinite RTG N and R are allowed to be
infinite). It is easy to check that all the definitions and results for MCFTGs discussed until now are also valid for infinite
MCFTGs and infinite RTGs. In particular, the derivation tree grammar G∞

der of G∞ is infinite.
The infinite MCFTG is given by G∞ = (N∞, N∞, �, S∞, R∞) with nonterminals N∞ = N ×N∗ , big nonterminals

N∞ = N ⊗N∗ = {A ⊗ � | A ∈ N , � ∈N∗} ,

initial nonterminal S∞ = S ⊗ ε, and rules R∞ determined as follows. If � ∈ N∗ and ρ = A → (u, L) ∈ R with links
L= {B1, . . . , Bk}, then R∞ contains the rule ρ ⊗ � = A ⊗ � → ((u, L) ⊗ �, L ⊗ �), where L ⊗ � = {B1 ⊗ �1, . . . , Bk ⊗ �k}.
Note that ρ can be reconstructed from ρ ⊗ �.

Lemma 18. L(G∞) = L(G).

Proof. If d is a derivation tree of G∞ , then we denote by rem(d) the derivation tree of G that is obtained by removing all
link identifiers � from the labels of its nodes; i.e., a label ρ ⊗ � ∈ R∞ is changed into ρ , and A ⊗ � ∈N∞ is changed into A.
It is straightforward to show by induction on the structure of d that d ∈ L(G∞

der, A ⊗ �) implies both rem(d) ∈ L(Gder, A) and
val(rem(d)) = val(d). Indeed, if d = (ρ ⊗ �)(d1, . . . , dk), then rem(d) = ρ(rem(d1), . . . , rem(dk)) and

val(d) = ((u,L) ⊗ �)[Bi ⊗ �i ← val(di) | 1 ≤ i ≤ k]
= u[Bi ← in(Bi ⊗ �i) | 1 ≤ i ≤ k] [Bi ⊗ �i ← val(di) | 1 ≤ i ≤ k]
= u

[
Bi ← in(Bi ⊗ �i)[Bi ⊗ �i ← val(di) | 1 ≤ i ≤ k] | 1 ≤ i ≤ k

]
= u[Bi ← val(di) | 1 ≤ i ≤ k]
= u[Bi ← val(rem(di)) | 1 ≤ i ≤ k]
= val(rem(d)) ,

where the third equality is by Lemma 4(4) and the fifth by the induction hypotheses. Taking A ⊗ � = S ⊗ ε, we thus obtain
that L(G∞) ⊆ L(G) by Theorem 9. In the other direction, we consider a derivation tree d ∈ L(Gder, S), and let d′ be the
tree such that pos(d′) = pos(d) and d′(p) = d(p) ⊗ p for every p ∈ pos(d); i.e., we change the label d(p) of each position p
into d(p) ⊗ p. Obviously, d′ ∈ L(G∞

der, S ⊗ ε) and rem(d′) = d. Hence, by the above, d′ has the same value as d, which shows
that L(G) ⊆ L(G∞). �

Lemma 19. Let d ∈ DL(G∞
der, S ⊗ ε) and A ⊗ � ∈N∞ . Then A ⊗ � ∈ occN∞ (d) if and only if occ(A ⊗ �) = occN×{�}(val(d)).

Proof. We first observe that for every position p ∈ pos(d) there exists α ∈ N ∪ R such that d(p) = α ⊗ p, cf. the proof of
Lemma 18. Thus, if A ⊗ � occurs in d then it occurs exactly once in d and no B ⊗ � occurs in d with B �= A.

Let A ⊗ � ∈ occN∞ (d). Then occ(A ⊗ �) ⊆ occN×{�}(val(d)) by Lemma 10(2). Moreover, if 〈C, �〉 ∈ occN×{�}(val(d)) then
there exists B ∈ N such that C ∈ occ(B) and B ⊗ � ∈ occN∞ (d). From the above observation we obtain that B = A and so
〈C, �〉 ∈ occ(A ⊗ �).

Now let occ(A ⊗ �) = occN×{�}(val(d)). From the inclusion occ(A ⊗ �) ⊆ occN×{�}(val(d)) we obtain, by Lemma 10(2) and
the above observation, that there exists B ∈ N such that B ⊗ � ∈ occN∞ (d) and occ(A ⊗ �) ⊆ occ(B ⊗ �). Hence we have
occ(A ⊗ �) = occ(B ⊗ �) by the previous paragraph, and so A = B by the second item of Definition 5. �

Theorem 20. L(G) = {t ∈ T� | S ⊗ ε ⇒∗
G t}.

Proof. By Lemma 18, Theorem 9 and Lemma 10(3), it suffices to prove the following claim:

For every t ∈ T(N×N∗)∪� we have S ⊗ ε ⇒∗
G t if and only if there exists d ∈ DL(G∞

der, S ⊗ ε) such that val(d) = t .

(If) The proof is by induction on the length n of a derivation S ⊗ ε ⇒n
G∞

der
d required to show d ∈ DL(G∞

der, S ⊗ ε). The claim

is obvious for n = 0; i.e., for d = S ⊗ ε. Otherwise, we consider the last step of the derivation S ⊗ ε ⇒n−1
G∞

der
d′ ⇒G∞

der
d, and

let A ⊗ � → (ρ ⊗ �)(B1 ⊗ �1, . . . , Bk ⊗ �k) be the rule of G∞ that was applied in the last step, where ρ = A → (u, L) with
der

48 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
L = {B1, . . . , Bk} is the corresponding rule of G . Clearly, since A ⊗ � occurs exactly once in d′ (as observed in the proof of
Lemma 19),

d = d′[A ⊗ � ← (ρ ⊗ �)(B1 ⊗ �1, . . . , Bk ⊗ �k)] .

Since val((ρ ⊗ �)(B1 ⊗ �1, . . . , Bk ⊗ �k)) = (u, L) ⊗ �, we obtain val(d) = val(d′)[A ⊗ � ← (u, L) ⊗ �] from Lemma 11. Hence
S ⊗ ε ⇒∗

G val(d′) ⇒ρ,�

G val(d) by the induction hypothesis, Lemma 19 and the definition of ⇒ρ,�

G .
(Only if) The proof is by induction on the length n of a derivation S ⊗ ε ⇒n

G t . It is again obvious for n = 0. Otherwise,
we consider the last step of the derivation S ⊗ ε ⇒n−1

G t′ ⇒G t . By the induction hypothesis there exists d′ ∈ DL(G∞
der, S ⊗ ε)

such that val(d′) = t′ . Moreover, by the definition of ⇒G , there exist a rule ρ = A → (u, L) ∈ R and a link identifier � such
that occ(A ⊗ �) = occN×{�}(t′) and t = t′[A ⊗ � ← (u, L) ⊗ �]. Then A ⊗ � occurs in d′ by Lemma 19. Defining d as displayed
above, we obtain from Lemma 11 that val(d) = val(d′)[A ⊗ � ← (u, L) ⊗ �]; i.e., val(d) = t . �

In exactly the same way it can be proved that L(G, A) = {t ∈ P�(X)+ | in(A ⊗ ε) ⇒∗
G t} for every A ∈ N , after extending

the notion of derivation step to forests in P (N×N∗)∪�(X)+ . We finally mention that it is straightforward to prove that for
every t ∈ T(N×N∗)∪� , if S ⊗ε ⇒∗

G t , then (1) t is uniquely (N ×N∗)-labeled and (2) there is a unique finite subset L of N ⊗N∗
such that the set {occ(B) | B ∈L} is equal to the set {occN×{�}(t) �= ∅ | � ∈N∗}. Thus, L is the set of big nonterminals (of G∞)
that can be rewritten in t . For instance, for the last tree of Fig. 6 we have L = {B ⊗111, B ⊗1131, B ′ ⊗112, T ⊗12, T ⊗1132}.

4. Normal forms

In this section, we establish a number of normal forms for MCFTGs. We start in Section 4.1 with some basic normal
forms. In Section 4.2 we define the notions of finite ambiguity and lexicalization, and then we prove a Growing Normal
Form that is already part of our lexicalization procedure. Along the way we show the decidability of finite ambiguity. Finally
we establish one additional basic normal form. From now on, let G = (N, N , �, S, R) be the considered MCFTG.

4.1. Basic normal forms

The MCFTG G is start-separated if posS(u) = ∅ for every rule A → (u, L) ∈ R . In other words, the initial nonterminal S is
not allowed in the right-hand sides of the rules. It is clear that G can be transformed into an LDTR-equivalent start-separated
MCFTG G ′ . We simply take a new initial nonterminal S ′ , all original rules, and for every rule ρ = S → (u, L) ∈ R we add
the rule ρ ′ = S ′ → (u, L). Then we obviously have that

L(G ′
der, S ′) = {ρ ′(d1, . . . ,dk) | ρ(d1, . . . ,dk) ∈ L(Gder, S)} ,

and there exist LDT-transducers that change ρ(d1, . . . , dk) into ρ ′(d1, . . . , dk) and vice versa. The MCFTGs of Examples 6
and 7 are start-separated.

Convention. From now on, we assume, without loss of generality (by Proposition 13), and without mentioning it, that every
MCFTG is start-separated. Each rule of the form S → (u, L) is called an initial rule. We call a rule A → (u, L) terminal
if u ∈ P�(X)+; i.e., u does not contain nonterminal symbols or equivalently L = ∅. Such a rule will also be written A → u.
Note that a rule may be both initial and terminal. A rule is called proper if it is not both initial and terminal.

The MCFTG G is reduced if every big nonterminal A ∈ N \ {S} is reachable and useful. A big nonterminal A ∈ N is
reachable if S ↪→∗

G A, where for all B, B ′ ∈ N we define B ↪→G B ′ if there is a rule B → (u, L) ∈ R such that B ′ ∈ L.
Moreover, A is useful if L(G, A) �= ∅. Clearly, G is reduced if and only if the RTG Gder is reduced (in the usual, analogous
sense); this is obvious for reachability and follows from Theorem 9 for usefulness. As in the case of context-free grammars,
we may and will always assume that a given MCFTG G is reduced, which can be achieved by removing all nonreachable
and useless big nonterminals together with the rules in which they occur. Since this is the same procedure for Gder, we
have that L(G ′

der) = L(Gder) for the resulting grammar G ′ , and hence, trivially, G ′ is LDTR-equivalent to G . The MCFTGs of
Examples 6 and 7 are reduced.

Let G ′ = (N ′, N ′, �, S ′, R ′) be another MCFTG. We say that G ′ is a renaming of G if there exists a rank-preserving
bijection β : N →N ′ such that S ′ = β(S) and R ′ = {ρβ | ρ ∈ R}, where for every rule ρ = A → (u, L) ∈ R we let

ρβ = β(A) → (u[B ← in(β(B)) | B ∈ L], β(L)) ,

where β(L) = {β(B1), . . . , β(Bk)} if L = {B1, . . . , Bk}. Note that ρ can easily be reconstructed from ρβ (by applying β−1);
i.e., the mapping ρ �→ ρβ is also a bijection, from R to R ′ .

Lemma 21. If G ′ is a renaming of G, then G and G ′ are LDTR-equivalent.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 49
Proof. Let β be the required bijection. For every tree d ∈ T R , let M(d) be obtained from d by changing every label ρ

into ρβ . In this manner we obtain a bijection M : T R → T R ′ . Obviously, d ∈ L(Gder, A) if and only if M(d) ∈ L(G ′
der, β(A)).

Additionally, we can easily show that val(M(d)) = val(d) by induction on the structure of d. Indeed, let d = ρ(d1, . . . , dk)

for a rule ρ = A → (u, L) ∈ R with L = {B1, . . . , Bk} and di ∈ L(Gder, Bi) for every i ∈ [k]. We have val(M(di)) = val(di) for
every i ∈ [k] by the induction hypotheses. Clearly, we have M(d) = ρβ(M(d1), . . . , M(dk)), and hence

val(M(d)) = u[Bi ← in(β(Bi)) | 1 ≤ i ≤ k] [f] ,

where f is the substitution function for β(L) such that f (β(Bi)) = val(M(di)) = val(di) for every i ∈ [k]. It now follows
from Lemma 4(4) that val(M(d)) = u[Bi ← in(β(Bi)[f]) | 1 ≤ i ≤ k], which equals u[Bi ← val(di) | 1 ≤ i ≤ k] = val(d). The
transformation M : T R → T R ′ as well as its inverse M−1 : T R ′ → T R are tree homomorphisms (even projections), and every
tree homomorphism can be realized by an LDTR-transducer, which shows the LDTR-equivalence. �

The previous lemma shows that the actual identity of nonterminals constituting a big nonterminal is irrelevant in
MCFTGs. We say that the MCFTG G has disjoint big nonterminals if occ(A) ∩occ(A′) = ∅ for all distinct A, A′ ∈N . The MCFTGs
of Examples 6 and 7 indeed have disjoint big nonterminals. Clearly, every MCFTG G has a renaming that has disjoint big
nonterminals. Consequently, we may always assume that a given MCFTG G has disjoint big nonterminals. As observed before
Example 6, the specification of the set of links of a rule is then no longer necessary. Indeed we could have required disjoint
big nonterminals in Definition 5, but this would have been technically inconvenient, as we will see, e.g., in the proof of
Lemma 23.

We say that the MCFTG G is free-choice if the following holds. For every rule A → (u, L) ∈ R and every L′ ⊆ N that
satisfies the requirement in the last item of Definition 5, we require that A → (u, L′) is also a rule of G . This means
that the rules of G can be specified as A → u, which stands for all possible rules A → (u, L). Obviously, if G has disjoint
big nonterminals, then it is free-choice because the links are uniquely determined by N and u. Thus, we may always
assume that a given MCFTG is free-choice. Free-choice MCFTGs with the derivation semantics of Section 3.3 generalize the
local unordered scattered context grammars (LUSCGs) of [78], which are an equivalent formulation of multiple context-free
(string) grammars.

The next easy result is not a normal form result in the usual sense of the word, but shows that the class MCFT is closed
under (simple) tree homomorphisms; for much stronger closure properties of MCFT we refer to Section 8. Nevertheless,
a special case of this result can be used in proofs to assume that the right-hand sides of a given MCFTG G are not only
uniquely N-labeled but also uniquely �-labeled.

Let h be a tree homomorphism from � to �′ where �′ is a finite ranked alphabet disjoint to N . We define the
MCFTG Gh = (N, N , �′, S, R ′) such that

R ′ = {A → (ĥ(u),L) | A → (u,L) ∈ R} ,

where h is extended to a tree homomorphism from N ∪ � to N ∪ �′ by defining h(C) = in(C) for every C ∈ N . We refer to
Definition 15 for the notion of LDTR-ĥ-equivalence.

Lemma 22. For every MCFTG G and every tree homomorphism h (as above), the MCFTG Gh (as defined above) is LDTR-ĥ-equivalent
to G. Hence L(Gh) = ĥ(L(G)).

Proof. The proof is similar to the one of Lemma 21. Let G ′ = Gh = (N, N , �′, S, R ′). For every rule ρ = A → (u, L) ∈ R , let
ρh be the rule A → (ĥ(u), L) ∈ R ′ , in which the links of L have the same order as in ρ . For every tree d ∈ T R , let M(d) be
obtained from d by changing every label ρ into ρh . This defines a surjection M : T R → T R ′ . Obviously, d ∈ L(Gder, A) if and
only if M(d) ∈ L(G ′

der, A) for every A ∈ N . We now show val(M(d)) = ĥ(val(d)) by induction on the structure of d. Indeed,
let d = ρ(d1, . . . , dk) with ρ = A → (u, L) and L = {B1, . . . , Bk}, and by the induction hypotheses val(M(di)) = ĥ(val(di)) for
every i ∈ [k]. Then M(d) = ρh(M(d1), . . . , M(dk)), and hence we have

val(M(d)) = ĥ(u)[Bi ← ĥ(val(di)) | 1 ≤ i ≤ k]
= ĥ(u[Bi ← val(di) | 1 ≤ i ≤ k]) = ĥ(val(d)) ,

where the second equality is by Lemma 4(3) applied to σ1 = B1 · · · Bk and occ(σ2) = �. This shows that ĥ(L(G)) ⊆ L(G ′).
For every rule ρ ′ ∈ R ′ , let ρ ′

h be a fixed rule ρ ∈ R such that ρh = ρ ′ . For every tree d′ ∈ T R ′ , let M ′(d′) be obtained
from d′ by changing every label ρ ′ into ρ ′

h . This defines a mapping M ′ : T R ′ → T R . Obviously M(M ′(d′)) = d′ and hence, by
the above, if d′ ∈ L(G ′

der, A) then M ′(d′) ∈ L(Gder, A) and val(M ′(d′)) = val(d′). This shows that L(G ′) ⊆ ĥ(L(G)).
The transformations M and M ′ can be realized by projections, and thus by LDTR-transducers. �

We say that the pair (G, h) is a cover of the MCFTG Gh if h is a projection; i.e., for every σ ∈ � there exists σ ′ ∈ �′ such
that h(σ) = in(σ ′). We define the MCFTG G to be uniquely terminal labeled if for every rule ρ ∈ R:

50 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
(1) the right-hand side rhs(ρ) is uniquely �-labeled, and
(2) occ�(rhs(ρ)) ∩ occ�(rhs(ρ ′)) = ∅ for every other rule ρ ′ ∈ R .

Clearly, every MCFTG G has a cover (Gu, h) such that Gu is uniquely terminal labeled. Although the tree languages
L(G) = ĥ(L(Gu)) and L(Gu) differ in general, this may be viewed as a normal form of G .

The last basic normal form that we consider in this subsection is permutation-freeness. Let 	 be a ranked alphabet
(such as N ∪ �). For a tree t ∈ T	(X) the string ydX (t) ∈ X∗ is the sequence of occurrences of variables in t , from left
to right.16 Clearly, if t ∈ P	(Xk), then ydX (t) is a permutation xi1 · · · xik of x1 · · · xk . We say that a pattern t ∈ P	(X) is
permutation-free if ydX (t) = x1 · · · xk for k = rk(t), and we denote the set of permutation-free patterns over 	 by PF	(X).
For t ∈ P	(X) we define pf(t) ∈ PF	(X) as follows: if ydX (t) = xi1 · · · xik , then pf(t) is the unique permutation-free pat-
tern such that t = pf(t)[x1 ← xi1 , . . . , xk ← xik]. For a forest t = (t1, . . . , tn) we define yd∗

X (t) = (ydX (t1), . . . , ydX (tn)) and
pf∗(t) = (pf(t1), . . . , pf(tn)). We say that a tree homomorphism h over 	 is permutation-free if h(ω) is permutation-free
for every ω ∈ 	. We observe that, for such a tree homomorphism, ydX (ĥ(t)) = ydX (t) for every t ∈ T	(X), as can easily be
shown by induction on the structure of t , and ĥ(pf(t)) = pf(ĥ(t)) for every t ∈ P	(X) by Lemma 2.

The MCFTG G is permutation-free if rhs(ρ) ∈ PFN∪�(X)+ for every rule ρ ∈ R . Intuitively, permutation-free MCFTGs are
easier to understand than arbitrary MCFTGs because the application of a rule to a node of a tree does not involve a permu-
tation of the subtrees at the children of that node; thus, a rule application does not affect the global structure of the tree.
The MCFTG G of Example 7 is trivially permutation-free because every nonterminal of G has rank 0 or 1.

Lemma 23. For every MCFTG G there is an LDTR-equivalent MCFTG G ′ that is permutation-free. Moreover, we have θ(G ′) = θ(G),
μ(G ′) = μ(G), and λ(G ′) = λ(G).

Proof. We construct the grammar G ′ = (N ′, N ′, �, S ′, R ′), in which S ′ = 〈S, ε〉 and N ′ is the set of all pairs 〈C, π〉 such
that C ∈ N and π is a permutation of x1 · · · xrk(C) . The rank of 〈C, π〉 is the same as the rank of C . The set of big nontermi-
nals N ′ consists of all (〈A1, π1〉, . . . , 〈An, πn〉) with (A1, . . . , An) ∈N and 〈Ai, πi〉 ∈ N ′ for every i ∈ [n].17 A big nonterminal
A′ = (〈A1, π1〉, . . . , 〈An, πn〉) will also be denoted by pair(A, π), where A = (A1, . . . , An) and π = (π1, . . . , πn), and we
define rem(A′) = A = (A1, . . . , An). Intuitively, if A generates t = (t1, . . . , tn) with ti ∈ P�(Xrk(Ai)) and

yd∗
X (t) = (ydX (t1), . . . ,ydX (tn)) = (π1, . . . ,πn) ,

then A′ generates pf∗(t) = (pf(t1), . . . , pf(tn)). To define the rules of G ′ we need the (permuting) tree homomorphism h
over N ′ ∪ � that is defined by h(〈C, π〉) = 〈C, π〉π for every 〈C, π〉 ∈ N ′ and h(σ) = in(σ) for every σ ∈ �. For example,
if π = x3x2x1x4, then h(〈C, π〉) = 〈C, π〉(x3, x2, x1, x4); in other words, h permutes the subtrees of 〈C, π〉 according to the
permutation π .

Let ρ = A → (u, L) be a rule of G with L = {B1, . . . , Bk}. Moreover, let B ′
1, . . . , B

′
k be big nonterminals in N ′ such that

rem(B ′
i) = Bi for every i ∈ [k], and let u′ = u[Bi ← in(B ′

i) | 1 ≤ i ≤ k] and π = yd∗
X (ĥ(u′)). Then R ′ contains the rule

ρB ′
1···B ′

k
= pair(A,π) → (pf∗(ĥ(u′)), {B ′

1, . . . , B ′
k}) .

Note that this rule satisfies the requirements of Definition 5 by Lemma 1. Note also that ρ can be reconstructed from
ρB ′

1···B ′
k
. This completes the construction of G ′ .

To show that L(G) ⊆ L(G ′) we prove that for every big nonterminal A ∈ N and every derivation tree d ∈ L(Gder, A)

there exists a derivation tree d′ ∈ L(G ′
der, pair(A, π)) such that we have π = yd∗

X (val(d)) and val(d′) = pf∗(val(d)). For ev-
ery derivation tree d ∈ ⋃

B∈N L(Gder, B), we let bign(d) = pair(A, yd∗
X (val(d))), where A is the type of d. The proof is by

induction on the structure of d. Simultaneously we prove that bign(d) can be defined inductively. Let d = ρ(d1, . . . , dk),
where ρ is as shown above. By the induction hypotheses, let B ′

i = bign(di) = pair(Bi, πi) such that πi = yd∗
X (val(di)),

and let d′
i ∈ L(G ′

der, B
′
i) be such that val(d′

i) = pf∗(val(di)), for every i ∈ [k]. We define bign(d) to be the left-hand
side of the rule ρB ′

1···B ′
k
. Moreover, we take d′ = ρB ′

1···B ′
k
(d′

1, . . . , d
′
k). Additionally, let [g′

pf] abbreviate the (simultaneous)
second-order substitution [B ′

i ← pf∗(val(di)) | 1 ≤ i ≤ k], and let [g′] and [g] abbreviate the second-order substitutions
[B ′

i ← val(di) | 1 ≤ i ≤ k] and [Bi ← val(di) | 1 ≤ i ≤ k]. Then the definition of ‘val’ gives

val(d′) = pf∗(ĥ(u′))[B ′
i ← val(d′

i) | 1 ≤ i ≤ k] = pf∗(ĥ(u′))[g′
pf] = pf∗(ĥ(u′)[g′

pf]) ,

where the last equality holds because the permutation-free tree homomorphism g′
pf corresponding to the substitution [g′

pf]
commutes with ‘pf’ as observed before this lemma. We now show that

16 The yield of t with respect to X is defined in the paragraph on homomorphisms in Section 2.1.
17 Note that if G has disjoint big nonterminals, then that is in general not the case for G ′ . Thus, this property of an MCFTG G is not preserved when

information is added to the nonterminals of G , which is the reason that we did not require it in Definition 5.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 51
ĥ(u′)[g′
pf] = u′[g′] = u[g] = val(d) .

The first equality holds by Lemma 3 because the composition of the tree homomorphisms h and ĝ′
pf is equal to the

tree homomorphism g′ corresponding to the substitution [g′] for every symbol in occN ′∪�(u′), as shown next. In fact, let
B ′

i = β〈C,π〉γ with 〈C, π〉 ∈ N ′ and β, γ ∈ (N ′)∗ , and let val(di) = ϕtψ with t ∈ P�(Xrk(C)), ϕ, ψ ∈ P�(X)∗ , and |β| = |ϕ|.
From πi = yd∗

X (val(di)), we obtain that π = ydX (t). Now we have g′
pf(〈C, π〉) = pf(t) and therefore18

ĝ′
pf(h(〈C,π〉)) = ĝ′

pf(〈C,π〉π) = t = g′(〈C,π〉) .

The second equality follows easily from Lemma 4(4), and the last equality is again by the definition of ‘val’. Hence, we
have shown that val(d′) = pf∗(val(d)), and it remains to show that the permutation π in the left-hand side of ρB ′

1···B ′
k

fulfills π = yd∗
X (val(d)). By the calculation above, yd∗

X (val(d)) = yd∗
X (ĥ(u′)[g′

pf]). In addition, π = yd∗
X (ĥ(u′)) by the defini-

tion of ρB ′
1···B ′

k
. Since g′

pf is permutation-free, these values are the same, as observed before this lemma. This proves that
L(G) ⊆ L(G ′).

The above transformation from d to d′ can easily be realized by an LDTR-transducer M with one state q. In fact, it should
be clear from the inductive definition of bign(d) that the set L A′ = {d ∈ ⋃

B∈N L(Gder, B) | bign(d) = A′} is a regular tree
language for every A′ ∈N ′ . Then, for the above rule ρ , the transducer M has all the rules

〈q, ρ(y1 : LB ′
1
, . . . , yk : LB ′

k
)〉 → ρB ′

1···B ′
k
(〈q, y1〉, . . . , 〈q, yk〉) .

Note that M is a finite-state relabeling.
To show that L(G ′) ⊆ L(G), we observe that for every derivation tree d′ ∈ L(G ′

der) the derivation tree d ∈ L(Gder), which
is obtained from d′ by changing every label ρB ′

1···B ′
k

into ρ , satisfies M(d) = d′ and hence val(d) = val(d′). Since this trans-

formation from d′ to d is a projection, it can be realized by an LDT-transducer. �

In particular, every spCFTG has an equivalent permutation-free spCFTG, which was proved in [87, Lemma 8].

4.2. Lexical normal forms

We first recall the notion of finite ambiguity from [50,65,85].19 We distinguish a subset � ⊆ � of lexical symbols, which
are the symbols that are preserved by the lexical yield mapping. The lexical yield of a tree t ∈ T� is the string yd�(t) ∈ �∗ ,
as defined in Section 2.1. It is the string of occurrences of lexical symbols in t , from left to right; all other symbols are
simply dropped.

Definition 24. The tree language L ⊆ T� has finite �-ambiguity if {t ∈ L | yd�(t) = w} is finite for every w ∈ �∗ . The
MCFTG G has finite �-ambiguity if L(G) has finite �-ambiguity. �

Roughly speaking, we can say that the language L has finite �-ambiguity if each w ∈ �∗ has finitely many syntactic trees
in L, where t is a syntactic tree of w if w is its lexical yield. Note that |yd�(t)| = |pos�(t)|; thus, L has finite �-ambiguity
if and only if {t ∈ L | |pos�(t)| = n} is finite for every n ∈ N0. Note also that if �(0) ∪ �(1) ⊆ � or � \ �(0) ⊆ �, then every
tree language L ⊆ T� has finite �-ambiguity.

Example 25. For the MCFTG G of Example 7 we consider the set � = � \{σ , γ } = {α, β, τ , ν} of lexical symbols. It should be
clear from Example 7 that in each tree of L(G) the number of occurrences of γ coincides with the number of occurrences
of β . Since � ∪ {γ } = �(0) ∪ �(1) , this implies that L(G) as well as G have finite �-ambiguity. Similarly, the number of
occurrences of ν in a tree of L(G) coincides with the number of occurrences of τ , and the number of occurrences of β is
half the number of occurrences of α. Hence G also has finite {α, τ }-ambiguity, but for convenience we will continue to use
the lexical symbols � in examples. �

In this paper, we want to lexicalize MCFTGs, which means that for each MCFTG G that has finite �-ambiguity, we want
to construct an equivalent MCFTG G ′ such that each proper rule20 contains at least one lexical symbol. Let us formalize our
lexicalization property.

Definition 26. The forest t is �-lexicalized if pos�(t) �= ∅. The rule A → (u, L) is �-lexicalized if u is �-lexicalized. The
MCFTG G is �-lexicalized if all its proper rules are �-lexicalized. A forest or rule is �-free if it is not �-lexicalized. The
rule A → (u, L) is doubly �-lexicalized if |pos�(u)| ≥ 2, and it is singly �-lexicalized if |pos�(u)| = 1. �
18 To be precise the second equation on the next line is proved as follows: if ydX (t) = π = xi1 · · · xim , then ĝ′

pf(〈C, π 〉π) = pf(t)[x1 ← xi1 , . . . , xm ← xim] = t .
19 It should not be confused with the notion of finite ambiguity of [43,62].
20 Recall from the beginning of Section 4.1 that a rule is proper if it is not both initial and terminal.

52 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Clearly, for every derivation tree d, the value val(d) is �-free if and only if all rules that occur in d are �-free by
Lemma 10(1). For the grammar G of Example 7 with � = {α, β, τ , ν} as in Example 25, the rules

ρ1 = S → α(A)

ρ5 = (T1(x1), T2, T3) → (α(T1(β(x1))),α(T2), γ (T3))

ρ6 = (T1(x1), T2, T3) → (x1, τ , ν)

are �-lexicalized (ρ1 singly and both ρ5 and ρ6 doubly), whereas rule ρ4 = B(x1) → x1 is not even �-lexicalized.
Thus, for each MCFTG G that has finite �-ambiguity, we want to construct an equivalent MCFTG G ′ that is �-lexicalized.

This notion of lexicalization is also called strong lexicalization [50,65,85] because it requires strong equivalence of G and G ′;
i.e., L(G ′) = L(G). Weak lexicalization [50] just requires weak equivalence of G and G ′; i.e., yd�(L(G ′)) = yd�(L(G)). Clearly,
with slight adaptations, these definitions can be applied to any type of context-free-like grammar that has terminal (ranked
or unranked) alphabet �. In the literature only two cases are considered: � = � for unranked alphabets and � = �(0) \ {e}
for ranked alphabets. It seems to be quite natural and relevant to consider arbitrary �.

It should be intuitively clear (and will be shown below) that an MCFTG that does not have finite �-ambiguity cannot be
lexicalized (with respect to �). Thus, we will prove that an MCFTG can be lexicalized (with respect to �) if and only if it
has finite �-ambiguity. Moreover, we will prove that this property is decidable.

To lexicalize an MCFTG of finite ambiguity, we need an auxiliary normal form (stated in Theorem 38). It generalizes
the Growing Normal Form of [90,91] for spCFTGs. In the remainder of this section the MCFTG G = (N, N , �, S, R) is not
assumed to have finite �-ambiguity unless this is explicitly mentioned. We only assume that G is start-separated and
reduced. A rule ρ is monic if |L(ρ)| = 1; i.e., L(ρ) is a singleton or equivalently ρ has rank 1 in Gder.

Definition 27. The MCFTG G is called �-growing if all its non-initial terminal rules are doubly �-lexicalized, and all its
monic rules are �-lexicalized. It is called almost �-growing if all its non-initial terminal rules and all its monic rules are
�-lexicalized. �

The application of a proper rule of a �-growing MCFTG increases the sum of the number of occurrences of lexical
symbols and the number of occurrences of big nonterminals. In this section we will prove that for every MCFTG G of finite
�-ambiguity there is an equivalent �-growing MCFTG (see Theorem 38). The instance of this result for spCFTGs and � = �

is due to [91, Proposition 2] and fully proved in [90]. Note that if G is almost �-growing, then all its terminal rules are
�-lexicalized. Note also that every �-growing MCFTG is almost �-growing, and that every �-lexicalized MCFTG is almost
�-growing. The grammar G of Example 7 with � = {α, β, τ , ν} as in Example 25 is not almost �-growing because of
rule ρ4 = B(x1) → x1.

If the MCFTG G is almost �-growing, then all its rules satisfy the requirements for a �-growing grammar except the
non-initial terminal rules, which might be singly �-lexicalized. The application of such a rule does not change the sum of
the number of occurrences of lexical symbols and the number of occurrences of big nonterminals because a big nonterminal
is replaced by a lexical symbol. This leads to the following lemma.

Lemma 28. If G is almost �-growing, then G has finite �-ambiguity and

|pos(d)| ≤ 2 · (|pos�(val(d))| + |posN (d)|) + 1 ≤ 2 · |posN∪�(val(d))| + 1 (†)

for every derivation tree d of G; i.e., for every d ∈ ⋃
A∈N DL(Gder, A).

Proof. We begin with (†). Let R it be the set of all initial terminal rules. The first inequality is clearly fulfilled for d ∈ R it , and
it suffices to show that |pos(d)| + 1 ≤ 2 · (|pos�(val(d))| + |posN (d)|) for the remaining derivation trees d /∈ R it . For every
such tree d we have

|pos(d)| + 1 ≤ 2 ·
(
|posN (d)| + |posR(0) (d)| + |posR(1) (d)|

)
,

where R(0) and R(1) are the sets of terminal and monic rules, respectively (see Section 2.2). Since G is almost �-growing
and posR it

(d) = ∅, we obtain

|posR(0) (d)| + |posR(1) (d)| ≤
∑

p∈posR (d)

|pos�(rhs(d(p)))| = |pos�(val(d))| ,

where the last equality holds by Lemma 10(1). The second inequality in (†) follows from the first because we have
|posN (d)| ≤ |posN(val(d))| by Lemma 10(2).

For the first part of the statement, we consider the set Lw = {t ∈ L(G) | yd�(t) = w} for some w ∈ �∗ . For every deriva-
tion tree d ∈ L(Gder) we have posN (d) = ∅, and consequently we obtain |pos�(val(d))| + |posN (d)| = |yd�(val(d))|. Hence

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 53
|pos(d)| ≤ 2 · |w| + 1 if val(d) ∈ Lw , utilizing (†). This shows that D w = {d ∈ L(Gder) | val(d) ∈ Lw} is finite, and so Lw is finite
because Lw = val(D w) by Theorem 9. �

The previous result also shows that if G does not have finite �-ambiguity, then there is no �-lexicalized MCFTG equiv-
alent to G , as we observed above.

Our first goal (in proving Theorem 38) is to make sure that all the non-initial terminal rules are �-lexicalized; i.e.,
contain a lexical symbol. However, for later use, we start by proving a more general lemma that will allow us to remove
every non-initial terminal rule of which the right-hand side has a certain property F subject to certain requirements.
In particular, the value of a derivation tree d has property F if and only if d only contains rules of a corresponding
subset F ⊆ R of rules. Additionally, each big nonterminal can only generate finitely many forests with property F . An
example of such a property is �-freeness. The next construction generalizes the removal of epsilon-rules A → ε from a
context-free grammar [48].

Lemma 29. Let F ⊆ P�(X)+ and F ⊆ R. If

(1) L(G, A) ∩F is finite for every A ∈N , and
(2) val(d) ∈F if and only if d ∈ T F , for every d ∈ ⋃

A∈N L(Gder, A),

then there is an LDTR-equivalent MCFTG G ′ = (N, N , �, S, R ′) such that rhs(ρ) /∈F for every non-initial terminal rule ρ ∈ R ′ .

Proof. For the effectiveness of the constructions in this proof, we assume that F is a decidable subset of P�(X)+ , and that
the elements of L(G, A) ∩F are effectively given for every A ∈ N . For A ∈ N , let FA = L(G, A) ∩F , which is finite by (1).
Moreover, FA = val(L(Gder, A) ∩ T F) by (2) and Theorem 9. For every A ∈N and t ∈FA , let

L〈A,t〉 = {d ∈ L(Gder, A) ∩ T F | val(d) = t} .

By Lemma 12 applied with N ′ = ∅, the tree language L〈A,t〉 is regular.
We now construct the MCFTG G ′ = (N, N , �, S, R ′). The rule ρS,t = S → t is in R ′ for every t ∈ FS . Moreover, for every

rule ρ = A → (u, L) of G and every substitution function f for L such that f (B) ∈FB ∪ {in(B)} for every B ∈L, the set R ′
contains the rule

ρ f = A → (u[f], {B ∈ L | f (B) = in(B)}) ,

provided that u[f] /∈ F . The linear order on L(ρ f) is inherited from the one on L. To be precise, let L = {B1, . . . , Bk} and
� = {i ∈ [k] | f (Bi) ∈ FBi }. Moreover, let [k] \ � = {i1, . . . , in} with i1 < · · · < in . Then L(ρ f) = {Bi1 , . . . , Bin }. This ends the
construction of G ′ , so no other rules are in R ′ .

First, we prove that for every derivation tree d ∈ L(Gder, A) \ T F a derivation tree d′ ∈ L(G ′
der, A) with val(d′) = val(d) ex-

ists. This shows L(G) ⊆ L(G ′) because L(G) = val(L(Gder, S) \ T F) ∪FS . The proof proceeds by induction on the structure of d.
Let d = ρ(d1, . . . , dk) for some k ∈ N0, rule ρ = A → (u, L) ∈ R with L = {B1, . . . , Bk}, and di ∈ L(Gder, Bi) for every i ∈ [k].
Let � = {i ∈ [k] | di ∈ T F }, and let f be the substitution function for L such that f (Bi) = val(di) if i ∈ � and f (Bi) = in(Bi)

otherwise. Note that f (Bi) ∈ FBi for every i ∈ � by (2). Since d /∈ T F we have u[f] /∈ F . In fact, if u[f] ∈F ⊆ P�(X)+ ,
then f (Bi) �= in(Bi) for all i ∈ [k] by Lemma 1(2), which yields that u[f] = u[Bi ← val(di) | 1 ≤ i ≤ k] = val(d) is in F
and thus that d ∈ T F by (2). Consequently, ρ f ∈ R ′ . Now let [k] \ � = {i1, . . . , in} with i1 < · · · < in . By the induc-
tion hypothesis, there exists a derivation tree d′

i j
∈ L(G ′

der, Bi j) with val(d′
i j
) = val(di j) for every j ∈ [n]. We now take

d′ = ρ f (d′
i1
, . . . , d′

in
) ∈ L(G ′

der, A) and prove that val(d′) = val(d). Let [g] abbreviate [Bi ← val(di) | i ∈ {i1, . . . , in}]. Then
val(d′) = u[f][g]. By Lemma 4(4) this implies that val(d′) = u[Bi ← f (Bi)[g] | 1 ≤ i ≤ k]. Clearly, f (Bi)[g] = val(di) for
every i ∈ [k], which shows that val(d′) = val(d).

It should be clear that the transformation from d to d′ , as defined above, can be realized by an LDTR-transducer M from R
to R ′ . It has one state q, and for its look-ahead it uses the regular tree languages L〈A,t〉 , defined above for A ∈N and t ∈FA

in addition to the regular tree language L0 = T R \ T F . All subtrees in T F are deleted by M . The translation of derivation
trees d = ρ(d1, . . . , dk) ∈ L(Gder, A) \ T F (as discussed above) is realized by the rules

〈q, ρ(y1 : Lb1 , . . . , yk : Lbk) : L0〉 → ρ f (〈q, yi1〉, . . . , 〈q, yin 〉)
such that bi ∈ {0} ∪ {〈Bi, ti〉 | ti ∈ FBi } for all i ∈ [k], where f (Bi) = in(Bi) if bi = 0 and f (Bi) = ti if bi = 〈Bi, ti〉, and
{i ∈ [k] | bi = 0} = {i1, . . . , in} with i1 < · · · < in . The translation of derivation trees d ∈ L(Gder) ∩ T F is realized by the rules
〈q, ρ(y1, . . . , yk) : L〈S,t〉〉 → ρS,t with t ∈FS .

Second, we show that L(G ′) ⊆ L(G). For every A ∈ N and t ∈ FA , let dA,t be a fixed derivation tree in L〈A,t〉 , which
can be constructed from the regular tree grammar that generates L〈A,t〉 . Since FS ⊆ L(G), it suffices to prove that for
every derivation tree d′ ∈ L(G ′ , A) of which the root is labeled with a rule ρ f , a derivation tree d ∈ L(Gder, A) \ T F can
der

54 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
be constructed such that val(d) = val(d′). The proof proceeds by induction on the structure of d′ . Let d′ = ρ f (d′
i1
, . . . , d′

in
)

with the same notation as in the construction of G ′ . By the induction hypotheses, there are derivation trees di1 , . . . , din
of G such that di j /∈ T F and val(di j) = val(d′

i j
) for every j ∈ [n]. We now take d = ρ(d1, . . . , dk), where di = dBi , f (Bi) for

every i ∈ � = [k] \ {i1, . . . , in}. Thus di ∈ T F and val(di) = f (Bi) for every i ∈ �. Then d /∈ T F because if we suppose d ∈ T F ,
then d1, . . . , dk ∈ T F , which yields � = [k] and the equality

u[f] = u[Bi ← f (Bi) | 1 ≤ i ≤ k] = u[Bi ← val(di) | 1 ≤ i ≤ k] = val(d) ,

which in turn yields the statement u[f] ∈ F , contradicting the fact that ρ f ∈ R ′ . It is easy to check that the
LDTR-transducer M , in the proof of L(G) ⊆ L(G ′), transforms d into d′ . Hence val(d) = val(d′).

The transformation from d′ to d, which we defined above, can easily be realized by an LDT-transducer M ′ with one
state q. For every rule ρ ′ of G ′ , fix either ρ and f with ρ ′ = ρ f or S and t with ρ ′ = ρS,t (there may be more than one
such choice). In the first case, M ′ has the rule

〈q, ρ ′(y1, . . . , yn)〉 → ρ(t1, . . . , tk) ,

where ti = dBi , f (Bi) for every i ∈ � and ti j = 〈q, y j〉 for every j ∈ [n]. In the second case, it has the rule 〈q, ρ ′〉 → dS,t . This
ends the proof that G and G ′ are LDTR-equivalent. �

In the next lemma we show how Lemma 29 can be used to remove �-free non-initial terminal rules.

Lemma 30. Let F ⊆ R be the set of �-free rules. If val(L(Gder, A) ∩ T F) is finite for every A ∈ N , then there is an LDTR-equivalent
MCFTG G ′ such that all its non-initial terminal rules are �-lexicalized. Moreover, if G is almost �-growing, then so is G ′ .

Proof. For the purpose of effectiveness, we assume that the elements of val(L(Gder, A) ∩ T F) are effectively given for ev-
ery A ∈ N . Let F be the set of �-free forests in P�(X)+ . As observed before, for every derivation tree d, the value val(d)

is �-free if and only if all rules that occur in d are �-free. Thus, F and F satisfy requirement (2) of Lemma 29. Hence, for
every A ∈ N the set FA , given by FA = L(G, A) ∩ F = val(L(Gder, A) ∩ T F), is finite and its elements are effectively given.
Thus, F also satisfies requirement (1) of Lemma 29.

Let G ′ be the LDTR-equivalent MCFTG as constructed in the proof of Lemma 29. Then all non-initial terminal rules of G ′
are �-lexicalized. Assume now that G is almost �-growing. Since all non-initial terminal rules of G are �-lexicalized, the
elements of L(G, A), and hence of FA , are �-lexicalized (by Theorem 9 and Lemma 10(1)). Now consider a rule ρ of G and
a substitution function f for L(ρ) such that f (B) ∈FB ∪ {in(B)} for every B ∈L(ρ). If there is at least one B ∈L such that
f (B) ∈FB , then the rule ρ f of G ′ is �-lexicalized by Lemma 1(2). Otherwise, we obviously have ρ f = ρ and ρ satisfies the
requirements by assumption. Hence G ′ is almost �-growing. �

We now remove the �-free terminal rules from G .

Lemma 31. For every MCFTG G there is an LDTR-equivalent MCFTG G ′ of which all terminal rules are �-lexicalized.

Proof. As in the previous lemma, let F be the set of �-free rules in R , and let F be the set of �-free forests in P�(X)+ .
Then val(L(Gder, A) ∩ T F) = L(G, A) ∩ F as demonstrated in the proof of Lemma 30. Clearly, a forest t ∈ P�(X)+ is �-free
if and only if t ∈ x+

1 ; i.e., t is of the form (x1, . . . , x1). Such a forest t can only be generated by a big nonterminal of
rank (1, . . . , 1). Hence, L(G, A) ∩ F is either empty or equal to {xk

1} with k = |A|. Moreover, val(L(Gder, A) ∩ T F) can be
computed because it is empty if and only if the regular tree language L(Gder, A) ∩ T F is empty. By Lemma 30 there is an
LDTR-equivalent MCFTG G ′ , of which all non-initial terminal rules are �-lexicalized. Obviously, the initial terminal rules of
an MCFTG are also �-lexicalized. �

Example 32. In the MCFTG G of Example 7, the rules ρ4 = B(x1) → x1 and ρ ′
4 = B ′(x1) → x1 are the only �-free rules. The

construction in the proof of Lemma 29 asks us to apply these rules in all possible ways to the right-hand sides of the other
rules. Thus, we change the set R of rules by removing rules ρ4 and ρ ′

4 and adding the following rules:

A → T1(σ (T2, T3))

B(x1) → σ(x1, B ′(A)) B(x1) → σ(B(x1), A) B(x1) → σ(x1, A)

B ′(x1) → σ(x1, B ′(A)) B ′(x1) → σ(B(x1), A) B ′(x1) → σ(x1, A) .

In the resulting MCFTG G ′ , which we will call G again, all terminal rules are �-lexicalized. In fact, G is now both
�-lexicalized and �-growing, and all its terminal rules are �-lexicalized for � = {α, β, τ , ν} as in Example 25. �

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 55
Our second goal is to make sure that all monic rules (i.e., rules whose right-hand side contains exactly one big nonter-
minal) are �-lexicalized. In the next construction we remove �-free monic rules thereby generalizing the removal of chain
rules A → B from a context-free grammar [48].

Lemma 33. Suppose that all non-initial terminal rules of G are �-lexicalized. Let F ⊆ R be the set of �-free monic rules. If
val(DL(Gder, A) ∩ TN∪F) is finite for every A ∈N , then there is an LDTR-equivalent almost �-growing MCFTG G ′ .

Proof. Let FA = val(DL(Gder, A) ∩ TN∪F) for every A ∈ N . Again, for the purpose of effectiveness, we assume that
the elements of FA are effectively given. Note that in(A) ∈ FA . Every forest t ∈ FA is of the form val(d) with
d ∈ DL(Gder, A) ∩ TN∪F , and every such derivation tree d is of the form d = w B with w ∈ F ∗ and B ∈ N . Hence t is �-free
because all rules that occur in d are �-free. Moreover, by Lemma 10(2), t is uniquely N-labeled and occN(t) = occ(B). In
other words, the big nonterminal B occurs exactly once in t , and no other nonterminals occur in t . We will denote B by Bt .
Note that, since G is start-separated, if Bt = S then A = S because w = ε. For every t ∈ FA , let dA,t ∈ TN∪F be a particular
derivation tree of G of type A such that val(dA,t) = t . Such a derivation tree can be computed by Lemma 12 applied with
N ′ =N .

We construct the MCFTG G ′ = (N, N , �, S, R ′) such that for every big nonterminal A ∈ N , tree t ∈ FA , and rule
ρ = Bt → (u,L) ∈ R \ F , the rule ρA,t = A → (t[Bt ← u], L) is in R ′ , where the links in L have the same order as in
the rule ρ . Since ρ /∈ F , it is straightforward to check that ρA,t satisfies the requirements for G ′ to be almost �-growing:
(i) If ρ is �-lexicalized, then so is ρA,t because u is substituted for Bt . (ii) If ρA,t is monic, then ρ is monic and hence
�-lexicalized because ρ /∈ F . (iii) If ρ is initial (i.e., Bt = S), then ρA,t is initial (because A = S); thus, if ρA,t is non-initial
terminal, then ρ is non-initial terminal and hence �-lexicalized by assumption on G .

To show the correctness of G ′ , we first prove that for every derivation tree d ∈ L(Gder, A) there is a derivation
tree d′ ∈ L(G ′

der, A) with val(d′) = val(d). Clearly, d has the unique form d = wρ(d1, . . . , dk) such that w ∈ F ∗ , ρ /∈ F ,
and d1, . . . , dk ∈ T R . Let ρ = B → (u, L) with L = {B1, . . . , Bk}, and let t = val(w B) ∈ FA . By the induction hypothesis
there is a derivation tree d′

i ∈ L(G ′
der, Bi) with val(d′

i) = val(di) for every i ∈ [k]. We take d′ = ρA,t(d′
1, . . . , d

′
k). Then

val(d′) = t[B ← u][Bi ← val(di) | 1 ≤ i ≤ k] = t[B ← u[Bi ← val(di) | 1 ≤ i ≤ k]]
= t[B ← val(ρ(d1, . . . ,dk))] = val(wρ(d1, . . . ,dk)) = val(d) ,

where the second equality holds by Lemma 4(4) and the penultimate equality holds by Lemma 11. This shows that
L(G) ⊆ L(G ′).

The LDTR-transducer M that transforms d into d′ , as above, uses the tree languages

L A,t = {wd ∈ L(Gder, A) | w ∈ F ∗, d ∈ L(Gder, Bt), d(ε) /∈ F , val(w Bt) = t}
as look-ahead, where A ∈ N and t ∈ FA . It is easy to see that L A,t is regular. An RTG that generates L A,t can be obtained
from the grammar for the regular tree language L〈A,t〉 in the proof of Lemma 12 as follows. First, add the nonterminals and
rules of Gder. Second, replace every rule 〈B, in(B)〉 → B by all rules 〈B, in(B)〉 → ρ(B1, . . . , Bk), where B → ρ(B1, . . . , Bk) is
a rule of Gder and ρ /∈ F . The transducer M has initial state q0 and the states qA,t for every A ∈ N and t ∈ FA . For every
rule ρ ∈ R \ F , the transducer M has the rule

〈q0,ρ(y1, . . . , yk)〉 → ρ(〈q0, y1〉, . . . , 〈q0, yk〉)
and all the rules 〈qA,t , ρ(y1, . . . , yk)〉 → ρA,t(〈q0, y1〉, . . . , 〈q0, yk〉). Moreover, for every rule ρ ∈ F , the transducer M has all
rules 〈q0, ρ(y1) : L A,t〉 → 〈qA,t , y1〉 and 〈qA,t , ρ(y1)〉 → 〈qA,t , y1〉. It should be clear that M indeed transforms d into d′ .

Next, we prove that for every derivation tree d′ ∈ L(G ′
der, A) there is a corresponding derivation tree d ∈ L(Gder, A)

with val(d) = val(d′). The proof is by induction on d′ , so let d′ = ρA,t(d′
1, . . . , d

′
k) with ρ , A, and t as in the construction

of G ′ . By the induction hypothesis, there is a derivation tree di of G such that val(di) = val(d′
i) for every i ∈ [k]. We now

take d = dA,t[Bt ← ρ(d1, . . . , dk)], where the derivation tree dA,t was defined at the end of the first paragraph of this proof.
Since dA,t is of the form w Bt with w ∈ F ∗ , and hence d = wρ(d1, . . . , dk), it should be clear that the construction in the
proof of L(G) ⊆ L(G ′) (i.e., the LDTR-transducer M) transforms d into d′ , which implies that val(d) = val(d′).

We can realize the transformation from d′ to d, as defined above, by an LDT-transducer M ′ with one state q. For every
rule ρ ′ of G ′ , fix ρ , A, and t such that ρ ′ = ρA,t . Then M ′ has the rule

〈q, ρ ′(y1, . . . , yk)〉 → dA,t[Bt ← ρ(〈q, y1〉, . . . , 〈q, yk〉)] .

We finally observe that the transformation from d to d′ can also be realized by an LDT-transducer (without look-ahead), but
the above transducer M is easier to understand. �

Lemma 34. For every MCFTG G there is an LDTR-equivalent almost �-growing MCFTG G ′ .

56 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Proof. By Lemma 31 and Proposition 13, we may assume that all terminal rules of G are �-lexicalized. Let F ⊆ R be the
set of �-free monic rules. The statement holds using Lemma 33 if we prove that FA = val(DL(Gder, A) ∩ TN∪F) is finite
and that its elements can be computed for every A ∈ N . For every big nonterminal A, let MA be the set of all �-free
forests t in P N∪�(X)+ such that rk(t) = rk(A), t is uniquely N-labeled, and occN (t) = occ(B) for some B ∈ N . Clearly
MA is finite because |posN∪�(t)| = |posN (t)| ≤ μ(G) and |posX (t)| ≤ μ(G) · θ(G). As argued in the beginning of the proof
of Lemma 33, FA ⊆ MA . Consequently, FA is finite and its elements can be computed by a standard iteration because
the sets FA with A ∈ N are the smallest sets of forests such that (i) in(A) ∈ FA and (ii) if A → (u, {B}) ∈ F and t ∈ FB ,
then u[B ← t] ∈FA . �

Let G be an almost �-growing MCFTG. Then, for every forest t , there are only finitely many derivation trees d such that
val(d) = t by inequality (†) of Lemma 28. This implies that the finiteness problem is decidable for L(G) and L(G, A). In fact,
L(G) is finite if and only if L(Gder) is finite, which is decidable because Gder is an RTG. Moreover, if L(G) is finite, then
the elements of L(G) can be computed because the elements of L(Gder) can be computed and L(G) = val(L(Gder)). Similar
statements hold for L(G, A). Thus, by Lemma 34, the finiteness problem is decidable for MCFTGs.

We now show that if G is almost �-growing, then the requirements of Lemmas 29 and 33 are fulfilled.

Lemma 35. Let G be almost �-growing. Moreover, let F be the set of all �-free rules and F ′ ⊆ F be the set of all �-free monic rules.
Finally, let FA = val(L(Gder, A) ∩ T F) and F ′

A = val(DL(Gder, A) ∩ TN∪F ′) for every A ∈N .

(1) It is decidable for A ∈N whether or not FA (respectively, F ′
A) is finite, and if so, its elements can be computed.

(2) If G has finite �-ambiguity, then FA and F ′
A are finite for every A ∈N .

Proof. For (1) we observe that since G is almost �-growing, inequality (†) of Lemma 28 implies that FA is finite if and
only if L(Gder, A) ∩ T F is finite. The latter is a regular tree language, and it is decidable whether or not it is finite. Moreover,
if so, its elements, and thus also the elements of FA , can be computed. The same argument holds for F ′

A .
For (2) we assume that G has finite �-ambiguity and that FA is infinite. Since we may assume that G and Gder are

reduced, there exists a derivation tree d0 ∈ DL(Gder, S) such that |posN (d0)| = |posA(d0)| = 1. Let

D0 = {d0[A ← d] | d ∈ L(Gder, A) ∩ T F } ⊆ L(Gder) .

Since FA is infinite, also L(Gder, A) ∩ T F is infinite, and thus D0 is infinite by Lemma 1. Since G is almost �-growing, the
set L0 = val(D0) is an infinite subset of L(G). Now, for every derivation tree d′ ∈ TN∪R , let

pr�(d′) =
∑

p∈posR (d′)
|pos�(rhs(d′(p)))| .

Lemma 10(1) and Lemma 1 yield |pos�(val(d0[A ← d]))| = pr�(d0[A ← d]) = pr�(d0) + pr�(d) = pr�(d0) for every deriva-
tion tree d ∈ L(Gder, A) ∩ T F , where the last equality uses d ∈ T F . Consequently, |pos�(t)| ≤ pr�(d0) for every tree t in the
infinite set L0, which contradicts the finite �-ambiguity of L(G).

A similar proof works for F ′
A . Since DL(Gder, A) ∩ TN∪F ′ is infinite, there exists B ∈N such that DL(Gder, A) ∩ T{B}∪F ′ is

infinite. Since Gder is reduced, there exists a derivation tree d1 ∈ L(Gder, B). Now let

D ′
0 = {d0[A ← d[B ← d1]] | d ∈ DL(Gder, A) ∩ T{B}∪F ′ } ⊆ L(Gder) .

By similar arguments as above, we then obtain that |pos�(t)| ≤ pr�(d0) + pr�(d1) for every tree t in the infinite set
L′

0 = val(D ′
0) ⊆ L(G), which again contradicts the finite �-ambiguity of L(G). �

Now we are able to turn G into an equivalent almost �-growing MCFTG, provided that it has finite �-ambiguity.

Lemma 36. It is decidable whether or not the MCFTG G has finite �-ambiguity, and if so, there is an LDTR-equivalent almost �-growing
MCFTG G ′ .

Proof. By Lemma 34 we may assume that G is almost �-growing. By Lemma 35 it is decidable whether FA is finite for
every A ∈ N , and if not, then G does not have finite �-ambiguity. If they are, then we may assume by Lemma 30 that all
non-initial terminal rules of G are �-lexicalized. Again by Lemma 35, it is decidable whether F ′

A is finite for every A ∈ N ,
and if not, then G does not have finite �-ambiguity. If they are, then we may assume by Lemma 33 that G is almost
�-growing. Finally, in this case G has finite �-ambiguity by Lemma 28. �

Example 37. The MCFTG G of Example 32 is already �-growing. Moreover, all its terminal rules are �-lexicalized
for � = {α, β, τ , ν}. Let us turn G into an almost �-growing grammar by Lemma 33. We omit parentheses around the argu-
ments of unary terminals. The set F of �-free monic rules of G consists of the rules A → T1(σ (T2, T3)), B(x1) → σ(x1, A),

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 57
and B ′(x1) → σ(x1, A). Next, for each big nonterminal A′ ∈ N we compute the sets FA′ = val(DL(Gder, A′) ∩ TN∪F) and
obtain

FT = {in(T)} FA = {in(A), T1(σ (T2, T3))} FB = {in(B), σ (x1, A), σ (x1, T1(σ (T2, T3)))}
FS = {in(S)} FB ′ = {in(B ′), σ (x1, A), σ (x1, T1(σ (T2, T3)))} ,

where T = (T1, T2, T3), which are all finite. The construction in the proof of Lemma 33 asks us to apply

• the rules ρ5 = (T1(x1), T2, T3) → (αT1(βx1), αT2, γ T3) and ρ6 = (T1(x1), T2, T3) → (x1, τ , ν) for big nonterminal T to
T1(σ (T2, T3)) ∈FA and σ(x1, T1(σ (T2, T3))) ∈FB ∩FB ′ , and

• the rule ρ2 = A → T1(σ (B(T2), T3)) for A to σ(x1, A) ∈FB ∩FB ′ .

Consequently, we change the set of rules of G by removing the above three �-free monic rules and adding the following
5 rules, and the 3 additional rules that make B ′ an alias of B:

A → αT1(βσ (αT2, γ T3)) A → σ(τ ,ν)

B(x1) → σ(x1,αT1(βσ (αT2, γ T3))) B(x1) → σ(x1,σ (τ , ν)) B(x1) → σ(x1, T1(σ (B(T2), T3))) .

The resulting grammar G ′ , which we will again call G , now has the following rules (and the rules required to make B ′ an
alias of B):

A → αT1(βσ (αT2, γ T3)) A → σ(τ ,ν) A → T1(σ (B(T2), T3))

B(x1) → σ(x1,αT1(βσ (αT2, γ T3))) B(x1) → σ(x1,σ (τ , ν)) B(x1) → σ(x1, T1(σ (B(T2), T3)))

B(x1) → σ(B(x1), B ′(A)) B(x1) → σ(x1, B ′(A)) B(x1) → σ(B(x1), A)

T → (αT1(βx1), αT2, γ T3) S → αA T → (x1, τ , ν)

with T = (T (x1), T2, T3). This MCFTG G is not only almost �-growing, but even �-growing. It is also almost {α, τ }-growing,
which proves that L(G) has finite {α, τ }-ambiguity by Lemma 28 (as observed in Example 25). The only rules of G (without
rules with left-hand side B ′) that are not �-lexicalized are

A → T1(σ (B(T2), T3)) B(x1) → σ(B(x1), A)

B(x1) → σ(x1, T1(σ (B(T2), T3))) B(x1) → σ(B(x1), B ′(A)) B(x1) → σ(x1, B ′(A)) .

It is easy to lexicalize this grammar. The first non-lexicalized rule ρ2 = A → T1(σ (B(T2), T3)) can be replaced by the two
lexicalized rules A → αT1(β(σ (B(αT2), γ T3))) and A → σ(B(τ), ν) that are obtained from ρ2 by applying the two rules
for T to its right-hand side. By Lemma 4(4) this process preserves L(G), and it should be clear that the resulting grammar
is LDTR-equivalent to G . Now all four rules for A are lexicalized. The remaining non-lexicalized rule in the first column
can be replaced by two lexicalized rules in the same way. Finally, the same process can be used for all the remaining
non-lexicalized rules by applying the four lexicalized rules for A to their right-hand sides; this does, however, not preserve
LDTR-equivalence.21 �

It remains to construct an equivalent �-growing MCFTG, which is the main result of this section.

Theorem 38. It is decidable whether or not the MCFTG G has finite �-ambiguity, and if so, there is an LDTR-equivalent �-growing
MCFTG G ′ . Moreover, θ(G ′) = θ(G) and μ(G ′) = μ(G).

Proof. By Lemma 36 it suffices to show that there is an LDTR-equivalent �-growing MCFTG G ′ provided that G is al-
most �-growing. Consequently, it remains to remove all non-initial terminal rules that are singly �-lexicalized, using the
construction in the proof of Lemma 29. Let

F = {t ∈ P�(X)+ | |pos�(t)| = 1} ,

and let F be the set of all (terminal) rules A → u ∈ R such that u ∈ F . Note that T F = F . Since G is almost �-growing,
val(d) ∈ F if and only if d ∈ T F , for every d ∈ L(Gder, A). In fact, since all non-initial terminal rules are �-lexicalized,
pos�(val(d′)) �= ∅ for every d′ ∈ L(Gder, B) with B ∈ N \ {S}. Hence, if d = ρ(d1, . . . , dk) with k ≥ 1, then either k ≥ 2
and both val(d1) and val(d2) contribute a lexical position to val(d), or k = 1 and both val(d1) and the right-hand side

21 The resulting MCFTG is X -equivalent to G for the class X of tree transductions realized by finite-copying deterministic top-down tree transducers with
regular look-ahead.

58 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
of ρ contribute a lexical position to val(d) because the monic rule ρ is �-lexicalized. Thus, F satisfies requirement (2) of
Lemma 29. Additionally, F satisfies requirement (1) of Lemma 29 because

L(G, A) ∩F = val(L(Gder, A) ∩ T F) = {u | A → u ∈ F } .

Let FA = {u | A → u ∈ F } for every A ∈ N , and let G ′ be the LDTR-equivalent MCFTG as constructed in the proof of
Lemma 29. If ρ = A → (u, L) is a rule of G , and f is a substitution function for L such that f (B) ∈ FB ∪ {in(B)} for ev-
ery B ∈L, then the new rule ρ f = A → (u[f], {B ∈L | f (B) = in(B)}) is either equal to the old rule ρ (because f (B) = in(B)

for all B ∈ L) or is �-lexicalized (because f (B) ∈ F for some B ∈ L). This implies that G ′ is almost �-growing. Moreover,
ρ f is a rule of G ′ only if u[f] /∈F , so G ′ does not have non-initial terminal rules that are singly �-lexicalized, and hence is
�-growing.

We finally observe that G ′ has the same ranked alphabet N of nonterminals and the same set N of big nonterminals
as G , as one can easily check from the constructions in Lemmas 29 and 33. That implies that θ(G ′) = θ(G) and that
μ(G ′) = μ(G). �

Example 39. We have seen that the new grammar G in Example 37 is almost {α, τ }-growing. However, it is not
{α, τ }-growing because the right-hand side of each terminal rule has exactly one lexical position (always labeled τ). Let
F be the set of all terminal rules of G; i.e.,

F = {
A → σ(τ ,ν), B(x1) → σ(x1,σ (τ , ν)), B ′(x1) → σ(x1,σ (τ , ν)), (T1(x1), T2, T3) → (x1, τ , ν)

}
.

In the construction in the proof of Theorem 38 we apply the rules of F in all possible ways to the right-hand sides of the
other rules of G (and then remove the rules F). As an example, the rule B(x1) → σ(x1, B ′(A)) is replaced by itself and the
following three additional {α, τ }-growing rules

B(x1) → σ
(
x1,σ (A,σ (τ , ν))︸ ︷︷ ︸

B ′(A)

)
B(x1) → σ

(
x1, B ′(σ (τ , ν)︸ ︷︷ ︸

A

)
)

B(x1) → σ
(
x1,σ (σ (τ , ν)︸ ︷︷ ︸

A

,σ (τ , ν))

︸ ︷︷ ︸
B ′(σ (τ ,ν))

)
,

in which we marked the substitutions. �
Since every MCFTG has finite �-ambiguity, we obtain the following result from Theorem 38. It generalizes the corre-

sponding result of [90,91] for spCFTGs, which is the special case μ(G) = 1.

Corollary 40. For every MCFTG G there is an LDTR-equivalent �-growing MCFTG G ′ . Moreover, θ(G ′) = θ(G) and μ(G ′) = μ(G).

At the end of this section we consider an additional basic normal form for MCFTGs that generalizes one that is familiar
from multiple context-free grammars (viz. condition (N3) of [88, Lemma 2.2]), and will be needed in Section 6.1. We say
that the MCFTG G is nonerasing if ui �= x1 for every rule (A1, . . . , An) → ((u1, . . . , un), L) and every i ∈ [n]. Note that in a
grammar G , the tree ui can only be equal to x1 if rk(Ai) = 1.

Lemma 41. For every MCFTG G there is an LDTR-equivalent nonerasing MCFTG G ′ . If the grammar G is �-lexicalized, then so is G ′ .
Moreover, θ(G ′) = θ(G) and μ(G ′) = μ(G).

Proof. For a sequence w = (a1, . . . , an) we denote, in this proof only, [n] by num(w), and a j by w| j for every j ∈ num(w).
For every � ⊆ num(w), we denote by w|� the “scattered subsequence” (a j1 , . . . , a jm) of w , in which � = { j1, . . . , jm} and
1 ≤ j1 < · · · < jm ≤ n. Intuitively, w|� is obtained from w by selecting the j-th element of w for every j ∈ �.

By Lemma 31 we may assume that all terminal rules of G = (N, N , �, S, R) are �-lexicalized. Moreover, we can assume
that G has disjoint big nonterminals, as observed after Lemma 21. The set N ′ of big nonterminals of the new grammar
G ′ = (N, N ′, �, S, R ′) consists of all A|� such that A ∈ N , � ⊆ num(A), � �= ∅, and rk(A| j) = 1 for every j ∈ num(A) \ �.
Intuitively, � selects those nonterminals of A that do not generate x1. Since all terminal rules of G are �-lexicalized, it is
not possible that all nonterminals of A generate x1. Note that S = S|{1} and that for every A′ ∈N ′ there are a unique A ∈N
and a unique � ⊆ num(A) such that A′ = A|� because G has disjoint big nonterminals. Note also that num(A) = num(u)

for every rule A → (u, L) of G .
Let ρ = A → (u, L) be a rule of G with L = {B1, . . . , Bk} ⊆ N , and let �1, . . . , �k ⊆ N such that Bi |�i ∈ N ′ for

every i ∈ [k]. Finally, let u′ = u[Bi | j ← x1 | i ∈ [k], j /∈ �i], and let � = { j ∈ num(A) | u′| j �= x1}. Then R ′ contains the
rule ρ�1,...,� = A|� → (u′|�, L′) with L′ = {B1|�1 , . . . , Bk|� } provided that � �= ∅. This concludes the definition of G ′ .
k k

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 59
For every derivation tree d ∈ L(Gder, A) we define �(d) = { j ∈ num(A) | val(d)| j �= x1}. Then, as already observed before,
we have A|�(d) ∈ N ′ . It is straightforward to verify that if d = ρ(d1, . . . , dk), where ρ is the rule of the previous paragraph,
then the left-hand side of the rule ρ�(d1),...,�(dk) is A|�(d) because val(d)| j = x1 if and only if u| j = wx1 with

w ∈ {Bi|� | i ∈ [k], � ∈ num(Bi), val(di)|� = x1}∗ .

For every derivation tree d ∈ L(Gder, A) there exists a derivation tree d′ ∈ L(G ′
der, A|�(d)) such that val(d′) = val(d)|�(d) . In

fact, let d = ρ(d1, . . . , dk), and let d′
i ∈ L(G ′

der, Bi |�(di)) be a derivation tree such that val(d′
i) = val(di)|�(di) for every i ∈ [k],

which exist by the induction hypotheses. By Lemma 4(2) we have val(d′) = val(d)|�(d) for d′ = ρ�(d1),...,�(dk)(d
′
1, . . . , d

′
k). This

shows that L(G) ⊆ L(G ′). Clearly, L� = {d ∈ L(Gder, A) | �(d) = �} is a regular tree language for every �. Thus, d′ can be
computed from d by the one-state LDTR-transducer M with the rules

〈q,ρ(y1 : L�1 , . . . , yk : L�k)〉 → ρ�1,...,�k (〈q, y1〉, . . . , 〈q, yk〉) .

Vice versa, for every derivation tree d′ ∈ L(G ′
der, A|�) there is a derivation tree d ∈ L(Gder, A) such that M(d) = d′ and

� = �(d), where A is uniquely determined by A|� because G has disjoint big nonterminals. In fact, let d′ = ρ ′(d′
1, . . . , d

′
k)

with d′
i ∈ L(G ′

der, Bi |�i). Then there exists a rule ρ as above such that ρ ′ = ρ�1,...,�k . Clearly, if di ∈ L(Gder, Bi) such that
M(di) = d′

i and �i = �(di), then M(d) = d′ and � = �(d) for d = ρ(d1, . . . , dk). Thus L(G ′) ⊆ L(G), and d can be computed
by an LDT-transducer. �

5. Lexicalization

In this section, in Lemma 43, we present the main lexicalization step, in which we lexicalize all non-monic non-
terminal rules. It generalizes the transformation of a context-free grammar into Operator Normal Form (see [46, Theo-
rem 1.2] and [3, Theorem 3.5]). We assume that G is �-growing (see Theorem 38). Thus, all non-initial terminal rules
are doubly �-lexicalized and all monic rules are �-lexicalized. In the following we will simply write ‘lexicalized’ to mean
‘�-lexicalized’.

For a derivation tree d ∈ L(Gder) and a position r ∈ pos(d) such that d(r) is a non-lexicalized rule of rank at least 2,
we say that the “source” of r is the first position q in a pre-order traversal of the second direct subtree of r (i.e., the
subtree at r2) such that d(q) is a doubly lexicalized rule. Clearly, since every terminal rule at the leaves of d is doubly
lexicalized, such a position exists and can be found by only exploring the first children of each visited node; i.e., q = r21m

for some m ∈ N0. The basic idea of the lexicalization construction is to remove one lexical symbol δ from the source q
and transport it to the “target” r. Then d(q) is still lexicalized, and d(r) has become lexicalized. Note that different targets
have different sources, which is a simple fact that is well known to be useful (cf. [76, Section 3] and [47, page 346]). The
transportation of δ from the source node q to the target node r is the task of the non-lexicalized or singly lexicalized rules
at the positions along the path from q to r. The required relabeling of the derivation tree can be realized deterministically
by an LDTR-transducer that uses its look-ahead at r to determine the node label d(q). From the rewriting point of view
(Section 3.3), it is a guess-and-verify process. We guess δ at position r and verify it at position q.

Example 42. As before, let � = {α, β, τ , ν}. Since the resulting grammar G in Example 37 can be lexicalized by sim-
ple substitution of rules (as discussed in Example 37), we consider another �-growing grammar, which is similar to
the original grammar of Example 7, but has an additional non-lexicalized rule A → B(γ (A)). Moreover, we replace the
rule ρ4 = B(x1) → x1 by the two doubly lexicalized rules B(x1) → σ(x1, αT1(βσ (αT2, γ T3))) and B(x1) → σ(x1, σ(τ , ν)),
which are taken from Example 37. The (big) nonterminal B ′ remains an alias of B . The resulting �-growing MCFTG, which
we again call G , has the following rules (renamed with respect to Example 7):

ρ1 : S → αA ρ2 : A → T1(σ (B(T2), T3))

ρ3 : A → B(γ A)

ρ4 : B(x1) → σ(B(x1), B ′(A)) ρ ′
4 : B ′(x1) → σ(B(x1), B ′(A))

ρ5 : B(x1) → σ(x1,αT1(βσ (αT2, γ T3))) ρ ′
5 : B ′(x1) → σ(x1,αT1(βσ (αT2, γ T3)))

ρ6 : B(x1) → σ(x1,σ (τ , ν)) ρ ′
6 : B ′(x1) → σ(x1,σ (τ , ν))

ρ7 : T → (αT1(βx1), αT2, γ T3) ρ8 : T → (x1, τ , ν)

with T = (T1(x1), T2, T3). Rule ρ1 is singly lexicalized, whereas rules ρ2, ρ3, ρ4, and ρ ′
4 are non-lexicalized. The remaining

rules are doubly lexicalized. We will remove the lexical symbol β or τ from each doubly lexicalized rule that labels a source
and transport it to the target. For our derivation trees, we need to fix the order of the big nonterminals in the rules, so we
let

L(ρ2) = {B, (T1, T2, T3)} L(ρ3) = {A, B} and L(ρ4) = L(ρ ′) = {B, B ′, A} .
4

60 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Fig. 7. Derivation tree of L(Gder) for the MCFTG G of Example 42 with indicated sources, targets, and transported lexical elements, where t268 = ρ2(ρ6, ρ8)

with τ transported from ρ8 to ρ2.

Fig. 7 shows a derivation tree of L(Gder) together with arrows indicating sources, corresponding targets, and transported
lexical elements. A transportation of β is marked by a dashed arrow, whereas a transport of τ is marked by a dotted arrow. �

We need some more terminology. Let 	 be a ranked alphabet (such as N ∪ �) and let X∞ = X \ {�}; i.e.,
X∞ = {x1, x2, . . . }. For a finite subset Z of X∞ , if Z = {xi1 , . . . , xin } with n ∈ N0 and i1 < i2 < · · · < in , then we define
seq(Z) = xi1 · · · xin ∈ X∗∞ , the sequence of variables in Z with increasing indices. A tree t in T	(X) is linear if each variable
occurs at most once in it; i.e., |posx(t)| ≤ 1 for every x ∈ X . For a linear tree t ∈ T	(X), we denote by var(t) the set of
variables xi that occur in t; i.e., var(t) = occX∞(t). If seq(var(t)) = xi1 · · · xin , then we define ren(t) = t[xi j ← x j | 1 ≤ j ≤ n],
the renumbering of t , which is a pattern in P	(Xn) if � does not occur in t . Note that t = ren(t)[x j ← xi j | 1 ≤ j ≤ n]. As
an example, if t = σ(x4, σ(x2, x5)) then var(t) = {x2, x4, x5}, seq(var(t)) = x2x4x5, and ren(t) = σ(x2, σ(x1, x3)). We will use
the easy fact that if h is a tree homomorphism over 	 and t ∈ T	(X) is linear, then ĥ(t) is linear and var(ĥ(t)) = var(t) by
Lemma 1(1), and ren(ĥ(t)) = ĥ(ren(t)) by Lemma 2.

To define contexts, we use the special variable �. A context is a tree t with exactly one occurrence of �; i.e., |pos
�
(t)| = 1.

For a linear context t ∈ T	(X) we define ren�(t) = ren(t)[� ← xn+1], where n = |var(t)|. Note that ren�(t) is a pattern
in P	(Xn+1). The above fact also holds for contexts: ĥ(t) is a linear context and, by Lemma 2 again, ren�(ĥ(t)) = ĥ(ren�(t)).

For a tree t ∈ T	(Xk) and a position p ∈ pos	(t), there exist a unique context c ∈ T	(Xk ∪ {�}) and a unique tree
u ∈ T	(Xk) such that pos

�
(c) = {p} and t = c[� ← u]. The context c is called the p-context of t and denoted by t|p , and the

tree u is called the subtree of t at p and denoted by t|p . If p ∈ posω(t) with rk(ω) = m, then t = t|p[� ← ω(t|p1, . . . , t|pm)].
Let h be a tree homomorphism over 	. By Lemma 2, ĥ(c[� ← u]) = ĥ(c)[� ← ĥ(u)]. Thus, if pos

�
(ĥ(t|p)) = {p̂}, then

ĥ(t|p) = ĥ(t)|p̂ and ĥ(t|p) = ĥ(t)|p̂ . Moreover, if p ∈ posω(t) and h(ω) = in(ω), then p̂ ∈ posω(ĥ(t)) and ĥ(t|pi) = ĥ(t)|p̂i for
every i ∈ [m].

Lemma 43. For every �-growing MCFTG G there exists a �-lexicalized MCFTG G ′ that is LDTR-equivalent to G.

Proof. Let G = (N, N , �, S, R) be a �-growing MCFTG. We can assume that all its terminal rules are doubly lexicalized
because initial terminal rules can be removed from G and added after lexicalization. Moreover, for technical convenience,
we assume that there is a subset �dl of � such that (1) for every doubly lexicalized rule A → (u, L) there is a lexical
symbol δ ∈ �dl that occurs exactly once in u, and (2) for every singly lexicalized rule A → (u, L), the lexical symbol that
occurs in u is not an element of �dl. This can be assumed because we could even assume that G is uniquely terminal
labeled as defined after Lemma 22. In fact, as observed there, G has a cover (Gu, h) such that Gu = (N, N , �u, S, Ru) is
uniquely terminal labeled. If we let �u = {σ ∈ �u | h(σ) ∈ �}, then Gu is �u-growing. Let G ′

u be a �u-lexicalized MCFTG
that is LDTR-equivalent to Gu, and let G ′ = (G ′

u)h; i.e., G ′ is the unique MCFTG such that (G ′
u, h) is a cover of G ′ . Then G ′ is

�-lexicalized. Moreover, G is LDTR-ĥ-equivalent to Gu and G ′ is LDTR-ĥ-equivalent to G ′
u, by Lemma 22. Consequently, we

can conclude that G and G ′ are LDTR-equivalent. This shows that we could even assume that G is uniquely terminal labeled.
However we do not do so, because we wish to illustrate the construction in this proof on the grammar G of Example 42,
for which �dl = {β, τ }.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 61
For every doubly lexicalized rule ρ = A → (u, L) of G , let lex(ρ) ∈ �dl be a fixed lexical symbol that occurs exactly
once in u. In the grammar G ′ to be constructed, this symbol will possibly be removed from u, leaving a rule that is still
lexicalized.

We let

Nnew = {〈C, δ, i, Z〉 | C ∈ N, δ ∈ �dl, 0 ≤ i ≤ rk(δ), Z ⊆ Xrk(C)}
be a set of new nonterminals such that rk(〈C, δ, 0, Z〉) = |Z | + 1 and rk(〈C, δ, i, Z〉) = |Z | for every i ∈ [rk(δ)]. The gram-
mar G ′ will have the set of nonterminals N ′ = N ∪ Nnew.

Let us provide some intuition for these new nonterminals. We first observe that for every derivation tree d ∈ L(Gder, A)

there is a natural label-preserving bijection τd between the sets pos�(val(d)) and
⋃

q∈pos(d)

({q} × pos�(rhs(d(q)))
)
; i.e.,

between the set of terminal positions of val(d) and the disjoint union of the sets of terminal positions of the right-hand
sides of the rules that occur in d, cf. Lemma 10(1). For positions q ∈ pos(d) and p ∈ pos�(rhs(d(q))), let τd(q, p) be the
corresponding position in pos�(val(d)). Since τd is only needed in this paragraph, we do not give its straightforward, but
tedious, definition. The existence of τd should be intuitively clear, and can be proved by induction on the structure of d;
the induction step is based on the fact that for a tree homomorphism h over N ∪ � and a forest u, there is a natural
label-preserving bijection between the sets pos�(ĥ(u)) and

⋃
q∈pos(u)

({q} × pos�(h(u(q)))
)
, cf. Lemma 1(2). Now, roughly

speaking, the intuition for the new nonterminals is the following. Consider a derivation tree d ∈ L(Gder, A), and let q be the
shortest position of d of the form 1m for some m ∈N0 such that ρ = d(q) is doubly lexicalized. Thus, q is a potential source
for a target that has d as its second direct subtree (in some other derivation tree). Let lex(ρ) = δ, and let p ∈ pos�(rhs(ρ))

be the unique δ-labeled position of the right-hand side of rule ρ . Moreover, suppose that the corresponding δ-labeled
position τd(q, p) of val(d) belongs to the j-th tree t of the forest val(d) with 1 ≤ j ≤ |A|; i.e., τd(q, p) = # j−1 p′ with
p′ ∈ pos(t). Let the nonterminal C be the j-th element of the big nonterminal A. Thus, C (as part of A) generates (in G) the
terminal tree t . Then 〈C, δ, 0, Z0〉 generates (in G ′) the p′-context of t (with � at position p′), and 〈C, δ, i, Zi〉 generates the
subtree of t at p′i for every i ∈ [rk(δ)]. The sets Z0 and Zi consist of the variables that occur in that context and that subtree,
so Z0 = var(t|p′

) and Zi = var(t|p′ i). To be more precise, 〈C, δ, 0, Z0〉 generates ren�(t|p′
) and 〈C, δ, i, Zi〉 generates ren(t|p′ i).

We now continue the formal proof. For a nonterminal C ∈ N , we say that the triple (C, δ, Z) is a skeleton of C if δ ∈ �dl

and Z = (Z0, Z1, . . . , Zm), where m = rk(δ) and {Z0, Z1, . . . , Zm} is a partition of Xrk(C) .22 For such a skeleton, we will
denote by tree(C, δ, Z) the tree

〈C, δ,0, Z0〉 seq(Z0) δ(〈C, δ,1, Z1〉 seq(Z1), . . . , 〈C, δ,m, Zm〉 seq(Zm))

of which we observe (for clearness sake) that it looks as follows:

〈C, δ,0, Z0〉

z0
1

. . . z0|Z0| δ

〈C, δ,1, Z1〉

z1
1

. . . z1|Z1|

. . . 〈C, δ,m, Zm〉

zm
1

. . . zm|Zm|

where seq(Zi) = zi
1 · · · zi|Zi | for every 0 ≤ i ≤ m. Note that tree(C, δ, Z) ∈ P Nnew∪{δ}(Xrk(C)). Moreover, we will denote

ydNnew
(tree(C, δ, Z)) by seq(C, δ, Z); i.e., seq(C, δ, Z) is the sequence

〈C, δ,0, Z0〉〈C, δ,1, Z1〉 · · · 〈C, δ,m, Zm〉 .

Obviously, the skeleton (C, δ, Z) can be reconstructed from seq(C, δ, Z), and thus from tree(C, δ, Z).
To motivate tree(C, δ, Z) and seq(C, δ, Z), we observe that for every pattern t ∈ P N ′∪�(Xrk(C)) and every δ-labeled posi-

tion p′ of t (i.e., p′ ∈ posδ(t)), the pattern t can be decomposed as

t = tree(C, δ, Z)[seq(C, δ, Z) ← (t0, t1, . . . , tm)] ,

where t0 = ren�(t|p′
) is the renumbered p′-context and Z0 = var(t|p′

) is the set of its variables before renumbering, and
moreover, for every i ∈ [m], ti = ren(t|p′ i) is the renumbered subtree at p′i and Zi = var(t|p′ i) is the set of its variables
before renumbering. Intuitively, tree(C, δ, Z) can be viewed as the “skeleton” of this decomposition, which was our reason
to call (C, δ, Z) a skeleton of C .

22 Recall from the beginning of Section 2 that we allow the empty set to be an element of a partition. Thus, we allow Zi = ∅.

62 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
We let Nnew be the new set of big nonterminals of the form β · seq(C, δ, Z) · γ , where βCγ ∈ N with C ∈ N and
β, γ ∈ N∗ , and (C, δ, Z) is a skeleton of C . We now construct the new MCFTG G ′ = (N ′, N ′, �, S, R ′) with N ′ = N ∪ Nnew
and N ′ = N ∪ Nnew. To define the set R ′ of rules of G ′ , we first define an auxiliary MCFTG G+ = (N ′, N ′, �, S, R ∪ R+)

where R+ is a set of new rules that, intuitively, realize the transport of a lexical symbol from a source to a target (but not
yet its arrival at the target).

For every doubly lexicalized rule ρ = A1 · · · An → ((u1, . . . , un), L) of G with L = {B1, . . . , Bk} (in that order), Ai ∈ N , and
ui ∈ P N∪�(Xrk(Ai)), we define a skeleton κ(ρ) and a new rule ρ in R+ as follows. Let δ = lex(ρ) and let # j−1 p be the unique
δ-labeled position of (u1, . . . , un), so j ∈ [n] and posδ(u j) = {p}. Moreover, let u = u j , rk(δ) = m, and Z = (Z0, Z1, . . . , Zm)

with Z0 = var(u|p) and Zi = var(u|pi) for every i ∈ [m]. Then we define κ(ρ) = (A j, δ, Z). Note that u ∈ P N∪�(Xrk(A j)) and
hence (A j, δ, Z) is a skeleton of A j . Additionally, we define the rule

ρ = A1 · · · A j−1 · seq(A j, δ, Z) · A j+1 · · · An → ((u1, . . . , u j−1, v0, v1, . . . , vm, u j+1, . . . , un), L) ,

where v0 = ren�(u|p) and vi = ren(u|pi) for every i ∈ [m] (and L = {B1, . . . , Bk}, in the same order). Clearly, ρ is lexicalized
because |pos�((u1, . . . , un))| ≥ 2 and |pos�((v0, . . . , vm))| = |pos�(u)| − 1.

For every non-lexicalized or singly lexicalized rule ρ = A1 · · · An → ((u1, . . . , un), L) of G with L = {B1, . . . , Bk} and
k ≥ 1, and for every skeleton (C, δ, W) such that C ∈ occ(B1), we define a skeleton κ(ρ, (C, δ, W)) and a new rule ρC,δ,W

in R+ as follows. Let j ∈ [n] be the unique integer such that C ∈ occN (u j), and let u′ = u j[C ← tree(C, δ, W)]. Moreover,
let rk(δ) = m, posδ(u′) = {p},23 and Z = (Z0, Z1, . . . , Zm) with Z0 = var(u′|p) and Zi = var(u′|pi) for every i ∈ [m]. Then we
define κ(ρ, (C, δ, W)) = (A j, δ, Z). Let B1 = βCγ for some β, γ ∈ N∗ , which are unique because B1 is repetition-free. Then
we define the rule

ρC,δ,W = A1 · · · A j−1 · seq(A j, δ, Z) · A j+1 · · · An → ((u1, . . . , u j−1, v ′
0, v ′

1, . . . , v ′
m, u j+1, . . . , un), L′) ,

where v ′
0 = ren�(u′|p) and v ′

i = ren(u′|pi) for every i ∈ [m]. Additionally, L′ = {B ′
1, B2, . . . , Bk} with B ′

1 = β · seq(C, δ, W) ·γ .
Note that ρC,δ,W is non-lexicalized or singly lexicalized, respectively, because

|pos�((v ′
0, v ′

1, . . . , v ′
m))| = |pos�(u′)| − 1 = |pos�(u j)| .

These are all the rules of R+ . Thus, G+ is the grammar obtained from G by adding all the above new rules ρ and ρC,δ,W

to R . It is straightforward to check that from the rule ρ the original rule ρ can be reconstructed, and similarly, from ρC,δ,W

we can reconstruct both ρ and (C, δ, W). Note that all terminal and all monic rules of G+ are lexicalized.
We now define the set R ′ of rules of G ′ . First, R ′ contains all lexicalized rules of G+ . Second, we define rules that realize

the arrival of a lexical symbol δ′ at a target. Let ρ = A → (u, L) be a non-lexicalized rule of G+ with L = {B1, . . . , Bk},
where k ≥ 2, B1 ∈ N ∪ Nnew, and Bi ∈ N for 2 ≤ i ≤ k. For every skeleton (C ′, δ′, Z) such that C ′ ∈ occ(B2), we define
the new rule 〈ρ〉C ′,δ′,Z in R ′ as follows. Let B2 = βC ′γ with C ′ ∈ N and β, γ ∈ N∗ , which are again unique because
B2 is repetition-free. Then 〈ρ〉C ′,δ′,Z = A → (u′, L′), where u′ = u[C ′ ← tree(C ′, δ′, Z)] and L′ = {B1, B ′

2, B3, . . . , Bk} with
B ′

2 = β · seq(C ′, δ′, Z) · γ . Clearly, 〈ρ〉C ′,δ′,Z is lexicalized because δ′ occurs in its right-hand side. It is easy to check that
from the rule 〈ρ〉C ′,δ′,Z we can reconstruct both ρ and (C ′, δ′, Z). Thus, R ′ consists of:

• all lexicalized rules ρ of G ,
• all rules ρ , where ρ is a doubly lexicalized rule of G ,
• all rules ρC,δ,W , where ρ is a singly lexicalized rule of G , and
• all rules 〈ρ〉C ′,δ′,Z and 〈ρC,δ,W 〉C ′,δ′,Z , where ρ is a non-lexicalized rule of G .

This ends the construction of G ′ . It remains to show that G and G ′ are LDTR-equivalent. We first show how to transform
the derivation trees of G into those of G ′ . We start by defining a skeleton for every derivation tree of G .

For every derivation tree d ∈ L(Gder, A) we define a skeleton κ(d) = (C, δ, Z) with C ∈ occ(A) (and δ = lex(ρ) for the
label ρ of the shortest position of d of the form 1m such that ρ is doubly lexicalized). The definition is by induction on the
structure of d = ρ(d1, . . . , dk). If ρ is a doubly lexicalized rule (in particular if k = 0), then we define κ(d) = κ(ρ) as defined
above. Otherwise ρ is not doubly lexicalized (and so k ≥ 1); let ρ = A → (u, L) with L = {B1, . . . , Bk}. By the induction
hypothesis we have κ(d1) = (C, δ, W), where C ∈ occ(B1). Then we define κ(d) = κ(ρ, (C, δ, W)) as defined above. Clearly,
for every skeleton (C, δ, Z), the set of derivation trees

LC,δ,Z = {d ∈
⋃

A∈N
L(Gder, A) | κ(d) = (C, δ, Z)}

is a regular tree language, which can be recognized by a deterministic bottom-up finite tree automaton using all skeletons
as states.

23 Note that by our second assumption on G , the symbol δ does not occur in u j because δ ∈ �dl and ρ is non-lexicalized or singly lexicalized.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 63
For every derivation tree d ∈ L(Gder, A) we define two derivation trees dtr1(d) and dtr2(d) of G ′ with dtr1(d) ∈ L(G ′
der, A)

and dtr2(d) ∈ L(G ′
der, β · seq(C, δ, Z) · γ), where κ(d) = (C, δ, Z) and A = βCγ with β, γ ∈ N∗ . These two derivation trees

are relabelings of d. They are defined by induction on the structure of d = ρ(d1, . . . , dk).

• If ρ is a doubly lexicalized rule (in particular, if k = 0), then we define

dtr1(d) = ρ(dtr1(d1), . . . ,dtr1(dk))

dtr2(d) = ρ(dtr1(d1), . . . ,dtr1(dk)) .

• Now let ρ = A → (u, L) be a rule with L = {B1, . . . , Bk} that is not doubly lexicalized (and hence k ≥ 1). Moreover,
let κ(d1) = (C, δ, W), where C ∈ occ(B1).
– If ρ is singly lexicalized, then we define

dtr1(d) = ρ(dtr1(d1), . . . ,dtr1(dk))

dtr2(d) = ρC,δ,W (dtr2(d1),dtr1(d2), . . . ,dtr1(dk)) .

– If ρ is non-lexicalized, and thus k ≥ 2, then we let κ(d2) = (C ′, δ′, Z) with C ′ ∈ occ(B2), and we define

dtr1(d) = 〈ρ〉C ′,δ′,Z (dtr1(d1),dtr2(d2),dtr1(d3), . . . ,dtr1(dk))

dtr2(d) = 〈ρC,δ,W 〉C ′,δ′,Z (dtr2(d1),dtr2(d2),dtr1(d3), . . . ,dtr1(dk)) .

Clearly, there is an LDTR-transducer M that transforms d ∈ L(Gder) into dtr1(d) ∈ L(G ′
der). It has states q1 and q2 with

initial state q1, and it uses the regular tree languages LC,δ,Z as look-ahead. It has the following rules, corresponding directly
to the above definitions, where 〈q1, yi · · · yk〉 abbreviates 〈q1, yi〉, . . . , 〈q1, yk〉 for i ∈ [k]:

• for every doubly lexicalized rule ρ

〈q1, ρ(y1, . . . , yk)〉 → ρ(〈q1, y1 · · · yk〉)
〈q2, ρ(y1, . . . , yk)〉 → ρ(〈q1, y1 · · · yk〉)

• for every singly lexicalized rule ρ and every skeleton (C, δ, W)

〈q1, ρ(y1, . . . , yk)〉 → ρ(〈q1, y1 · · · yk〉)
〈q2, ρ(y1 : LC,δ,W , y2, . . . , yk)〉 → ρC,δ,W (〈q2, y1〉, 〈q1, y2 · · · yk〉)

• and for every non-lexicalized rule ρ and all skeletons (C ′, δ′, Z) and (C, δ, W)

〈q1, ρ(y1, y2 : LC ′,δ′,Z , y3, . . . , yk)〉 → 〈ρ〉C ′,δ′,Z (〈q1, y1〉, 〈q2, y2〉, 〈q1, y3 · · · yk〉)
〈q2, ρ(y1 : LC,δ,W , y2 : LC ′,δ′,Z , y3, . . . , yk)〉 → 〈ρC,δ,W 〉C ′,δ′,Z (〈q2, y1〉, 〈q2, y2〉, 〈q1, y3 · · · yk〉) .

We will prove below that d and dtr1(d) have the same value. However, to express the relationship between val(d) and
val(dtr2(d)), we need the following definition. Let A ∈ N be a big nonterminal and (C, δ, Z) be a skeleton such that A = βCγ
for some β, γ ∈ N∗ . Moreover, let s and s′ be forests in P�(X)+ such that rk(s) = rk(A) and s = ζ tη for some ζ, η ∈ P�(X)∗
with |ζ | = |β| and t ∈ P�(Xrk(C)). We note that β , γ , ζ , t , and η are unique given A, C , and s. We say that s′ decomposes s

for A and (C, δ, Z) if there exists a position p′ ∈ posδ(t) such that s′ = ζ · (t0, t1, . . . , tm) · η, where m = rk(δ), t0 = ren�(t|p′
),

Z0 = var(t|p′
), and ti = ren(t|p′ i) and Zi = var(t|p′ i) for every i ∈ [m].

We now prove by induction on the structure of d ∈ L(Gder, A) that

(i) val(dtr1(d)) = val(d) and
(ii) val(dtr2(d)) decomposes val(d) for A and κ(d).

Let d = ρ(d1, . . . , dk) and suppose that (i) and (ii) hold for d1, . . . , dk .

• We first consider the case where ρ is doubly lexicalized. Since (i) is obvious from the definition of ‘val’ and by the
induction hypotheses, it remains to prove (ii). Let ρ be as in the definition of ρ , and let us adopt the terminology in
that definition. Abbreviating [Bi ← val(di) | 1 ≤ i ≤ k] by [f], we obtain that

val(d) = (u1, . . . , u j−1, u, u j+1, . . . , un)[f] = ζ tη

val(dtr2(d)) = (u1, . . . , u j−1, v0, v1, . . . , vm, u j+1, . . . , un)[f] = ζ · (t0, t1, . . . , tm) · η ,

64 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
where the first equality in the second line uses the induction hypotheses and where we define ζ = (u1, . . . , u j−1)[f],
t = u[f], η = (u j+1, . . . , un)[f], and ti = vi[f] for every 0 ≤ i ≤ m. We know that v0 = ren�(u|p), Z0 = var(u|p),
and vi = ren(u|pi) and Zi = var(u|pi) for every i ∈ [m]. It remains to show that a position p′ ∈ posδ(t) exists with
t0 = ren�(t|p′

), Z0 = var(t|p′
), and ti = ren(t|p′ i) and Zi = var(t|p′ i) for every i ∈ [m]. We select the unique position

p′ ∈ pos
�
((u|p)[f]). Then, using the easy facts that are stated before this lemma (for the tree homomorphism corre-

sponding to [f]), we obtain that (u|p)[f] = u[f]|p′ = t|p′
with p′ ∈ posδ(t), and (u|pi)[f] = u[f]|p′ i = t|p′ i , and so

t0 = v0[f] = ren�(u|p)[f] = ren�(u|p[f]) = ren�(t|p′
)

Z0 = var(u|p) = var(u|p[f]) = var(t|p′
) ,

and similarly for ti = vi[f] and Zi for every i ∈ [m].
• Next we consider the case where ρ is non-lexicalized, and we prove (i). Let ρ be as in the definition of 〈ρ〉C ′,δ′,Z

with κ(d2) = (C ′, δ′, Z), where C ′ ∈ occ(B2), and let us adopt the terminology found there. By definition, we have
dtr1(d) = 〈ρ〉C ′,δ′,Z (dtr1(d1), dtr2(d2), dtr1(d3), . . . , dtr1(dk)). Hence,

val(dtr1(d)) = u[C ′ ← tree(C ′, δ′, Z)][B1 B ′
2 B3 · · · Bk ← val(d1)val(dtr2(d2))val(d3) · · · val(dk)] .

We know that B2 = βC ′γ and B ′
2 = β · seq(C ′, δ′, Z) · γ . Let val(d2) = ζ tη with |ζ | = |β|. By (ii) for d2, there ex-

ists p′ ∈ posδ(t) such that val(dtr2(d2)) = ζ · (t0, t1, . . . , tm) · η, where m = rk(δ), t0 = ren�(t|p′
), Z0 = var(t|p′

), and
ti = ren(t|p′ i) and Zi = var(t|p′ i) for every i ∈ [m]. By Lemmas 4(2) and 4(4), we now obtain that

val(dtr1(d)) = u
[
C ′ ← tree(C ′, δ′, Z)[seq(C ′, δ′, Z) ← (t0, t1, . . . , tm)]] [g] ,

where [g] = [B1 ·βγ · B3 · · · Bk ← val(d1) ·ζη ·val(d3) · · ·val(dk)]. As observed earlier (in the paragraph after the definition
of ‘tree’ and ‘seq’),

tree(C ′, δ′, Z)[seq(C ′, δ′, Z) ← (t0, t1, . . . , tm)] = t

and so, again by Lemmas 4(2) and 4(4),

val(dtr1(d)) = u[C ′ ← t] [g] = u[B1 · βC ′γ · B3 · · · Bk ← val(d1) · ζ tη · val(d3) · · · val(dk)] ,

which equals u[Bi ← val(di) | 1 ≤ i ≤ k] = val(d).
• Next we consider the case where the rule ρ is singly lexicalized. Again, (i) is obvious, so it remains to prove (ii). Let

ρ be as in the definition of ρC,δ,W , and let us adopt the terminology there. Note that ρ = A → ((u1, . . . , un), L)

with L = {B1, . . . , Bk} and B1 = βCγ . Consider the auxiliary new rule ρ ′ = A → ((u1, . . . , u j−1, u′, u j+1, . . . , un), L′),
in which L′ = {B ′

1, B2, . . . , Bk} and B ′
1 = β · seq(C, δ, W) · γ . This rule ρ ′ is analogous to the rule 〈ρ〉C,δ,W , ex-

cept that C occurs in B1 instead of B2 (and ρ is singly lexicalized instead of non-lexicalized). However, we
can prove val(d′) = val(d) exactly as in the previous case, where d′ = ρ ′(dtr2(d1), dtr1(d2), . . . , dtr1(dk)). Also, the
rule ρC,δ,W is analogous to the rule ρ ′ , if we define lex(ρ ′) = δ. In the first (doubly lexicalized) case we have
shown that the value of ρ(dtr1(d1), . . . , dtr1(dk)) decomposes the value of d = ρ(d1, . . . , dk) for A and κ(d) under
the assumption that dtr1(di) and di have the same value. In exactly the same way we can prove here that the
value of ρC,δ,W (dtr2(d1), dtr1(d2), . . . , dtr1(dk)) decomposes the value of d′ = ρ ′(dtr2(d1), dtr1(d2), . . . , dtr1(dk)) for
A and κ(d′). In other words, val(dtr2(d)) decomposes val(d) for A and κ(d′). Since κ(d′) = κ(ρ ′) = κ(ρ, (C, δ, W)),
which in turn equals κ(d), this proves (ii).

• It remains to prove (ii) in the case where the rule ρ is non-lexicalized. We now apply the argument that we used
to prove (i) to the rule ρC,δ,W instead of ρ . For ρC,δ,W we obtain from the previous case (even though ρ is a non-
lexicalized rather than a singly lexicalized rule) that the value of

ρC,δ,W (dtr2(d1),dtr1(d2), . . . ,dtr1(dk))

decomposes val(d) for A and κ(d). From the argument for (i) we obtain that the value of

〈ρC,δ,W 〉C ′,δ′,Z (dtr2(d1),dtr2(d2),dtr1(d3), . . . ,dtr1(dk))

equals the value of ρC,δ,W (dtr2(d1), dtr1(d2), . . . , dtr1(dk)), hence val(dtr2(d)) decomposes val(d) for A and κ(d).

This concludes the proof that L(G) ⊆ L(G ′). To prove the converse L(G ′) ⊆ L(G), it is straightforward to check that, vice versa,
(i) for every derivation tree d′ ∈ L(G ′

der, A) there is a derivation tree d ∈ L(Gder, A) with dtr1(d) = d′ , and (ii) for every deriva-
tion tree d′ ∈ L(G ′

der, β · seq(C, δ, Z) · γ) there is a derivation tree d ∈ L(Gder, βCγ) with dtr2(d) = d′ and κ(d) = (C, δ, Z).
To be precise, in both cases d can be obtained from d′ by changing every label ρ , ρC,δ,W , 〈ρ〉C ′,δ′,Z , and 〈ρC,δ,W 〉C ′,δ′,Z into
just ρ . Thus, it is obvious that d can be computed from d′ by an LDT-transducer. Hence G and G ′ are LDTR-equivalent.

Finally, we present a procedure that directly constructs the reduced version of G ′ provided that G is reduced. For a
rule ρ = A → (u, L) with L = {B1, . . . , Bk}, we define bigni(ρ) = Bi for i ∈ [k] and bign0(ρ) = A.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 65
Fig. 8. The graphs g [left] and gred [right] constructed in Example 44.

• Construct the set Target ⊆N of all bign2(ρ), where ρ is a non-lexicalized rule.
• Construct the directed graph g with set N of nodes and with edges bign0(ρ) → bign1(ρ) for all non-lexicalized and

singly lexicalized rules ρ , and let gred be obtained from g by removing all nodes (and all incident edges) that are not
reachable from a node in Target.

• Let Skel be a variable set of skeletons, which is initialized to ∅.
• Compute all rules ρ such that bign0(ρ) is a node of gred, and add κ(ρ) to Skel.
• Repeat the following subitem until Skel does not change any more:

– compute all rules ρC,δ,W such that (C, δ, W) is in Skel and the edge bign0(ρ) → bign1(ρ) is in gred, and
add κ(ρ, (C, δ, W)) to Skel.

• Finally, compute all rules 〈ρ〉C ′,δ′,Z such that (C ′, δ′, Z) is in Skel, for the rules ρ obtained so far.

We leave the correctness of this procedure to the reader. �

Example 44. Let us lexicalize the new grammar G of Example 42, according to the construction in the proof of Lemma 43.
We immediately construct the reduced version of G ′ with the procedure presented at the end of the proof of that lemma.
Note that G satisfies the assumptions mentioned in the beginning of the proof for �dl = {β, τ }. For the doubly lexicalized
rules ρ of G; i.e., for the rules

ρ5 : B(x1) → σ(x1,αT1(βσ (αT2, γ T3))) ρ6 : B(x1) → σ(x1,σ (τ , ν))

ρ7 : T → (αT1(βx1), αT2, γ T3) ρ8 : T → (x1, τ , ν)

(and the rules ρ ′
5 and ρ ′

6) we define lex(ρ) = β if β occurs in ρ , and lex(ρ) = τ otherwise. We marked the lexical element
in the rules by underlining it. We obtain that Target = {T , B, B ′}, where T = (T1, T2, T3). The graphs g and gred are displayed
in Fig. 8. Since all doubly lexicalized rules ρ have their left-hand side in gred, we construct the new rule ρ for each of them.
We will use the following abbreviations for the new nonterminals

Bβ,0 = 〈B, β,0, {x1}〉 Bβ,1 = 〈B, β,1,∅〉 Bτ = 〈B, τ ,0, {x1}〉 of rank 2, 0, and 2, resp.

T1,β,0 = 〈T1, β,0,∅〉 T1,β,1 = 〈T1, β,1, {x1}〉 T2,τ = 〈T2, τ ,0,∅〉 all of rank 1.

Then we obtain the new rules ρ5 to ρ8:

ρ5 = (Bβ,0(x1, x2), Bβ,1) → (σ (x1,αT1(x2)), σ (αT2, γ T3))

ρ6 = Bτ (x1, x2) → σ(x1,σ (x2, ν))

ρ7 = (T1,β,0(x1), T1,β,1(x1), T2, T3) → (αT1(x1), x1, αT2, γ T3)

ρ8 = (T1(x1), T2,τ (x1), T3) → (x1, x1, ν) .

The construction of the first new rule is illustrated in the top box of Fig. 9. The rules ρ ′
5 and ρ ′

6 are obtained from ρ5 and ρ6
by changing every B into B ′ . Let Zβ = ({x1}, ∅), Zτ = ({x1}), Z ′

β = (∅, {x1}), and Z ′
τ = (∅). Then

Skel = {(B, β, Zβ), (B ′, β, Zβ), (B, τ , Zτ), (B ′, τ , Zτ), (T1, β, Z ′
β), (T2, τ , Z ′

τ)} .

The only non-lexicalized or singly lexicalized rules ρ with bign0(ρ) → bign1(ρ) in gred are the rules

ρ4 = B(x1) → σ(B(x1), B ′(A))

and the corresponding rule ρ ′
4 with left-hand side B ′(x1). Since its first link is the nonterminal B , we construct the new

rules ρC,δ,W for the skeletons (C, δ, W) ∈ {(B, β, Zβ), (B, τ , Zτ)} ⊆ Skel and rules ρ ∈ {ρ4, ρ ′
4}. For the right-hand side u

of ρ4 (and ρ ′
4) we get

u[B ← tree(B, β, Zβ)] = u[B ← Bβ,0(x1, β(Bβ,1))] = σ(Bβ,0(x1, β(Bβ,1)), B ′(A))

u[B ← tree(B, τ , Zτ)] = u[B ← Bτ (x1, τ)] = σ(Bτ (x1, τ), B ′(A)) ,

66 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Fig. 9. Illustration of the construction of the rule ρ5 extracting the underlined β [top box] by splitting the right-hand side into the parts above and below
the extracted symbol. In the construction of the rule (ρ4)B,β,Zβ

[bottom box] we first introduce the lexical element β (replacing B) and the corresponding
nonterminals [top rule] and then extract it again to obtain the final rule displayed at the bottom right.

and consequently we obtain the rules

(ρ4)B,β,Zβ = (Bβ,0(x1, x2), Bβ,1) → (σ (Bβ,0(x1, x2), B ′(A)), Bβ,1)

(ρ4)B,τ ,Zτ = Bτ (x1, x2) → σ(Bτ (x1, x2), B ′(A)) ,

and similar rules for ρ ′
4. The construction of the first rule is illustrated in the bottom box of Fig. 9. Clearly, the set Skel

does not change, so we do not have to repeat this step. In the final step we lexicalize the non-lexicalized (old and new)
rules by substituting tree(C ′, δ′, Z) for a nonterminal C ′ of the second link of each rule. From ρ2 = A → T1(σ (B(T2), T3))

we obtain the following two new rules, by substituting tree(T1, β, Z ′
β) = T1,β,0(β T1,β,1(x1)) and tree(T2, τ , Z ′

τ) = T2,τ (τ)

for T1 and T2 respectively:

〈ρ2〉T1,β,Z ′
β

= A → T1,β,0(β T1,β,1(σ (B(T2), T3)))

〈ρ2〉T2,τ ,Z ′
τ

= A → T1(σ (B(T2,τ (τ)), T3)) .

Moreover, from ρ3 = A → B(γ A) and ρ4 = B(x1) → σ(B(x1), B ′(A)) we obtain the new rules

〈ρ3〉B,β,Zβ = A → Bβ,0(γ A, βBβ,1)

〈ρ3〉B,τ ,Zτ = A → Bτ (γ A, τ)

〈ρ4〉B ′,β,Zβ
= B(x1) → σ(B(x1), B ′

β,0(A, βB ′
β,1))

〈ρ4〉B ′,τ ,Zτ = B(x1) → σ(B(x1), B ′
τ (A, τ))

and from the rules (ρ4)B,β,Zβ and (ρ4)B,τ ,Zτ we obtain

〈(ρ4)B,β,Zβ 〉B ′,β,Zβ
= (Bβ,0(x1, x2), Bβ,1) → (σ (Bβ,0(x1, x2), B ′

β,0(A, βB ′
β,1)), Bβ,1)

〈(ρ4)B,β,Zβ 〉B ′,τ ,Zτ = (Bβ,0(x1, x2), Bβ,1) → (σ (Bβ,0(x1, x2), B ′
τ (A, τ)), Bβ,1)

〈(ρ4)B,τ ,Zτ 〉B ′,β,Zβ
= Bτ (x1, x2) → σ(Bτ (x1, x2), B ′

β,0(A, βB ′
β,1))

〈(ρ4)B,τ ,Zτ 〉B ′,τ ,Zτ = Bτ (x1, x2) → σ(Bτ (x1, x2), B ′
τ (A, τ))

and similar rules for ρ ′ . The (reduced) lexicalized grammar G ′ has the rules
4

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 67
• ρ1, ρ5, ρ6, ρ7, ρ8, ρ5, ρ6, ρ7, ρ8,
• 〈ρ2〉T1,β,Z ′

β
, 〈ρ2〉T2,τ ,Z ′

τ
, 〈ρ3〉B,β,Zβ , 〈ρ3〉B,τ ,Zτ , 〈ρ4〉B ′,β,Zβ

, 〈ρ4〉B ′,τ ,Zτ ,

• 〈(ρ4)B,β,Zβ 〉B ′,β,Zβ
, 〈(ρ4)B,β,Zβ 〉B ′,τ ,Zτ , 〈(ρ4)B,τ ,Zτ 〉B ′,β,Zβ

, 〈(ρ4)B,τ ,Zτ 〉B ′,τ ,Zτ ,

and the corresponding rules for ρ ′
4, ρ ′

5, and ρ ′
6. Note that in all these rules, as in the grammar G of Example 7, there

is only one possibility for the set of links L. Note also that the left-hand sides of the primed rules are aliases of the
left-hand sides of the nonprimed ones. We finally observe that rules 〈ρ2〉T1,β,Z ′

β
and ρ7 can be replaced by one rule

A → αT1(βσ (B(αT2), γ T3)), and similarly 〈ρ2〉T2,τ ,Z ′
τ

and ρ8 can be replaced by A → σ(B(τ), ν). In fact, these rules
could have been obtained directly in the beginning as observed in Example 37. After this replacement, and disregarding
the primed rules for aliases, the resulting lexicalized grammar has 17 rules.

Consider in the derivation tree d of Fig. 7 the path from the root to the left-most leaf with label ρ8. The sequence of
node labels along this path is (ρ1, ρ2, ρ4, ρ ′

4, ρ4, ρ5, ρ8). In the derivation tree dtr1(d) of G ′
2 these nodes are relabeled to

(ρ1, 〈ρ2〉T1,β,Z ′
β
, 〈ρ4〉B ′,β,Zβ

, 〈(ρ ′
4)B,β,Zβ 〉B ′,τ ,Zτ , 〈(ρ4)B,β,Zβ 〉B ′,β,Zβ

,ρ5,ρ8) . �
We now state the main theorem of this paper.

Theorem 45. It is decidable for the MCFTG G whether or not G has finite �-ambiguity, and if so, there is a �-lexicalized MCFTG G ′
that is LDTR-equivalent to G. Moreover, G ′ can be chosen such that θ(G ′) = θ(G) + 1 and μ(G ′) = μ(G) + mrk� .24

Proof. The first statement is immediate from Theorem 38 and Lemma 43. Since Theorem 38 preserves θ(G) and μ(G), it
suffices to check that the construction in the proof of Lemma 43 satisfies the second statement. �

Note that if � ⊆ �(0) , then G ′ has the same multiplicity as G . Thus, as a corollary we obtain (a more specific version of)
the main result of [70].

Corollary 46. If we have � ⊆ �(0) , then Theorem 45 holds for spCFTG instead of MCFTG.

Since every MCFTG has finite (�(0) ∪ �(1))-ambiguity, we also obtain the following special case of Theorem 45.

Corollary 47. For every MCFTG G there is an LDTR-equivalent �-lexicalized MCFTG G ′ with θ(G ′) = θ(G) + 1 and μ(G ′) = μ(G) + 1.

It should be clear that Theorems 38 and 45 can be combined. If G has finite �-ambiguity, then there is an
LDTR-equivalent �-growing �-lexicalized MCFTG. Since every �-lexicalized MCFTG is almost �-growing, it suffices to apply
once more the construction in the proof of Theorem 38 to the �-lexicalized MCFTG G ′ of Theorem 45.

It should even be clear that, by combining rules in a standard way, we can now ensure that every rule contains at least
n lexical symbols for any n ∈ N. This will be used in Section 6.3. Unfortunately, such a combination of rules cannot be
realized by an LDTR-transducer.25 For every n ≥ 1, let us say that a rule A → (u, L) of an MCFTG G is n-�-lexicalized if
|pos�(u)| ≥ n, and that G is n-�-lexicalized if all its proper rules are n-�-lexicalized.

Lemma 48. For each n ≥ 1 and �-lexicalized MCFTG G there is an equivalent n-�-lexicalized MCFTG G ′ such that θ(G ′) = θ(G) and
μ(G ′) = μ(G).

Proof. The proof is by induction on n. For the induction step, let G be an n-�-lexicalized MCFTG. We may assume that all
non-initial terminal rules of G are (n + 1)-�-lexicalized because otherwise we can apply once more the construction in the
proof of Theorem 38 for

F = {t ∈ P�(X)+ | n = |pos�(t)|} .

Moreover, we may assume that every big nonterminal A �= S has an alias Ā such that A and Ā do not occur together in
any right-hand side of a rule. This can be achieved by introducing a new symbol C̄ for every nonterminal C , and letting
Ā = (Ā1, . . . , Ān) be an alias of A = (A1, . . . , An).

Now let G = (N, N , �, S, R). We construct G ′ = (N, N , �, S, R ′), where R ′ is defined as follows. Let ρ = A → (u, L) be
a rule in R with L = {B1, . . . , Bk} and k ≥ 1, and let ρ ′ = B1 → (u′, L′) be a rule in R with left-hand side B1 and
L′ = {B ′

1, . . . , B ′
�}. Let u′′ = u′[B ′

i ← in(B̄ ′
i) | 1 ≤ i ≤ �]. Then R ′ contains the rule 〈ρ, ρ ′〉 = A → (u[A1 ← u′′], L′′), where

L′′ = {B̄ ′
1, . . . , B̄ ′

�, B2, . . . , Bk}. Moreover, R ′ contains all terminal rules of R . Obviously, G ′ is (n + 1)-�-lexicalized.

24 Recall that mrk� is the maximal rank of the symbols in �.
25 It can be realized by a finite-copying deterministic top-down tree transducer with regular look-ahead.

68 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
It is straightforward to prove that the derivation trees of G ′ are obtained from those of G by the value-preserving
mapping M such that if d = ρ(ρ ′(d′

1, . . . , d
′
�), d2, . . . , dk) then

M(d) = 〈ρ,ρ ′〉(M(d′
1), . . . , M(d′

�), M(d2), . . . , M(dk)),

and if d = ρ where ρ is a terminal rule then M(d) = d. Vice versa, the derivation trees of G are obtained from those of G ′
by the value-preserving tree homomorphism M ′ such that

M ′(〈ρ,ρ ′〉) = ρ(ρ ′(x1, . . . , x�), x�+1, . . . , x�+k−1)

and M ′(ρ) = ρ for every terminal rule ρ . That proves that L(G ′) = L(G). �

6. MCFTG and MC-TAG

In this section we show that MC-TAGs have (essentially) the same tree generating power as MCFTGs. It is shown in [61]
that non-strict tree adjoining grammars (nsTAGs) have the same tree generating power as monadic spCFTGs, where an
spCFTG G is monadic if θ(G) ≤ 1; i.e., all its nonterminals have rank 1 or 0. In the first subsection we prove that MCFTGs
have the same tree generating power as non-strict set-local multi-component tree adjoining grammars (nsMC-TAGs), gen-
eralizing the result of [61]. To avoid the introduction of the formal machinery that is needed to define nsMC-TAGs in the
usual way, we define them to be “footed” MCFTGs, similar to the footed spCFTGs from [61]. As shown in [61, Section 4] for
nsTAGs, the translation from one definition to the other is straightforward. In the second subsection we prove that MCFTGs
have the same tree generating power as (strict) set-local multi-component tree adjoining grammars (MC-TAGs), where we
define MC-TAGs as a special type of footed MCFTGs. The last result implies that MC-TAGs can be (strongly) lexicalized. It
also implies, as shown in the third subsection, that MCFTGs have the same tree generating power as monadic MCFTGs (i.e.,
MCFTGs of width at most 1), which is essentially the same result as in [1, Section 3.5].26 These results can be viewed as
additional normal forms for MCFTGs.

Roughly speaking, the transformation of an MCFTG into an MC-TAG will be realized by decomposing each tree ui in the
right-hand side of a rule A → (u, L) with A = (A1, . . . , An) and u = (u1, . . . , un) into a bounded number of parts, to replace
ui in u by the sequence of these parts, and to replace Ai in A by a corresponding sequence of new nonterminals that
simultaneously generate these parts. This is similar to the construction in the proof of Lemma 43 where, however, just one
ui was decomposed into parts.

6.1. Footed MCFTGs

Tree adjoining grammars (TAGs) are closely related to “footed” (simple) context-free tree grammars as shown in [61,
Section 4]. An spCFTG is footed if for every rule A(x1, . . . , xk) → u with k ≥ 1 there is a node of u with exactly k children,
which are labeled x1, . . . , xk from left to right. In other words, the arguments of A are passed in the same order to one
node of u. In this section we generalize this notion to MCFTGs and prove that for every MCFTG there is an equivalent footed
MCFTG.

Definition 49. Let G = (N, N , �, S, R) be an MCFTG. A pattern t ∈ P N∪�(Xk) with k ∈ N0 is footed if either k = 0, or k ≥ 1
and there exists a position p ∈ posN∪�(t), called the foot node of t , such that rk(t(p)) = k and t(pi) = xi for every i ∈ [k].
A rule ρ = A → ((u1, . . . , un), L) ∈ R is footed if u j is footed for every j ∈ [n]. The MCFTG G is footed if every rule ρ ∈ R is
footed. �

Note that, by definition and for technical convenience, every tree t ∈ T N∪� = P N∪�(X0) is footed. The foot node of a
footed pattern t ∈ P N∪�(Xk) with k ≥ 1 is obviously unique. If p is the foot node of t , then t|p = in(t(p)). It is straightfor-
ward to show, for a footed MCFTG G , that if (t1, . . . , tn) ∈ L(G, A), then t j is footed for every j ∈ [n]. Assuming that G is
reduced, this implies that θ(G) ≤ mrk� . Moreover, G is permutation-free and nonerasing (cf. Lemmas 23 and 41).

Based on the close relationship between non-strict TAGs and footed context-free tree grammars as shown in [61, Sec-
tion 4], we define a non-strict tree adjoining grammar (in short, nsTAG) to be a footed spCFTG, and similarly we define a
non-strict (set-local) multi-component TAG (in short, nsMC-TAG) to be a footed MCFTG. This definition will be motivated after
we have proved that for every MCFTG there is an equivalent footed MCFTG, which shows that MCFTGs and nsMC-TAGs have
the same tree generating power.

It is shown in [61, Proposition 3] that every monadic nonerasing spCFTG can be transformed into an equivalent
footed spCFTG. However, the proof of that proposition is not entirely correct, which can be seen from the following ex-
ample. Consider the spCFTG G with rules S → A(e), A(x1) → σ(A(x1)), and A(x1) → τ (a, x1, b). Clearly, the last rule is not

26 It is shown in [1, Section 3.5] that multi-parameter STTs (streaming tree transducers) have the same power as one-parameter STTs. Multi-parameter
STTs are closely related to finite-copying macro tree transducers (cf. [1, Section 4.2]), and hence to MCFTGs as will be shown in Section 8. The number of
parameters of the STT corresponds to the width of the MCFTG.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 69
Fig. 10. Decomposition into footed patterns.

footed. In the proof of [61, Proposition 3] this grammar is transformed into the equivalent spCFTG G ′ with rules S → A(e),
S → A′(T1, e, T3), A(x1) → σ(A(x1)), A(x1) → σ(A′(T1, x1, T3)), A′(x1, x2, x3) → τ (x1, x2, x3), T1 → a, and T3 → b. However,
the rule A(x1) → σ(A′(T1, x1, T3)) is not footed, which is due to the fact that the foot node of the right-hand side σ(A(x1))

of the second rule of G has a nonterminal label. The solution to this problem is to introduce the nonterminals T1 and T3
in the first step of each derivation rather than in the last step. Thus, the footed spCFTG G ′′ with rules S → A′(T1, e, T3),
A′(x1, x2, x3) → σ(A′(x1, x2, x3)), A′(x1, x2, x3) → τ (x1, x2, x3), T1 → a, and T3 → b is equivalent to G . It is not difficult to
repair the proof of [61, Proposition 3], but the construction becomes more complicated. We generalize that construction in
the proof of the next theorem (without preserving the multiplicity, however). Since MRTGs are trivially footed, we restrict
ourselves to MCFTGs G with θ(G) ≥ 1.

Theorem 50. For every MCFTG G with θ(G) ≥ 1 there is an LDTR-equivalent footed MCFTG G ′ such that

μ(G ′) ≤ μ(G) · mrk� · (2 · θ(G) − 1) ,

where � is the terminal alphabet of G. Moreover, if G is �-lexicalized, then so is G ′ .

Proof. The basic idea of this proof is that, for any ranked alphabet 	, every tree u ∈ T	(X) with u /∈ X and posX (u) �= ∅
can be decomposed into at most mrk	 · (2k − 1) footed patterns, where k = |posX (u)|. This can be understood as fol-
lows. Clearly, there are a unique m ≥ 1, a unique footed pattern uε ∈ P	(Xm), and unique trees u1, . . . , um ∈ T	(X) such
that u = uε[xi ← ui | 1 ≤ i ≤ m] and |posX (ui)| < |posX (u)| for every i ∈ [m] with ui /∈ X . In fact, the foot node of uε is
the position p which, in u, is the least common 	-labeled ancestor of the nodes in posX (u); i.e., the longest position
such that u(p) ∈ 	 and |posX (u|p)| = |posX (u)|. Note that the requirement u(p) ∈ 	 is only needed when |posX (u)| = 1.
Thus, we have decomposed u as uε[xi ← ui | 1 ≤ i ≤ m] where uε is a footed pattern. For every i ∈ [m] with ui /∈ X , ei-
ther ui ∈ T	 and so ui is a footed pattern of rank 0, or posX (ui) �= ∅ in which case ui can be decomposed further. It
should also be clear that, in this inductive process, there are at most 2k − 1 such foot node positions p. The factor mrk	

is due to the footed patterns of rank 0. As an example, consider the ranked alphabet 	 = {τ (3), σ (2), β(1), a(0), b(0)} and
the tree u = σ(a, σ (v, w)) with v = σ(a, σ(a, τ (x1, a, β(β(x2))))) and w = σ(x3, b). For readability, let us use the notation
t0[t1, . . . , tn] for t0[xi ← ti | 1 ≤ i ≤ n]. Then we obtain the decomposition u = uε[u1[x1, u12, u13[x2]], u2[x3, u22]], illus-
trated in Fig. 10, of u with the footed patterns uε = σ(a, σ(x1, x2)), u1 = σ(a, σ(a, τ (x1, x2, x3))), u12 = a, u13 = β(β(x1)),
u2 = σ(x1, x2), and u22 = b. Using new symbols Cm

p of rank m, with p ∈ N∗ , we can also express this as u = K [γ] where
K is the tree C2

ε(C3
1(x1, C0

12, C
1
13(x2)), C2

2(x3, C0
22)), which can be viewed as the skeleton of the decomposition, and γ is the

second-order substitution such that γ (Cm
p) = up . A formal version of this decomposition is formulated below and applied

to (a variant of) the trees in the right-hand sides of the rules of G . We note here that this decomposition is closely related
to the one used in [67, Section 6] to turn a “straight-line” spCFTG into a monadic one.

Let G = (N, N , �, S, R) be an MCFTG with θ(G) ≥ 1. Then mrk� · (2 · θ(G) − 1) ≥ 1, because mrk� ≥ 1 by Definition 5. By
Lemmas 23 and 41 we may assume that G is permutation-free and nonerasing.27 This means that if

(A1, . . . , An) → ((u1, . . . , un),L)

is a rule in R , then the pattern ui is in PFN∪�(Xrk(Ai)) \ X for every i ∈ [n].28

27 First apply Lemma 41 and then Lemma 23. It is easy to check that Lemma 23 preserves the nonerasing and �-lexicalized properties.
28 Recall from Lemma 23 that PF	(X) denotes the set of permutation-free patterns over the ranked alphabet 	. The requirement that ui /∈ X is only

relevant when rk(Ai) = 1, meaning that ui �= x1.

70 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
We define G ′ = (N ′, N ′, �, S ′, R ′). The set N ′ of nonterminals consists of all triples 〈C, m, p〉 with C ∈ N , 0 ≤ m ≤ mrk� ,
and p ∈ N∗ such that |p| ≤ θ(G). The rank of 〈C, m, p〉 is m. The initial nonterminal is S ′ = 〈S, 0, ε〉. For every nontermi-
nal C ∈ N , a skeleton of C is a permutation-free pattern K ∈ PFN ′ (Xrk(C)) \ X such that29

(1) for every p ∈ posN ′(K) there exists 0 ≤ m ≤ mrk� such that K (p) = 〈C, m, p〉, and
(2) for every p ∈N∗ and i ∈N, if pi ∈ posN ′ (K) then |posX (K |pi)| < |posX (K |p)|.

For such a skeleton K , we define seq(K) = ydN ′ (K), which is an element of (N ′)+ .30 There are only finitely many skele-
tons of C . In fact, it is easy to show that |posN ′ (K)| ≤ mrk� · (2k − 1) for every skeleton K of C , if k = rk(C) ≥ 1.
Additionally, if rk(C) = 0, then the only skeleton of C is 〈C, 0, ε〉. Note that K can be reconstructed from seq(K) be-
cause K is permutation-free. In the example above, the tree K is a skeleton of C , provided that Cm

p denotes 〈C, m, p〉, and
seq(K) = (C2

ε , C3
1, C0

12, C
1
13, C

2
2, C0

22).
We will apply the above basic idea to a pattern u ∈ PFN ′∪�(Xrk(C)) \ X . This leads to a decomposition of u that can be

represented by a skeleton K of C and a substitution function γ such that u = K [γ]. This is formalized as follows. Let K be a
skeleton of C ∈ N . A substitution function γ for occN ′ (K) is footed if, for every C ′ ∈ occN ′ (K), the pattern γ (C ′) ∈ P N ′∪�(X)

is footed. We say that the pair 〈K , γ 〉 is a footed C-decomposition of the tree K [γ].

Basic fact. Every pattern u as above has a footed C-decomposition decC (u).31 More precisely, for every C ∈ N and every
u ∈ PFN ′∪�(Xrk(C)) \ X there is a pair decC (u) = 〈K , γ 〉 such that K is a skeleton of C , γ is a footed substitution function
for occN ′(K), and K [γ] = u.

Proof of the basic fact. To prove this by induction, we prove it for arbitrary u ∈ T N ′∪�(X) and we allow K to be an element
of T N ′ (X) such that ydX (K) = ydX (u). Obviously, if K [γ] = u and u is a k-ary permutation-free pattern �= x1, then so is K .

If u = x ∈ X , then decC (u) = 〈K , γ 〉 with K = x and γ is the empty function. If u ∈ T N ′∪� , then decC (u) = 〈K , γ 〉 with
K = 〈C, 0, ε〉 and γ (〈C, 0, ε〉) = u. Now suppose that u /∈ X and posX (u) �= ∅. We proceed by induction on |posX (u)|. Let
the footed pattern uε in P N ′∪�(Xm) and the trees u1, . . . , um in T N ′∪�(X) be as in the basic idea above, and let, by the
induction hypotheses or by the previous two basic cases, decC (ui) = 〈Ki, γi〉 for every i ∈ [m]. Then decC (u) = 〈K , γ 〉,
where K and γ are defined as follows. For every i ∈ [m] let K ′

i be obtained from Ki by changing every label 〈C, m′, p〉
into 〈C, m′, ip〉. Then K = 〈C, m, ε〉(K ′

1, . . . , K
′
m). Moreover, the substitution function γ is defined by γ (〈C, m, ε〉) = uε and

γ (〈C, m′, ip〉) = γi(〈C, m′, p〉) for every i ∈ [m] and every 〈C, m′, ip〉 ∈ occN ′(K ′
i). It is straightforward to verify that K and γ

satisfy the requirements, which completes the proof of the basic fact.

We define the set N ′ of big nonterminals to consist of all sequences seq(K1) · · · seq(Kn) for which there exists
(A1, . . . , An) ∈N such that K j is a skeleton of A j for every j ∈ [n]. A skeleton function for A ∈N is a substitution function κ
for occ(A) that assigns a skeleton κ(C) of C to every nonterminal C ∈ occ(A). The string homomorphism hκ from occ(A)

to N ′ is defined by hκ (C) = seq(κ(C)) for every C ∈ occ(A). Note that N ′ is the set of all h∗
κ (A), where A ∈ N and κ is a

skeleton function for A.
We now define the set R ′ of rules. Let ρ = A → (u, L) be a rule in R such that A = (A1, . . . , An), u = (u1, . . . , un),

and L = {B1, . . . , Bk}. Moreover, let κ = (κ1, . . . , κk), where κ i is a skeleton function for Bi for every i ∈ [k]. Intuitively, κ
guesses for every nonterminal C that occurs in B1, . . . , Bk the skeleton of a footed C-decomposition of the tree generated
by C . Let f be the substitution function for occN (u) such that f = ⋃

i∈[k] κ i ; i.e., f (C) = κ i(C) if C ∈ occ(Bi). It should be
clear that u j[f] ∈ PFN ′∪�(Xrk(A j)) \ X for every j ∈ [n]. For every j ∈ [n], let u′

j = u j[f], let decA j (u′
j) = 〈K j, γ j〉 (the footed

A j-decomposition of u′
j according to the above basic fact), and let v ′

j = γ ∗
j (seq(K j)).32 Then R ′ contains the rule

〈ρ,κ〉 = seq(K1) · · · seq(Kn) → (v ′
1 · · · v ′

n,L′)
with L′ = {h∗

κ1
(B1), . . . , h∗

κk
(Bk)}. We also define the skeleton function κρ,κ for A by κρ,κ (A j) = K j for every j ∈ [n].

Intuitively, K j is the skeleton of a footed A j-decomposition of the tree generated by A j , resulting from the skeletons
guessed by κ . Note that the left-hand side of the rule 〈ρ, κ〉 is h∗

κρ,κ
(A). This concludes the definition of G ′ . It should be

clear that G ′ is footed. Moreover, since the right-hand sides of the rules ρ and 〈ρ, κ〉 contain the same terminal symbols,
G ′ is �-lexicalized if G is �-lexicalized. It remains to prove the correctness of G ′ .

For every derivation tree d ∈ L(Gder, A) we define a skeleton function κd for A and a derivation tree q(d) ∈ L(G ′
der,h∗

κd
(A))

inductively as follows. If d = ρ(d1, . . . , dk) with the rule ρ as above, then we define κd = κρ,κ and

q(d) = 〈ρ,κ〉(q(d1), . . . ,q(dk)) ,

29 We usually do not denote trees with a capital, but k is already used for natural numbers.
30 Recall the definition of ydN ′ from the paragraph on homomorphisms in Section 2.1.
31 The decomposition is even unique, but that will not be needed.
32 Thus, if seq(K j) = (C ′

1, . . . , C ′
�) with C ′

1, . . . , C ′
� ∈ N ′ , then v ′

j = (γ j(C ′
1), . . . , γ j(C ′

�)).

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 71
where κ = (κd1 , . . . , κdk). We now claim the following.

Claim. For every A = (A1, . . . , An) ∈ N and every d ∈ L(Gder, A), if val(d) = (t1, . . . , tn) then K j[h∗
κd

(A) ← val(q(d))] = t j , where
K j = κd(A j), for every j ∈ [n].

Proof of Claim. Assume that d = ρ(d1, . . . , dk) as above, and that the claim holds for di for every i ∈ [k]. Let g be the
substitution function for occN (u) such that g(C) is the m-th element of val(di) if C is the m-th element of Bi . So,
val(d) = u[Bi ← val(di) | 1 ≤ i ≤ k] = u[g], and hence u j[g] = t j for every j ∈ [n]. We write [g′] for the substitution

[h∗
κdi

(Bi) ← val(q(di)) | 1 ≤ i ≤ k] .

Consequently, val(q(d)) = u′[g′], where u′ = v ′
1 · · · v ′

n . We first show that u j[f][g′] = u j[g] for every j ∈ [n]. By Lemma 4(4)
it suffices to show that f (C)[g′] = g(C) for every C ∈ occN(u). For every C ∈ occ(Bi) we obtain that

f (C)[g′] = κdi (C)[h∗
κdi

(Bi) ← val(q(di))] ,

which equals g(C) by the induction hypotheses. Now let j ∈ [n]. Then

K j[h∗
κd

(A) ← val(q(d))] = K j
[
seq(K j) ← v ′

j[g′]] = K j
[
seq(K j) ← γ ∗

j (seq(K j))[g′]] .

By Lemma 4(4) this equals K j[γ j][g′]. Since decA j (u′
j) = 〈K j, γ j〉, we obtain that

K j[γ j][g′] = u′
j[g′] = u j[f][g′] = u j[g] = t j .

This proves the claim. Note that it provides a footed A j-decomposition of t j (in fact, the unique one).

In the case where A = S we obtain that κd(S) = 〈S, 0, ε〉. Thus, val(q(d)) = val(d) by the claim. Hence L(G) ⊆ L(G ′).
Clearly, for every skeleton function κ , the set Lκ of all derivation trees d with κd = κ is a regular tree language, which
can be recognized by a deterministic bottom-up finite tree automaton that uses all skeleton functions as states. The
LDTR-transducer M that computes q(d) from d has one state q, and it has the rules

〈q,ρ(y1 : Lκ1 , . . . , yk : Lκk)〉 → 〈ρ,κ〉(〈q, y1〉, . . . , 〈q, yk〉) ,

where κ = (κ1, . . . , κk). In the other direction, every derivation tree d′ ∈ L(G ′
der) can be turned into a derivation tree

d = M ′(d′) in L(Gder) by changing every label 〈ρ, κ〉 into just ρ , and it is straightforward to show that q(d) = d′ . This
shows that L(G ′) ⊆ L(G), and hence the correctness of G ′ . �

Example 51. Let � = {τ (3), �(1), r(1), a(0), b(0), e(0)}. Intuitively � stands for a left parenthesis and r for a right parenthesis.
We consider the footed spCFTG G1 = (N1, �, S, R1) with the set of nonterminals N1 = {S, A, A′}, of which A has rank 1 and
A′ is an alias of A, and the rules

S → �A(A′(re)) A(x1) → �A(A′(rx1)) and A(x1) → �τ (a,b, rx1) ,

where we have omitted the rules with left-hand side A′(x1). Let � = {a, b}. Since G1 is �-growing, it has finite �-ambiguity.
However, as we will show in Remark 54, there is no �-lexicalized footed spCFTG G with L(G) = L(G1). The basic reason
for this is that the set {yd{�,r}(t) | t ∈ L(G1)} ⊆ {�, r}∗ consists of all balanced strings of parentheses � and r. In fact, G1 is
a straightforward variant of the TAG of [65], for which there is no (strongly) equivalent �-lexicalized TAG. Note that we
defined nsTAGs to be footed spCFTGs. We will also show in Remark 54 that there is no �-lexicalized spCFTG G with
θ(G) ≤ 1 that is equivalent to G1.

From Corollary 46, we obtain a �-lexicalized spCFTG G2 with θ(G2) = 2 that is equivalent to G1. It has the new non-
terminals B = 〈A, b, 0, X1〉 and B ′ = 〈A′, b, 0, X1〉, where rk(B) = 2 and B ′ is an alias of B . For the sake of readability we
interchanged the two arguments of B (and those of B ′), and similarly we used B instead of B ′ in the first two rules, so that
A′ has become superfluous. Its rules are

ρ1 : S → �A(B(b, re)) ρ2 : A(x1) → �A(B(b, rx1)) ρ3 : A(x1) → �τ (a,b, rx1)

ρ4 : B(x1, x2) → �B(x1, B ′(b, rx2)) ρ5 : B(x1, x2) → �τ (a, x1, rx2) ,

plus the rules ρ ′
4 and ρ ′

5 for the alias B ′ of B . Clearly, the tree B(b, x1) generates the same terminal trees as A(x1). More
precisely, if A(x1) generates the tree �nτ (a, b, wx1), where n ∈N and w ∈ �∗ , then B(x1, x2) generates �nτ (a, x1, wx2).

Rules ρ4 and ρ5 are not footed. We now turn G2 into an equivalent �-lexicalized footed MCFTG G ′
2 using the con-

struction in the proof of Theorem 50. For rule ρ5 = B(x1, x2) → u5 and κ = ε, we obtain the footed B-decomposition

72 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Fig. 11. First part: Illustration of the footed decomposition 〈K5, γ5〉 of the right-hand side of rule ρ5, with the resulting rule ρ̃5. Second part: Substitution
of the skeleton K5 of B into rule ρ2. Third part: Adjoining A-decomposition of Example 57.

decB(u5) = 〈K5, γ5〉, in which we have the tree K5 = B0(B1, x1, B3(x2)) with B0 = 〈B, 3, ε〉, B1 = 〈B, 0, 1〉, and B3 = 〈B, 1, 3〉,
and γ5 is defined as follows: γ5(B0) = �τ (x1, x2, x3), γ5(B1) = a, and γ5(B3) = rx1. The resulting rule ρ̃5 = 〈ρ5, ε〉 is

ρ̃5 : (B0(x1, x2, x3), B1, B3(x1)) → (�τ (x1, x2, x3),a, rx1)

with left-hand side seq(K5) = (B0, B1, B3), and the corresponding skeleton function for B is κ5 = κρ5,ε such that
κ5(B) = K5. The construction of this rule is illustrated in the first part of Fig. 11. Of course we obtain similar primed
results for B ′ . Taking κ = (κ5, κ ′

5) and substituting K5 for B and K ′
5 for B ′ in the right-hand side u4 = �B(x1, B ′(b, rx2))

of rule ρ4, we obtain u′
4 = �B0(B1, x1, B3(B ′

0(B ′
1, b, B ′

3(rx2)))) which has the footed B-decomposition decB(u′
4) = 〈K4, γ4〉,

in which we have K4 = K5, γ4(B0) = �B0(x1, x2, x3), γ4(B1) = B1, and γ4(B3) = B3(B ′
0(B ′

1, b, B ′
3(rx1))). The resulting rule

ρ̃4 = 〈ρ4, (κ5, κ ′
5)〉 is

ρ̃4 : (B0(x1, x2, x3), B1, B3(x1)) → (�B0(x1, x2, x3), B1, B3(B ′
0(B ′

1,b, B ′
3(rx1)))) .

Since the skeleton function κρ4,(κ5,κ ′
5) for B is again κ5, these are all the necessary rules of G ′

2 with left-hand
side (B0, B1, B3), and similarly for (B ′

0, B
′
1, B

′
3). The decomposition decA(u3) = 〈K3, γ3〉 of u3 = �τ (a, b, rx1) is simply

K3 = 〈A,1, ε〉(x1) and γ3(〈A, 1, ε〉) = u3. Thus, identifying 〈A, 1, ε〉 with A, grammar G ′
2 has the rule ρ̃3 = ρ3. Substitut-

ing K3 for A and K5 for B in the right-hand side u2 of ρ2 we obtain the tree u′
2 = �A(B0(B1, b, B3(rx1))) which, just as u3,

decomposes into itself. Thus, G ′
2 has the rule ρ̃2 = A(x1) → u′

2. The construction of this rule is illustrated in the second part
of Fig. 11. Finally, by a similar process (identifying 〈S, 0, ε〉 with S), we obtain the rule ρ̃1 = S → u′

2[x1 ← e]. Summarizing,
G ′

2 has the nonterminals {S, A, B0, B ′
0, B1, B ′

1, B3, B ′
3} and the big nonterminals {S, A, (B0, B1, B3), (B ′

0, B
′
1, B

′
3)}. Its rules

(apart from those for the alias (B ′
0, B

′
1, B

′
3)) are

ρ̃1 : S → �A(B0(B1,b, B3(re)))

ρ̃2 : A(x1) → �A(B0(B1,b, B3(rx1)))

ρ̃3 : A(x1) → �τ (a,b, rx1)

ρ̃4 : (B0(x1, x2, x3), B1, B3(x1)) → (�B0(x1, x2, x3), B1, B3(B ′
0(B ′

1,b, B ′
3(rx1))))

ρ̃5 : (B0(x1, x2, x3)), B1, B3(x1)) → (�τ (x1, x2, x3),a, rx1) .

To see that L(G ′
2) = L(G1) we observe that the tree K5 = B0(B1, x1, B3(x2)) generates the same terminal trees as B(x1, x2)

(as formalized in the Claim in the proof of Theorem 50), and hence B0(B1, b, B3(x1)) generates the same terminal trees
as A(x1). �

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 73
Example 52. As another, very simple example we again consider the spCFTG G with the following rules

S → A(e) A(x1) → σ(A(x1)) and A(x1) → τ (a, x1,b) ,

which was also discussed before Theorem 50. The only skeleton of A needed by the equivalent footed MCFTG G ′
is A0(A1, x1, A3) where A0 = 〈A, 3, ε〉, A1 = 〈A, 0, 1〉, and A3 = 〈A, 0, 3〉. Its big nonterminals are S ′ = 〈S, 0, ε〉 and
(A0, A1, A3), and its rules are

S ′ → A0(A1, e, A3)

(A0(x1, x2, x3), A1, A3) → (σ (A0(x1, x2, x3)), A1, A3)

(A0(x1, x2, x3), A1, A3) → (τ (x1, x2, x3),a,b) .

Note that G ′ is not an spCFTG. �
Let us now discuss set-local multi-component tree adjoining grammars (MC-TAGs). In the beginning of this subsection

we have defined a non-strict MC-TAG (nsMC-TAG) to be a footed MCFTG. To convince the reader familiar with TAGs we add
some more terminology, which should make this clear. Let A → (u, L) be a rule with A = (A1, . . . , An) and u = (u1, . . . , un).
If the rule is initial (i.e., A = S), then the right-hand side u together with the set L of links is called an initial tree, and
otherwise it is called an auxiliary forest. Application of the rule consists of adjunctions and substitutions. The replacement
of the nonterminal A j by u j is called an adjunction if rk(A j) > 0 and a substitution if rk(A j) = 0. An occurrence of a nonter-
minal C ∈ N in u with rk(C) > 0 has an obligatory adjunction (OA) constraint, whereas an occurrence of a terminal σ ∈ �

in u with rk(σ) > 0 has a null adjunction (NA) constraint. In the same manner we handle obligatory and null substitution
(OS and NS) constraints. Each big nonterminal B ∈L can be viewed as a selective adjunction/substitution (SA/SS) constraint,
which restricts the auxiliary forests that can be adjoined/substituted for B to the right-hand sides of the rules with left-hand
side B .

In the literature, MC-TAGs are usually free-choice, which means that the set L of links can be dropped from the rules
(see Section 4.1). By Lemma 21 this is no restriction on footed MCFTGs. An MCFTG is said to be tree-local (as opposed to
‘set-local’) if for every rule as above and every B ∈L there exists j ∈ [n] such that occ(B) ⊆ occN(u j). It can easily be proved
that tree-local MCFTGs have the same power as spCFTGs, and similarly that tree-local nsMC-TAGs have the same power as
nsTAGs.

The first statement of Theorem 50 shows that nsMC-TAGs have the same tree generating power as MCFTGs. The second
statement shows together with Theorem 45 that nsMC-TAGs can be (strongly) lexicalized.

Corollary 53. For every finitely �-ambiguous nsMC-TAG G there exists an LDTR-equivalent �-lexicalized nsMC-TAG G ′ such that
μ(G ′) ≤ (μ(G) + mrk�) · mrk� · (2 · θ(G) + 1), where � is the terminal alphabet of G.

Remark 54. In Example 51, the finitely �-ambiguous spCFTG G1 is footed and hence an nsTAG. Similarly, the �-lexicalized
MCFTG G ′

2 equivalent to G1 is footed and hence an nsMC-TAG. We now prove that there does not exist a �-lexicalized
nsTAG equivalent to G1. In other words, as opposed to nsMC-TAGs, nsTAGs cannot be strongly lexicalized. The proof is a
straightforward variant of the one in [65], and we present it here for completeness’ sake.

To obtain a contradiction, let G = (N, �, S, R) be a reduced �-lexicalized nsTAG equivalent to G1. Note that G is
a footed spCFTG, and recall from the observations after Definition 49 that every tree in L(G, A) is footed for every
nonterminal A. Hence the nonterminals of G have rank 0, 1, or 3. This implies that G is right-footed; i.e., for every
rule A(x1, . . . , xk) → u ∈ R of G with k ≥ 1, the right-hand side u is of the form vx1 · · · xk with v ∈ (N ∪ �)+ . In fact, if
u is not of that form, then it is of the form vω(u1, u2, u3) with v ∈ (N ∪�)∗ and ω ∈ N(3) ∪{τ } such that the foot node of u
occurs in u1 or u2; i.e., either u1 or u2 is of the form v1ω

′(x1, . . . , xk)v2 with v1, v2 ∈ (N ∪ �)∗ and ω′ ∈ N ∪ �. But then A
generates terminal trees of the form wτ (t1, t2, t3) with w ∈ �∗ such that either t1 or t2 is of the form w1γ (x1, . . . , xk)w2
with w1, w2 ∈ �∗ and γ ∈ {τ , �, r}. This contradicts the form of the trees in L(G1), in which the first and second arguments
of τ are always a and b, respectively. Consequently A cannot be reachable, contradicting the fact that G is reduced. Now
it is easy to see that every right-footed spCFTG G can be viewed as an ordinary context-free grammar generating L(G)

viewed as a string language. We just replace every rule A(x1, . . . , xk) → vx1 · · · xk by the rule A → v .33 Thus, it now remains
to show that there is no {a, b}-lexicalized context-free grammar G such that L(G) = L(G1), where G1 is the context-free
grammar with rules S → �A Are, A → �A Ar, and A → �τabr. Here ‘{a, b}-lexicalized’ means that a or b occurs in every
right-hand side of a rule of G . For a string w ∈ �∗ , let c(w) = #�(w) − #r(w), where #�(w) is the number of occur-
rences of � in w , and similarly for #r(w). Since the “parentheses” � and r are balanced in every string in L(G) = L(G1),
it follows from [63, Lemma 4] that for every nonterminal A of G there is a number c(A) ∈ N0 such that c(w) = c(A) for
every w ∈ L(G, A). For every v = v1 · · · vk ∈ (N ∪ �)∗ with v1, . . . , vk ∈ N ∪ �, we let c(v) = ∑k

i=1 c(vi). Now consider

33 This generalizes the fact that every regular tree grammar is a context-free grammar (see Section 2.2).

74 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
a derivation S ⇒G v1αv2 ⇒∗
G w1αw2 such that α ∈ {a, b}, v1, v2 ∈ (N ∪ �)∗ , w1, w2 ∈ �∗ , and vi ⇒∗

G wi for i ∈ {1, 2}.
Consequently, w1αw2 ∈ L(G). Thus c(w1) ∈ N0, due to the balancing of � and r. By the above, c(w1) = c(v1). Since G is
{a, b}-lexicalized and has only finitely many initial rules, this shows that there is a number κ ∈ N0 with the following
property: for every string w ∈ L(G) there exist α ∈ {a, b} and w1, w2 ∈ �∗ such that w = w1αw2 and c(w1) ≤ κ . This is a
contradiction because it is easy to see that this does not hold for w = tκe ∈ L(G1), where t0 = �τabr and tn+1 = �tntnr for
every n ∈N0.

This shows that nsTAGs cannot be strongly lexicalized. It also shows that context-free grammars cannot be �-lexicalized.
They can of course be �-lexicalized.

The spCFTG G1 of Example 51 is also monadic; more precisely, it has width θ(G1) = 1. We finally prove that, as observed
in Example 51, there is no �-lexicalized monadic spCFTG equivalent to G1. Let G be such a grammar. By Lemma 41 we
may assume that G is nonerasing. It can then be shown as above that G is right-footed. However, in this case we must have
k = 1 and ω = τ ; moreover, either u1 or u2 contains x1 and hence generates a tree that contains some γ ∈ {τ , �, r} because
G is nonerasing. The remainder of the proof is the same as above. This shows that to lexicalize an MCFTG G , either the
width θ(G) or the multiplicity μ(G) must increase. �

We now define strict MC-TAGs as follows. A (strict set-local) multi-component tree adjoining grammar (in short, MC-TAG) is
a footed MCFTG G = (N, N , �, S, R) for which there exists an equivalence relation ≡ on N ∪ � such that

(1) for all σ , τ ∈ �, if σ �= τ and σ ≡ τ , then rk(σ) �= rk(τ);
(2) for every C ∈ N there exists σ ∈ � such that C ≡ σ ; and
(3) for every rule (A1, . . . , An) → ((u1, . . . , un), L) in R and every j ∈ [n],

(a) u j(ε) ≡ A j and
(b) if rk(A j) ≥ 1, then u j(p) ≡ A j , where p is the foot node of u j .

The first requirement means that distinct equivalent terminal symbols can be viewed as the same “final” symbol with
different ranks. In this way, � can be viewed as corresponding to a “final” alphabet, in which each symbol can have a finite
number of different ranks, as for example in derivation trees of context-free grammars. The second requirement means that
each nonterminal C that is equivalent to terminal σ can be viewed as the same final symbol as σ together with some
information that is relevant to SA constraints. The third requirement means that the root and foot node of u j are equivalent
to A j ; i.e., represent the same final symbol as A j . Thus, intuitively, adjunction always replaces a final symbol by a tree
with that same final symbol as root label and foot node label. We define a tree adjoining grammar (in short, TAG) to be an
MC-TAG of multiplicity 1; i.e., a footed spCFTG that satisfies the requirements above.

Example 55. A simple example of a TAG G1 is obtained from the spCFTG G1 in Example 51 by adding a terminal symbol γ

of rank 1. The rules of G1 are

S → γ �A(A′(re)) A(x1) → γ �A(A′(rγ x1)) and A(x1) → γ �τ (a,b, rγ x1) ,

where A′ is an alias of A. The equivalence relation ≡ is the smallest one such that S ≡ A ≡ A′ ≡ γ . It clearly satisfies the
above three requirements. This TAG is closely related to the one in [65]. It can be proved in exactly the same way as in
Remark 54 that there is no {a, b}-lexicalized nsTAG equivalent to G1, which slightly generalizes the result of [65].34 Thus,
TAGs cannot be strongly lexicalized by nsTAGs.

The MCFTG G ′ of Example 52 is an MC-TAG. The equivalence relation ≡ is the smallest one such that S ′ ≡ A0 ≡ σ ≡ τ ,
A1 ≡ a, and A3 ≡ b. Note that rk(σ) �= rk(τ). �

Let MC-TAL denote the class of tree languages generated by MC-TAGs. In the next subsection we prove that
MCFT and MC-TAL are almost the same class of tree languages.

6.2. MC-TAL almost equals MCFT

By definition, we have MC-TAL ⊆ MCFT. In the other direction, the inclusion MCFT ⊆ MC-TAL does not hold because a
tree language from MC-TAL cannot contain two trees of which the roots are labeled with two different symbols of the same
rank. In this subsection we show that this is indeed the only necessary restriction. To prove that every language L ∈ MCFT

34 The language class TAL generated by TAGs is properly included in the language class nsTAL, which is generated by nsTAGs. The tree language L = {�nrne |
n ∈ N}, which is root consistent (cf. Corollary 60 in the next subsection), is a witness for the properness. It is generated by an nsTAG with rules S → A(e),
A(x1) → �A(rx1), and A(x1) → �rx1. For the sake of a contradiction, let G = (N, �, S, R) be a TAG such that L(G) = L. Clearly, θ(G) ≤ 1 and G must be
right-footed (cf. Remark 54). For any unary nonterminal A ∈ N(1) we have L(G, A) ⊆ {�kx1 | k ∈ N} or L(G, A) ⊆ {rkx1 | k ∈ N} due to the condition that the
root label and foot node label must coincide. However, since G can be viewed as an ordinary context-free grammar generating the string language L, these
languages L(G, A) must be finite, due to pumping. Hence we can transform G into an equivalent right-linear context-free grammar, which is a contradiction
because L is not regular.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 75
satisfying this restriction is in MC-TAL, we begin with the case where the root of each tree t ∈ L is labeled by the same
symbol σ0. In this case we will construct an MC-TAG of a special type, which we define next. We first need some more
terminology.

Let G = (N, N , �, S, R) be an MCFTG. Recall from Definition 49 that a pattern t ∈ P N∪�(Xk) with k ∈ N0 is footed if
either k = 0, or k ≥ 1 and there is a position p ∈ posN∪�(t), called the foot node of t , with rk(t(p)) = k and t(pi) = xi for
every i ∈ [k]. Given a footed pattern t ∈ P N∪�(Xk) with k ≥ 1, we define rlab(t) = t(ε) and flab(t) = t(p) where p is the
(unique) foot node of t . Thus, rlab(t) and flab(t) are the labels of the root and the foot node of t , respectively. In the case
where k = 0 we define rlab(t) = t(ε) and, for technical convenience, also flab(t) = t(ε). Thus, in this case rlab(t) is also the
label of the root of t and flab(t) = rlab(t). For k ≥ 1 we define the spine of t to be the set of all ancestors of its foot node
(including the foot node itself), whereas for k = 0 the spine of t is defined to be the empty set.

An adjoining MCFTG is a footed MCFTG G for which there is a mapping ϕ : N ∪ � → � such that

(1) ϕ(σ) = σ for every σ ∈ �, and
(2) ϕ(rlab(u j)) = ϕ(flab(u j)) = ϕ(A j) for every rule (A1, . . . , An) → ((u1, . . . , un), L) ∈ R and every j ∈ [n].

This implies that ϕ is rank-preserving for nonterminals of rank at least 1 (assuming that such a nonterminal generates at
least one terminal tree). Obviously, every adjoining MCFTG is an MC-TAG with respect to the equivalence relation ≡ that is
the kernel of ϕ; i.e., α ≡ β if ϕ(α) = ϕ(β). By (1) above, ≡ is the identity on �. Vice versa, if G is an MC-TAG with respect
to an equivalence relation that is the identity on �, then G is an adjoining MCFTG (as can easily be checked).

We now prove that for every footed MCFTG G that generates a tree language in which all trees have the same root
label σ0, there is an equivalent adjoining MCFTG, which is also lexicalized if G is lexicalized. In fact, the next lemma proves
a slightly more general fact, which will be needed to prove the theorem following the lemma. The proof of the lemma is
very similar to the one of Theorem 50, with a further decomposition of the trees in the right-hand sides of the rules.

Lemma 56. Let G = (N, N , �, S, R) be a footed MCFTG and let σ0 ∈ �. Then there is an adjoining MCFTG Gσ0 such that

L(Gσ0) = {t ∈ L(G) | t(ε) = σ0}
and μ(Gσ0) = μ(G) · |�| · mrk� . Moreover, if G is �-lexicalized, then so is Gσ0 .

Proof. The basic idea of this proof is that, for any alphabet 	, every string w ∈ 	+ can be decomposed as w = w1 · · · wn

such that 1 ≤ n ≤ |	|, wi ∈ 	+ , and the first and last symbol of wi are the same. We quickly prove this by induction on |	|.
Let a be the first symbol of w , and let w1 be the longest prefix of w that ends on a. Then w = w1 w ′ with w ′ ∈ (\ {a})∗ .
If w ′ = ε, then we are done. Otherwise we apply the induction hypothesis. This decomposition is of course not unique. For
example, the proof gives abab = aba · b, but another decomposition is abab = a · bab.

Let G = (N, N , �, S, R) be a footed MCFTG, and let σ0 ∈ �. We then define the MCFTG Gσ0 = (N ′, N ′, �, Sσ0 , R ′),
where N ′ , N ′ , and R ′ do not depend on σ0. The set N ′ of nonterminals consists of all 4-tuples 〈C, σ , m, p〉 with
C ∈ N , σ ∈ �, m ∈ {0, rk(σ)}, and p ∈ N∗ such that |p| < |�|. The rank of 〈C, σ , m, p〉 is m. The initial nonterminal is
Sσ0 = 〈S, σ0,0, ε〉. Let ϕ : N ′ ∪ � → � be defined by ϕ(〈C, σ , m, p〉) = ϕ(σ) = σ . We will define N ′ and R ′ in such a way
that Gσ0 is an adjoining MCFTG with respect to ϕ .

For every nonterminal C ∈ N , a skeleton of C is a footed pattern K ∈ P N ′(Xrk(C)) such that

(1) for every p ∈ posN ′ (K) there are σ ∈ � and m ∈ {0, rk(σ)} with K (p) = 〈C, σ , m, p〉,
(2) every subtree of K in T N ′ is in (N ′)(0) , and
(3) ϕ(K (p)) �= ϕ(K (p′)) for every two distinct positions p, p′ ∈ posN ′ (K) on the spine of K .

For such a skeleton K , we define seq(K) = ydN ′ (K), which is an element of (N ′)+ . We note that there are only finitely many
skeletons of C . In fact, |posN ′ (K)| ≤ |�| · mrk� for every skeleton K of C , if rk(C) ≥ 1. Additionally, if rk(C) = 0, then every
skeleton of C is of the form 〈C, σ , 0, ε〉 with σ ∈ �. We finally note that K can be reconstructed from seq(K) because K is
footed.

We will apply the above basic idea to the sequence of ϕ-images of the labels of the nodes on the spine of a footed
pattern u; i.e., to the sequence (ϕ(u(p1)), . . . , ϕ(u(pn))) where p1, . . . , pn are the positions on the spine of u, in the order of
increasing length. This leads to a decomposition of u that can be represented by a skeleton K and a substitution function γ
such that u = K [γ]. Formally, let K ∈ P N ′(X) be a skeleton of C ∈ N . A substitution function γ for occN ′ (K) is adjoining if,
for every C ′ ∈ occN ′ (K), the pattern γ (C ′) ∈ P N ′∪�(X) is footed and ϕ(rlab(γ (C ′))) = ϕ(flab(γ (C ′))) = ϕ(C ′). We say that
the pair 〈K , γ 〉 is an adjoining C-decomposition of the tree K [γ].

Basic fact. Every footed pattern u has an adjoining C-decomposition decC (u). More precisely, for every C ∈ N and every
footed pattern u ∈ P N ′∪�(Xrk(C)) there is a pair decC (u) = 〈K , γ 〉 such that K is a skeleton of C , γ is an adjoining substitu-
tion function for occN ′ (K), and K [γ] = u.

76 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Proof of the basic fact. Let σ = ϕ(rlab(u)). First suppose that rk(u) = 0. Then decC (u) = 〈K , γ 〉 with K = 〈C, σ , 0, ε〉 and
γ (〈C, σ , 0, ε〉) = u. Now suppose that rk(u) ≥ 1. We use induction on the cardinality of the spine of u. Let q be the longest
position on the spine of u such that ϕ(u(q)) = σ , and let rk(σ) = m. If q is the foot node of u, then decC (u) = 〈K , γ 〉 with
K = in(〈C, σ , m, ε〉) and γ (〈C, σ , m, ε〉) = u. Otherwise, let i ∈ N be the unique integer such that qi is a position on the
spine of u. Let u′ = u|qi , and let decC (u′) = 〈K ′, γ ′〉 by the induction hypothesis. Then decC (u) = 〈K , γ 〉, where K and γ are
defined as follows. Let K ′′ be obtained from K ′ by changing every label 〈C, σ ′, m′, p〉 into 〈C, σ ′, m′, ip〉. Then K is the tree

〈C, σ ,m, ε〉

〈C, σ1,0,1〉 . . . 〈C, σi−1,0, i − 1〉 K ′′ 〈C, σi+1,0, i + 1〉 . . . 〈C, σm,0,m〉

where σ j = ϕ(u(qj)) for every j ∈ [m] \ {i}. Moreover, the substitution function γ is defined by:

• γ (〈C, σ , m, ε〉) = (u|q)[� ← in(σ)],
• γ (〈C, σ j, 0, j〉) = u|qj for every j ∈ [m] \ {i}, and
• γ (〈C, σ ′, m′, ip〉) = γ ′(〈C, σ ′, m′, p〉) for every 〈C, σ ′, m′, ip〉 ∈ occN ′(K ′′).

It is straightforward to verify that K and γ satisfy the requirements, which completes the proof of the basic fact.

The definition of the set N ′ of big nonterminals and the set R ′ of rules is exactly the same as in the proof of Theo-
rem 50.35 It should be clear that Gσ0 is adjoining with respect to ϕ . The correctness of Gσ0 is also proved in the same
way as in the proof of Theorem 50. The Claim and its proof are exactly the same. In the case where A = S we obtain
in the claim that κd(S) = 〈S, σ , 0, ε〉 with σ ∈ �, and hence val(q(d)) = val(d). Since Gσ0 is adjoining, it is easy to see
that σ = val(q(d))(ε); i.e., the root symbol of val(d). Hence {t ∈ L(G) | t(ε) = σ0} ⊆ L(Gσ0). As in the proof of Theorem 50
there is an LDTR-transducer M that computes q(d) from d, and every derivation tree d′ ∈ L(Gσ0

der, 〈S, σ , 0, ε〉) can be turned
into a derivation tree d = M ′(d′) ∈ L(Gder) such that q(d) = d′ by changing every label 〈ρ, κ〉 into ρ . Taking σ = σ0 this
shows that L(Gσ0) ⊆ {t ∈ L(G) | t(ε) = σ0}, and hence the correctness of Gσ0 . �

Example 57. Let us consider the MCFTG G ′
2 of Example 51. As already observed in Remark 54, G ′

2 is footed and hence
an nsMC-TAG. Here we illustrate the proof of Lemma 56 by constructing the adjoining MCFTG G� for G = G ′

2; note that
G� is equivalent to G ′

2 because t(ε) = � for every t ∈ L(G ′
2). We recall that G ′

2 has the following rules (where we replace ρ̃i

by ρi , for convenience):

ρ1 : S → �A(B0(B1,b, B3(re)))

ρ2 : A(x1) → �A(B0(B1,b, B3(rx1)))

ρ3 : A(x1) → �τ (a,b, rx1)

ρ4 : (B0(x1, x2, x3), B1, B3(x1)) → (�B0(x1, x2, x3), B1, B3(B ′
0(B ′

1,b, B ′
3(rx1))))

ρ5 : (B0(x1), B1, B3(x1)) → (�τ (x1, x2, x3),a, rx1) ,

plus the rules ρ ′
4 and ρ ′

5 for the alias (B ′
0, B

′
1, B

′
3) of (B0, B1, B3). For rule ρ5 and κ = ε, we obtain the skeleton func-

tion κ5 = κρ5,ε for (B0, B1, B3) such that

κ5(B0) = B�
0(Bτ

0 (x1, x2, x3)) κ5(B1) = Ba
1 and κ5(B3) = Br

3(x1) ,

where B�
0 = 〈B0, �, 1, ε〉, Bτ

0 = 〈B0, τ , 1, 1〉, Ba
1 = 〈B1, a, 0, ε〉, and Br

3 = 〈B3, r, 1, ε〉. The resulting rule ρ̃5 = 〈ρ5, ε〉 is

ρ̃5 : (B�
0(x1), Bτ

0 (x1, x2, x3), Ba
1, Br

3(x1)) → (�x1, τ (x1, x2, x3), a, rx1) .

Substituting κ5(Bi) for Bi (and κ ′
5(B ′

i) for B ′
i) in the right-hand side u4 of rule ρ4, we obtain the forest

u′
4 = (�B�

0(Bτ
0 (x1, x2, x3)), Ba

1, Br
3(B ′ �

0 (B ′ τ
0 (B ′ a

1 ,b, B ′ r
3 (rx1)))))

and from that the following rule ρ̃4 = 〈ρ4, (κ5, κ ′
5)〉:

35 Except that in the construction of the rule 〈ρ, δ〉 it should be clear that u j [f] is a footed pattern in P N ′∪�(Xrk(C)). Moreover, the decomposition
decA j (u j [f]) is of course an adjoining A j -decomposition of u j [f].

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 77
ρ̃4 : (B�
0(x1), Bτ

0 (x1, x2, x3), Ba
1, Br

3(x1)) → (�B�
0(x1), Bτ

0 (x1, x2, x3), Ba
1, Br

3(B ′ �
0 (B ′ τ

0 (B ′ a
1 ,b, B ′ r

3 (rx1))))) ,

and the skeleton function κρ4,(κ5,κ ′
5) = κ5 for (B0, B1, B3). Thus, these are all the new rules obtained from ρ4 and ρ5. We

now turn to rules ρ3 and ρ2. The only skeleton needed for A is the tree

K = κρ3,ε(A) = A�(Aτ (Aa, Ab, Ar(x1))) ,

where A� = 〈A, �, 1, ε〉, Aτ = 〈A, τ , 1, 1〉, Aa = 〈A, a, 0, 11〉, Ab = 〈A, b, 0, 12〉, and Ar = 〈A, r, 1, 13〉. The resulting rule
ρ̃3 = 〈ρ3, ε〉 is

ρ̃3 : (A�(x1), Aτ (x1, x2, x3), Aa, Ab, Ar(x1)) → (�x1, τ (x1, x2, x3), a, b, rx1) .

Substituting K for A and κ5(Bi) for Bi in the right-hand side u2 = �A(B0(B1, b, B3(rx1))) of ρ2, we obtain the tree

u′
2 = �A�(Aτ (Aa, Ab, Ar(B�

0(Bτ
0 (Ba

1,b, Br
3(rx1)))))) .

It has the adjoining A-decomposition decA(u′
2) = 〈K , γ 〉 such that γ (A�) = �A�(Aτ (Aa, Ab, Ar(B�

0(x1)))) as well as
γ (Aτ) = Bτ

0 (x1, x2, x3), γ (Aa) = Ba
1, γ (Ab) = b, and γ (Ar) = Br

3(rx1), which is illustrated in the third part of Fig. 11. The
resulting rule ρ̃2 = 〈ρ2, (κρ3,ε, κ5)〉 is

ρ̃2 : (A�(x1), Aτ (x1, x2, x3), Aa, Ab, Ar(x1)) → (�A�(Aτ (Aa, Ab, Ar(B�
0(x1)))), Bτ

0 (x1, x2, x3), Ba
1, b, Br

3(rx1)) .

Finally, we consider rule ρ1. The only skeleton needed for S is S� = 〈S, �, 0, ε〉, which is the initial nonterminal of G� .
Substituting K for A and κ5(Bi) for Bi in the right-hand side �A(B0(B1, b, B3(re))) of ρ1, we obtain the tree u′

2[x1 ← e]
and the new rule

ρ̃1 : S� → �A�(Aτ (Aa, Ab, Ar(B�
0(Bτ

0 (Ba
1,b, Br

3(re)))))) ,

where ρ̃1 = 〈ρ1, (κρ3,ε, κ5)〉. Thus, G� has the rules {ρ̃1, ρ̃2, ρ̃3, ρ̃4, ρ̃5, ρ̃ ′
4, ρ̃

′
5}. Clearly, the tree K generates the same

terminal trees as A(x1) and the tree κ5(Bi) generates the same terminal trees as in(Bi) for every i ∈ [3]. It is easy
to check that G� is an {a, b}-lexicalized MC-TAG with respect to the smallest equivalence ≡ such that C x ≡ x for every
C ∈ {S, A, B0, B ′

0, B1, B ′
1, B3, B ′

3} and every x ∈ {�, τ , a, b, r}.
We finally mention that, in Example 51, the first rule of the grammar G2 could be changed into the rule

S → �B(b, B ′(b, re)), because B(b, x1) generates the same terminal trees as A(x1). This makes the nonterminal A super-
fluous. We have not done this, for the sake of illustration of our constructions. As a result of this change, the three rules
ρ̃1, ρ̃2, ρ̃3 of G� can be changed into the one rule S� → �B�

0(Bτ
0 (Ba

1, b, Br
3(B ′ �

0 (B ′ τ
0 (B ′ a

1 , b, B ′ r
3 (re)))))). �

Example 58. As another, similar example, let us consider the {a, b}-lexicalized MCFTG G obtained from G ′
2 by changing in

its rules every � into γ � and every r (except the one in ρ1) into rγ , where γ has rank 1. Thus, G has the rules

ρ1 : S → γ �A(B0(B1,b, B3(re))) ρ3 : A(x1) → γ �τ (a,b, rγ x1)

ρ2 : A(x1) → γ �A(B0(B1,b, B3(rγ x1))) ρ5 : B → (
γ �τ (x1, x2, x3),a, rγ x1

)
ρ4 : B → (

γ �B0(x1, x2, x3), B1, B3(B ′
0(B ′

1,b, B ′
3(rγ x1)))

)
,

where B = (B0(x1, x2, x3), B1, B3(x1)). Clearly, G is equivalent to the TAG G1 of Example 55, for which there is no equivalent
{a, b}-lexicalized nsTAG.

Since ρ2 and ρ3 are MC-TAG rules with respect to A ≡ γ , they do not have to be changed. It is not difficult to see that
the only skeleton function needed for (B0, B1, B3) is κ5 with

κ5(B0) = Bγ
0 (B�

0(Bτ
0 (x1))) κ5(B1) = Ba

1 and κ5(B3) = Br
3(Bγ

3 (x1)) ,

where we have Bγ
0 = 〈B0, γ , 1, ε〉, B�

0 = 〈B0, �, 1, 1〉, Bτ
0 = 〈B0, τ , 1, 11〉, and similarly for B3, and Ba

1 = 〈B1, a, 0, ε〉. Given
these skeletons, it is straightforward to construct the following rules for Gγ :

ρ̃1 : Sγ → γ �A(Bγ
0 (B�

0(Bτ
0 (Ba

1,b, Br
3(Bγ

3 (re))))))

ρ̃2 : A(x1) → γ �A(Bγ
0 (B�

0(Bτ
0 (Ba

1,b, Br
3(Bγ

3 (rγ x1))))))

ρ̃3 : A(x1) → γ �τ (a,b, rγ x1)

ρ̃4 : B̄ → (
γ �Bγ

0 (x1), B�
0(x1), Bτ

0 (x1, x2, x3), Ba
1, B̂, γ x1

)
with B̂ = Br

3(Bγ
3 (B ′ γ

0 (B ′ �
0 (B ′ τ

0 (B ′ a
1 ,b, B ′ r

3 (B ′ γ
3 (rx1)))))))

ρ̃5 : B̄ → (
γ x1, �x1, τ (x1, x2, x3),a, rx1, γ x1

)
where B̄ = (Bγ

0 (x1), B�
0(x1), Bτ

0 (x1, x2, x3), Ba
1, B

r
3(x1), B

γ
3 (x1)). Clearly, Gγ is an {a, b}-lexicalized MC-TAG equivalent to the

TAG G1. �

78 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Let us say that a tree language L is root consistent if rk(t1(ε)) �= rk(t2(ε)) for all t1, t2 ∈ L such that t1(ε) �= t2(ε). It should
be clear that every tree language in MC-TAL is root consistent.

Theorem 59. For every MCFTG G such that L(G) is root consistent, there is an LDTR-equivalent MC-TAG G ′ such that

μ(G ′) ≤
{
μ(G) if θ(G) = 0

μ(G) · |�| · mrk2
� · (2 · θ(G) − 1) if θ(G) ≥ 1 ,

where � is the terminal alphabet of G. Moreover, if G is �-lexicalized, then so is G ′ .

Proof. With the help of Theorem 50, we may assume that G = (N, N , �, S, R) is a footed MCFTG. The set

	 = {t(ε) | t ∈ L(G)}
can be computed by deciding the emptiness of L(Gσ) for every σ ∈ �, where Gσ is the MCFTG of Lemma 56. Now let
σ0 be an arbitrary element of 	, and construct the adjoining MCFTG Gσ0 = (N ′, N ′, �, Sσ0 , R ′) as in the proof of Lemma 56.
From Gσ0 we construct G ′ by identifying all nonterminals 〈S, σ , 0, ε〉 such that σ ∈ 	 and taking the resulting nontermi-
nal S ′ to be the initial nonterminal of G ′ . Since Gσ0 is adjoining, it is straightforward to check that G ′ is an MC-TAG with
respect to the smallest equivalence ≡ such that σ1 ≡ σ2 ≡ S ′ for all σ1, σ2 ∈ 	 and 〈C, σ , b, p〉 ≡ σ for all 〈C, σ , b, p〉 ∈ N ′ .
It is easy to modify the LDTR-transducers M and M ′ in the proof of Lemma 56 such that they show the LDTR-equivalence
of G and G ′ . We finally note that if θ(G) = 0, then μ(Gσ0) = μ(G) by the proof of Lemma 56. �

We now can characterize MCFT and MC-TAL in terms of each other in a very simple way.

Corollary 60. Let # be a new symbol of rank 1. Then

MC-TAL = {L ∈ MCFT | L is root consistent} and MCFT = {L | #(L) ∈ MC-TAL} .

Proof. The first equality is immediate from Theorem 59 and the fact that every tree language in MC-TAL is root consistent.
It is easy to see that if L ∈ MCFT, then #(L) ∈ MCFT. This also holds in the other direction because MCFT is closed under tree
homomorphisms by Lemma 22. The second equality now follows from Theorem 59 because #(L) is root consistent. �

As observed in the Introduction this corollary settles a problem stated in [94, Section 4.5], which can be reformulated as
“it would be interesting to investigate whether MC-TAL is properly included in MCFT”. By the first statement of Corollary 60
that is indeed the case; i.e., MCFTGs are slightly more powerful than MC-TAGs. However, by the second statement they have
the same power provided that MC-TAGs are allowed to make use of a root-marker. Another obvious way to “force” equality
of MCFT and MC-TAL is to allow MCFTGs, and hence MC-TAGs, to use several initial nonterminals instead of just one (as
we did in [25]). It is clear that this does not change the class MCFT. Thus, the proper inclusion of MC-TAL in MCFT is due
to minor technicalities. For that reason we feel justified to state that MCFTGs and MC-TAGs have the same tree generating
power (as in [25]).

As another corollary we obtain from Theorems 59 and 45 that MC-TAGs can be (strongly) lexicalized. Thus, although
TAGs cannot be strongly lexicalized, as proved in [65] (cf. Remark 54), MC-TAGs can. This was illustrated in Example 58.

Theorem 61. For every finitely �-ambiguous MC-TAG G there exists an LDTR-equivalent �-lexicalized MC-TAG G ′ such that

μ(G ′) ≤ (μ(G) + mrk�) · |�| · mrk2
� · (2 · θ(G) + 1) ,

where � is the terminal alphabet of G.

6.3. Monadic MCFTGs

We say that an MCFTG G is monadic if θ(G) ≤ 1. For instance, the grammars of Examples 6, 7, and 51 are monadic. As
observed in the beginning of this section, it is shown in [61] that nsTAGs have the same tree generating power as monadic
spCFTGs. Similarly, on the basis of Theorem 59, we can now prove that MCFTGs have the same tree generating power as
monadic MCFTGs. The construction in the proof is the same as in [40].

Theorem 62. For every MCFTG G with θ(G) ≥ 2 there exists an LDTR-equivalent monadic MCFTG G ′ such that

μ(G ′) ≤ μ(G) · |�| · mrk2
� · (2 · θ(G) − 1) ,

where � is the terminal alphabet of G. Moreover, if � ⊆ �(0) and G is �-lexicalized, then G ′ is �-lexicalized.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 79
Proof. It should be clear from Lemma 56 and the proof of Corollary 60 that we may assume that G = (N, N , �, S, R)

is an adjoining MCFTG with respect to a mapping ϕ : N ∪ � → �, as defined in Section 6.2.36 We define the monadic
G ′ = (N,N ,�, S, R ′) such that every nonterminal C ∈ N with rk(C) ≥ 2 in G now has rank rk′(C) = 1 in G ′ , and
rk′(C) = rk(C) for the nonterminals with rk(C) ≤ 1. The idea of the proof is that every occurrence of a nonterminal
C(x1, . . . , xm) of rank m ≥ 1 is replaced by C(σ (x1, . . . , xm)) where σ = ϕ(C), such that in G ′ the nonterminal C does
not generate the foot node of the tree generated by C in G . Thus, for a footed pattern t ∈ P N∪�(X) of rank at least 1, let
cut(t) denote the unique pattern of rank 1 such that t = cut(t)[x1 ← in(flab(t))]. For instance, cut(σ (a, τ (x1, x2))) = σ(a, x1).
Moreover, for simplicity, let cut(t) = t for every tree t ∈ T N∪� . Now let ρ = A → ((u1, . . . , un), L) be a rule in R with
A = (A1, . . . , An), and let f be the substitution function for N such that f (C) = C(in(ϕ(C))) if rk(C) ≥ 1 and f (C) = C if
rk(C) = 0, for every C ∈ N . Then R ′ contains the rule ρ ′ = A → ((u′

1, . . . , u
′
n), L) where u′

j = cut(u j[f]) for every j ∈ [n]. It
can be shown that L(G ′, A) = {(cut(t1), . . . , cut(tn)) | (t1, . . . , tn) ∈ L(G, A)} and so L(G ′) = L(G). The formal proof, together
with the proof of LDTR-equivalence, is left to the reader.

If G ′ is �-lexicalized and � ⊆ �(0) , then G is �-lexicalized. In fact, the right-hand sides of ρ and ρ ′ contain the same el-
ements of � because the only symbols that are removed or added have rank at least 2. We also observe that, for unrestricted
� ⊆ �, if G is n-�-lexicalized for n > μ(G), as defined before Lemma 48, then the grammar G ′ is (n −μ(G))-�-lexicalized.
In fact, in the definition of ρ ′ we have that for every j ∈ [n], |pos�(u j[f])| ≥ |pos�(u j)| and |pos�(u′

j)| ≥ |pos�(u j[f])| − 1.
�

For unrestricted � this theorem also holds except that G ′ is just equivalent to G , not necessarily LDTR-equivalent. This
follows from Lemma 48 and the last paragraph of the proof of Theorem 62. Thus, for every �-lexicalized MCFTG G with
θ(G) ≥ 2 there is an equivalent �-lexicalized monadic MCFTG G ′ such that μ(G ′) ≤ μ(G) · |�| · mrk2

� · (2 · θ(G) − 1).

Example 63. We consider the MCFTG G = (N, N , �, S, R) with the set N = {S, A(2), B(2)} of nonterminals, the set
N = {S, (A, B)} of big nonterminals, the set � = {σ (2), τ (2), a(0), b(0), e(0)} of input symbols and the rules

S → A(a, B(e,b))

(A(x1, x2), B(x1, x2)) → (σ (a, A(x1, x2)), B(τ (x1, x2),b))

(A(x1, x2), B(x1, x2)) → (σ (x1, x2), τ (x1, x2)) .

It generates the tree language L(G) = {(σa)nτnebn | n ≥ 1}. Note that we here use string notation. Thus, e.g., (σa)2τ 2eb2

is the tree σaσaττebb which written as a term is σ(a, σ(a, τ (τ (e, b), b))). Obviously, G is an adjoining MCFTG with
ϕ(S) = ϕ(A) = σ and ϕ(B) = τ . The equivalent monadic grammar G ′ as constructed in the proof of Theorem 62 has the
rules

S → A(σ (a, B(τ (e,b))))

(A(x1), B(x1)) → (σ (a, A(x1)), B(τ (x1,b)))

(A(x1), B(x1)) → (x1, x1) .

Note that G ′ is not footed. �
As observed in the Introduction, Theorem 62 does not hold for spCFTGs; i.e., spCFTGs do not have the same tree gen-

erating power as monadic spCFTGs. In fact, it is shown in [30, Theorem 6.5] (see also [67, Lemma 24]) that spCFTGs (and
arbitrary context-free tree grammars) give rise to a strict hierarchy with respect to θ(G). It is shown in [67, Theorem 10])
that every “straight-line” spCFTG can be transformed into an equivalent monadic one in polynomial time; the construction
is similar to the one for Theorem 62 (in particular to the one in the proof of Theorem 50).

We finally observe that some tree languages in MCFT cannot be generated by an MCFTG that is both monadic and
footed. An example is the language L = {(ca)n(da)ne | n ∈ N0} that is generated by the spCFTG with the rules S → A(e),
A(x1) → c(a, A(d(a, x1))), and A(x1) → x1. If G is a monadic footed MCFTG with L(G) = L, then G must be an MRTG because
there is no terminal symbol of rank 1.37 It follows from Theorem 77 in Section 8 and [81, p. 277] that all tree languages
in MRT have regular “path languages”. However, the intersection of the path language of L with c∗d∗e is {cndne | n ∈ N0},
which is not regular. Thus, L is not in MRT (see also the last paragraph of Section 8).

36 Otherwise, we replace every initial rule S → (u, L) by S → (#(u), L) and after the construction remove # by Lemma 22.
37 We already observed below Definition 49 that every tree of the forest (t1, . . . , tn) ∈ L(G, (A1, . . . , An)) is footed. Suppose that rk(A j) = 1 for some
j ∈ [n], then the corresponding tree t j ∈ P�(X1) only contains terminal symbols (and the variable x1). The foot node label of t j must have rank 1, but the
ranked alphabet � does not contain a unary symbol. Hence no unary nonterminal can be useful.

80 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
7. Multiple context-free grammars

In this section we define the multiple context-free (string) grammars (MCFG) of [88,93]. We first prove that MCFGs can
be lexicalized. Then we prove that every tree language in MCFT can be generated by an MCFG, which is possible because
we defined T� as a subset of �∗ . Using this we prove that MCFTGs have the same string generating power as MCFGs, by
taking the yields of the generated tree languages. Moreover, we show that MCFTGs can be parsed in polynomial time.

7.1. String generating power of MCFTGs

To avoid the formalities involved in defining MCFGs in the classical way, we define them as a special case of MCFTGs.
We introduce a special symbol � of rank 0 and we identify, as usual, the strings over a finite (unranked) alphabet � with
the trees over the “monadic” ranked alphabet � ∪ { �}, where every symbol in � has rank 1. Thus, w ∈ �∗ is identified
with w � ∈ T�∪{ �} .

A multiple context-free grammar (in short, MCFG) is an MCFTG G = (N ∪ {S}, N , � ∪ { �}, S, R) such that S /∈ N , every
nonterminal in N has rank 1, � /∈ �, and every terminal in � has rank 1. We also require (without loss of generality)
that G is start-separated; i.e., that S does not occur in the right-hand sides of rules. With the above identification we
have L(G) ⊆ �∗ , and for every A ∈ N \ {S} we have L(G, A) ⊆ P�(X1)

+ and P�(X1) = �∗x1. Note that every rule of G is
either of the form S → (u �, L) with u ∈ (N ∪�)∗ or of the form (A1, . . . , An) → ((u1x1, . . . , unx1), L) where A1, . . . , An ∈ N
and u1, . . . , un ∈ (N ∪ �)∗ . For a uniquely N-labeled tree t = vC w � (or vC wx1) with v, w ∈ (N ∪ �)∗ and C ∈ N , the
rewriting of C by ux1 with u ∈ (N ∪ �)∗ results in the tree t[C ← ux1], which equals vuw � (or vuwx1); thus, it is the
usual rewriting of a nonterminal in a sentential form of a context-free grammar. It is straightforward to see that this
definition of MCFG is equivalent to the classical notion of multiple context-free grammar [88,93], taking into account the
information-lossless condition (f3) of [88, Lemma 2.2]. The class of languages generated by MCFGs will be denoted by MCF.

Through the above identification of strings with monadic trees, MCFTGs can also generate strings directly as opposed to
taking yields of the generated trees. In the next lemma we show that every MCFTG that generates strings in this way, has
an equivalent MCFG.

Lemma 64. For every MCFTG G with terminal alphabet � ∪ { �}, where every symbol in � has rank 1, there is an LDTR-equivalent
MCFG G ′ . Moreover, μ(G ′) = μ(G).

Proof. Due to the specific form of the terminal alphabet, it should be clear that reachable and useful big nonterminals
cannot contain nonterminals of rank strictly larger than 1. Consequently, we may assume that G is monadic without the
help of Theorem 62. We transform G into an MCFG G ′ with the same big nonterminals and the same nonterminals, which
all have rank 1 in G ′ except for the initial nonterminal S of rank 0. Additionally, in the right-hand side of every initial rule
we replace every occurrence of a nullary nonterminal C by C(�), and in the right-hand side of every non-initial rule we
replace every occurrence of a nullary nonterminal C by C(x1) and every occurrence of � by x1. �

Let strMCFT denote the class of all string languages generated by MCFTGs, where strings over � are viewed as monadic
trees over � ∪ { �} as explained above.

Corollary 65. strMCFT = MCF.

Another consequence of Lemma 64 is that MCFGs can be lexicalized, as stated in [96, Section 4.4] for the case � = �. This
should be contrasted to the fact that context-free grammars cannot be �-lexicalized for every �, as shown in Remark 54.

Corollary 66. For every finitely �-ambiguous MCFG G there is a �-lexicalized MCFG G ′ that is LDTR-equivalent to G. Moreover,
μ(G ′) = μ(G) + 1.

Proof. By Theorem 45 there is an LDTR-equivalent �-lexicalized MCFTG G ′ such that θ(G ′) = 2 and μ(G ′) = μ(G) + 1. Next
we apply Lemma 64. �

Example 67. Consider the context-free grammar G with rules S → �A Ar, A → �A Ar, and A → �τabr (cf. Example 51 and
Remark 54). Obviously, we may view G as an MCFG of multiplicity 1 with an alias A′ of A. Its terminal alphabet is � ∪ { �}
with � = {τ (1), �(1), r(1), a(1), b(1)}, and its rules for S and A are

S → �A(A(r �)) A(x1) → �A(A′(rx1)) and A(x1) → �τabrx1 .

Let � = {a, b}. Since G is �-growing, it has finite �-ambiguity. Applying a slightly simplified version of the proof of
Corollary 66, we obtain a �-lexicalized MCFG G ′ of multiplicity 2 such that L(G ′) = L(G). It has the big nontermi-
nals {S, A, (B, C), (B ′, C ′)}, where (B ′, C ′) is an alias of (B, C), and the following rules, in which we omit � and x1 (and
all the parentheses in trees) for readability:

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 81
S → �ABbCr A → �ABbCr A → �τabr (B, C) → (�B, C B ′bC ′r) (B, C) → (�τa, r) .

Clearly, the string BbC generates the same terminal strings as A. �
In the next theorem, we show that every tree language that is generated by an MCFTG can also be generated by an MCFG

provided that we change the ranks of the terminal symbols. In this theorem we (temporarily) identify each tree t over
the ranked alphabet � (which is defined as a string over the unranked alphabet �) with the tree t � over the ranked
alphabet � ∪ { �}, in which every symbol of � has rank 1. As an example, the tree σ(a, b) = σab is identified with the
tree σab � = σ(a(b(�))). The idea behind the proof is essentially the same as in the proofs of [87, Lemma 10] and [28,
Theorem 15], where similar results were shown for macro grammars and macro tree transducers, respectively. In the case
of an spCFTG, the resulting MCFG is well-nested (see [44,55,56,72]).

Theorem 68. For every MCFTG G there is an LDTR-equivalent MCFG G ′ . If G is �-lexicalized, then so is G ′ . Moreover,

μ(G ′) = μ(G) · (θ(G) + 1) and λ(G ′) = λ(G) .

If G is footed (i.e., is an nsMC-TAG) then μ(G ′) = 2 · μ(G).

Proof. By Lemma 23 we may assume that G = (N, N , �, S, R) is permutation-free. We will define the MCFG

G ′ = (N ′ ∪ {S ′},N ′ ∪ {S ′},� ∪ {�}, S ′, R ′) ,

where S ′ is a new nonterminal and all the symbols in � now have rank 1. First, we let N ′ = {〈C, i〉 | C ∈ N, 0 ≤ i ≤ rk(C)}.
For every C ∈ N(k) the intuition behind this is that 〈C, i〉(x1) generates the string wi x1, when C(x1, . . . , xk) generates (as
part of a big nonterminal) the terminal tree w0x1 w1 · · · xk wk ∈ PF�(Xk) with w1, . . . , wk ∈ �∗ . For every C ∈ N(k) , let its
expansion be exp(C) = (〈C, 0〉, 〈C, 1〉, . . . , 〈C, k〉) ∈ (N ′)+ , and for every A = (A1, . . . , An) ∈N , let

exp(A) = exp∗(A) = exp(A1) · · · exp(An) ∈ (N ′)+

be the concatenation of the expansions of its nonterminals. Then we define N ′ = {exp(A) | A ∈N }.
In the remainder of this proof we need the following two bijections π and λ. The right-hand side forest

u = (u1x1, . . . , unx1) ∈ P N ′∪�(X1)
+

of a possible non-initial rule of G ′ is in one-to-one correspondence with the string π(u) = u1x1 · · · unx1 ∈ (N ′ ∪ � ∪ X1)
∗

that ends on x1 and with the sequence λ(u) = (u1, . . . , un) of strings u1, . . . , un ∈ (N ′ ∪ �)∗ . For the definition of the
rules of G ′ we need the expansion of the right-hand side forests of the rules of G . For every t ∈ T N∪�(X) we define
exp(t) = π−1(exp′(t) · x1) ∈ P N ′∪�(X1)

+ , where π is the bijection defined above and where exp′(t) ∈ (N ′ ∪ � ∪ X1)
∗ is

defined inductively as follows:

exp′(t) =

⎧⎪⎨
⎪⎩

x1 if t ∈ X

σ · exp′(t1) · · · exp′(tk) if t = σ(t1, . . . , tk) with σ ∈ �

〈C,0〉 · exp′(t1) · 〈C,1〉 · · · exp′(tk) · 〈C,k〉 if t = C(t1, . . . , tk) with C ∈ N .

We note that exp′(t) = t[x ← x1 | x ∈ X] if t ∈ T�(X). Given t = (t1, . . . , tn) ∈ T N∪�(X)+ we let

exp(t) = exp∗(t) = exp(t1) · · · exp(tn)

be the concatenation of the expansions of its elements.
Now, if ρ = A → (u, {B1, . . . , Bk}) ∈ R , then R ′ contains the non-initial rule

ρexp = exp(A) → (exp(u), {exp(B1), . . . ,exp(Bk)}) .

Clearly, the rule ρ can be reconstructed from ρexp. Finally we define the initial rules of G ′ . If ρexp = 〈S, 0〉 → (vx1, L) is
a rule in R ′ as constructed above for A = S , then R ′ contains the additional rule ρ ′

exp = S ′ → (v �, L).38 At this point, we
completed the construction of G ′ . To prove its correctness we need the following claim.

Claim. Given a tree t ∈ T N∪�(X), a repetition-free sequence (A1, . . . , An) ∈ Nn, and permutation-free patterns s1, . . . , sn ∈ PF�(X)

such that rk(Ai) = rk(si) for every i ∈ [n], we have

exp(t[(A1, . . . , An) ← (s1, . . . , sn)]) = exp(t)[exp(A1) · · · exp(An) ← exp(s1) · · · exp(sn)] .

38 The rule ρexp = 〈S, 0〉 → (vx1, L) is then superfluous, but we keep it to simplify the correctness proof.

82 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Proof of claim. It can first be shown that exp′(t[(A1, . . . , An) ← (s1, . . . , sn)]) = h∗(exp′(t)), where h is the string homo-
morphism over N ′ ∪ � ∪ X1 such that the string h(〈Ai, j〉) is the (j + 1)-th element of the sequence λ(exp(si)), with
the bijection λ defined above, for every i ∈ [n] and 〈Ai, j〉 ∈ N ′ . Moreover, h is the identity for the remaining elements
of N ′ ∪ � ∪ X1. The straightforward proof is left to the reader; it is by induction on the structure of t using the obvious
fact that exp′(s[xi ← ti | 1 ≤ i ≤ k] = g∗(s) for all s ∈ T�(Xk) and t1, . . . , tk ∈ T N∪�(X), where g is the string homomor-
phism over � ∪ Xk such that g(xi) = exp′(ti) for i ∈ [k] and g(σ) = σ for σ ∈ �. Thus, the left-hand side of the equation
is π−1(h∗(exp′(t)) · x1). We now observe that this is equal to π−1(h∗(π(exp(t)))), which clearly equals the right-hand side
of the equation. This proves the claim.

For every derivation tree d ∈ L(Gder, A) there is a derivation tree d′ ∈ L(G ′
der, exp(A)) such that val(d′) = exp(val(d)).

In fact, d′ is obtained from d by changing every label ρ simply into ρexp. Let d = ρ(d1, . . . , dk), and let d′
i be such that

val(d′
i) = exp(val(di)). Now consider d′ = ρexp(d′

1, . . . , d
′
k). Then we have

val(d′) = exp(u)[exp(B1) · · · exp(Bk) ← exp(val(d1)) · · · exp(val(dk))] and

val(d) = u[B1 · · · Bk ← val(d1) · · · val(dk)] .

Thus val(d′) = exp(val(d)) by the above claim. Hence if d ∈ L(Gder), then d′ ∈ L(G ′
der, 〈S, 0〉) and hence d′′ ∈ L(G ′

der) where
d′′ is obtained from d′ by priming the label of its root. Moreover, val(d′) = exp(val(d)) = val(d)x1. Hence, by Lemma 2,

val(d′′) = val(d′)[x1 ← �] = val(d)� = val(d) .

This shows that L(G) ⊆ L(G ′). Clearly, there is a two-state LDT-transducer that transforms d into d′′ . In fact, it is a finite-
state relabeling. Since, obviously, every derivation tree in L(G ′

der) is of the form d′′ with d ∈ L(Gder), it also follows that
L(G ′) ⊆ L(G). Clearly, there is a one-state LDT-transducer that transforms d′′ into d by changing every ρexp and ρ ′

exp into ρ .
If G is footed, then the nonterminals 〈C, 1〉, . . . , 〈C, k − 1〉, where k = rk(C), are superfluous because they always gener-

ate x1. Thus, in this case it suffices to define exp(C) = (〈C, 0〉, 〈C, k〉) and adapt the construction accordingly. The resulting
construction is similar to the one described in [94, Section 4.5.1] where it is shown that the yield of a tree language in
MC-TAL is in MCF. �

Example 69. We consider the permutation-free MCFTG G = (N, N , �, S, R), in which we have N = {S, A(2), B(0)},
N = {S, (A, B)}, � = {σ (2), α(0), β(0), γ (0)}, and the following three rules:

S → σ(A(α,β), B)(
A(x1, x2), B

) → (
σ(α, A(σ (β, x1),σ (γ , x2))), σ (B, β)

) (
A(x1, x2), B

) → (
σ(x1, x2), γ

)
.

Clearly, L(G, (A, B)) consists of all forests
(
(σα)nσ(σβ)nx1(σγ)nx2, σ nγ βn) with n ∈ N0. Consequently, we have that

L(G) = {σ(σα)nσ(σβ)nα(σγ)nβσ nγ βn | n ∈ N0}. The MCFG G ′ constructed in the proof of Theorem 68 has the following
four rules (in which we omit all parentheses in trees):

S ′ → σ 〈A,0〉α〈A,1〉β〈A,2〉〈B,0〉 �
〈S,0〉x1 → σ 〈A,0〉α〈A,1〉β〈A,2〉〈B,0〉x1

(〈A,0〉x1, 〈A,1〉x1, 〈A,2〉x1, 〈B,0〉x1) → (σα〈A,0〉σβx1, 〈A,1〉σγ x1, 〈A,2〉x1, σ 〈B,0〉βx1)

(〈A,0〉x1, 〈A,1〉x1, 〈A,2〉x1, 〈B,0〉x1) → (σ x1, x1, x1, γ x1) .

Clearly, L(G ′, (〈A, 0〉, 〈A, 1〉, 〈A, 2〉, 〈B, 0〉)) = {(
(σα)nσ(σβ)nx1, (σγ)nx1, x1, σ nγ βnx1

) | n ∈ N0
}

and hence L(G ′) = L(G).
The second rule of G ′ is of course superfluous.

For the next lemma and corollary we note that the MCFG G ′′ that is obtained from G ′ by removing σ and thus has the
rules

S ′ → 〈A,0〉α〈A,1〉β〈A,2〉〈B,0〉 �
(〈A,0〉x1, 〈A,1〉x1, 〈A,2〉x1, 〈B,0〉x1) → (α〈A,0〉βx1, 〈A,1〉γ x1, 〈A,2〉x1, 〈B,0〉βx1)

(〈A,0〉x1, 〈A,1〉x1, 〈A,2〉x1, 〈B,0〉x1) → (x1, x1, x1, γ x1) ,

generates the string language yd(L(G)) = {αnβnαγ nβγ βn | n ∈N0}. �
Theorem 68 suggests that we do not need MCFTGs at all, because MCFGs can generate the “same” languages. However,

the MCFTG is a way of guaranteeing that all intermediate results during the generation process are trees, which supports
the structured generation of the trees.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 83
It follows from Theorem 68 that known properties of MCF languages (see, e.g., [54,88,93]) also hold for MCFT tree
languages. Thus MCFT ⊆ LOG(CFL); i.e., the recognition problem for an MCFT tree language is log-space reducible to that
of a context-free string language. Also, every tree language generated by an MCFTG G can be parsed in polynomial time
by first parsing the given tree according to the MCFG G ′ of Theorem 68 in polynomial time and then transforming the
resulting derivation tree of G ′ by the corresponding LDTR-transducer into one of G in linear time. This will be discussed in
more detail in Section 7.2. Additionally, every MCFT tree language is semi-linear.

Next we show that MCFGs generate exactly the yield languages of the tree languages generated by MCFTGs. We recall
that the yield of a tree t ∈ T� is defined as yd(t) = yd�(0)\{e}(t), where e is a special symbol e of rank 0 that satis-
fies yd(e) = ε. For a class X of tree languages, let yX be the class of all languages yd(L) with L ∈ X . Thus, we will
show that yMCFT = MCF. In fact, this is already a consequence of (the second equation of) Corollary 60 in Section 6.2,
which implies that yMCFT = yMC-TAL, and the equation yMC-TAL = MCF which was shown in [94].39 We additionally prove
LDTR-yd-equivalence, for which we refer to Definition 15. In the first half of the next lemma we consider, more gener-
ally, a subset � ⊆ � of lexical symbols and we prove LDTR-yd�-equivalence (where yd� is defined in the paragraph on
homomorphisms in Section 2.1). This general case will be used in the proof of Theorem 73.

Lemma 70. Let � ⊆ �.

(1) For every MCFTG G there is an MCFG G ′′ that is LDTR-yd�-equivalent to G.
(2) For every MCFG G there is an MRTG G1 such that G is LDTR-yd-equivalent to G1 .

Proof. It is straightforward to generalize the well-known proofs for RTGs and context-free grammars (see, e.g., [16, The-
orem 3.28]). To prove statement (1), let G = (N, N , �, S, R) be an MCFTG, and let G ′ = (N ′, N ′, � ∪ { �}, S ′, R ′) be the
LDTR-equivalent MCFG that exists by Theorem 68.40 Clearly, the mapping yd� is a tree homomorphism over the monadic
ranked alphabet � ∪ { �}. To be precise, let h be the tree homomorphism from � ∪ { �} to � ∪ { �} such that h(α) = x1

if α ∈ � \ � and h(α) = in(α) otherwise. Then ĥ(t �) = yd�(t) � for every t ∈ T� , and so ĥ = yd� . Now let G ′′ be the
grammar G ′

h as defined before Lemma 22. Clearly, G ′′ is again an MCFG and LDTR-ĥ-equivalent to G ′ by that lemma. Since
G ′ and G are LDTR-equivalent, it follows that G ′′ is LDTR-yd�-equivalent to G .

To prove statement (2), let G = (N, N , � ∪ { �}, S, R) be an MCFG. We construct the MRTG G1 = (N, N , � ∪ {e, c}, S, R1),
where c is a new terminal symbol of rank 2, and all symbols of � ∪ {e} and N have rank 0. The new set R1 of rules
is obtained by replacing each rule ρ = A → ((u1, . . . , un), L) of G by the rule ρ ′ = A → ((u′

1, . . . , u
′
n), L) of G1, where

u′
1, . . . , u

′
n are defined as follows. For u ∈ (N ∪ �)∗{ �, x1}, if u ∈ { �, x1}, then u′ = e, and if u = γ v with γ ∈ N ∪ �, then

u′ = c(γ , v ′). Note that ρ can be reconstructed from ρ ′ . It should be clear that G is LDTR-yd-equivalent to G1 because the
derivation trees of G1 are the primed versions of the derivation trees of G . �

Recall that if G ′ is LDTR-yd-equivalent to G , then L(G ′) = yd(L(G)). Thus, we immediately obtain from Lemma 70 (with
� = �(0) \ {e}) that MCFGs generate the yield languages of the tree languages generated by MCFTGs.

Corollary 71. yMCFT = MCF = yMRT.

Thus, strMCFT = yMCFT by Corollary 65. This is quite unusual for a class of tree languages as already observed at the end
of [28, Section 4]. For instance, the monadic tree languages generated by RTGs are the regular string languages, whereas the
yield languages are the context-free string languages.

The proof of MRT ⊆ MCF, and hence of MCF = yMRT, is also straightforward (cf. Example 6). For an MRTG

G = (N,N ,�, S, R) ,

we construct the MCFG G ′ = (N ∪ {S ′}, N ∪ {S ′}, �, S ′, R ′), where the set R ′ consists of all rules A → ((u1x1, . . . , unx1), L)

such that A → ((u1, . . . , un), L) ∈ R and all rules S ′ → (v �, L) such that S → (v, L) ∈ R . Then L(G ′) = L(G) because this
construction is a special case of the construction in the proof of Theorem 68 if, in that proof, 〈C, 0〉 is identified with C for
every C ∈ N . Note that in the constructions that prove MCF = yMRT the multiplicity of the grammars is preserved.

As observed just before Theorem 68, the above proofs show that CFTsp ⊆ MCFwn and yCFTsp ⊆ MCFwn, where MCFwn de-
notes the class of languages generated by well-nested MCFGs. The inclusion yCFTsp ⊆ MCF was proved in [87, Lemma 10].
It is, in fact, not difficult to show that yCFTsp = MCFwn as stated in [56]. The multiplicity of the well-nested MCFG equals
one plus the width of the spCFTG. It is proved in [59] that MCFwn is properly included in MCF.

39 The equality yMCFT = MCF is also stated in [8, Theorem 1].
40 For the purpose of this proof, there is no need to reconsider the construction of G ′ in its proof.

84 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
7.2. Parsing of MCFTGs

In the remainder of this section we consider the parsing problem for MCFTGs. We start by showing the well-known fact
(cf., e.g., [54,88]) that every MCFG G can be parsed in polynomial time in the sense that given a string w as input, the
parsing algorithm outputs an RTG H w that generates all derivation trees of G with value w . In fact, the usual CYK parsing
algorithm for MCFGs constructs the RTG H w in such a way that all its nonterminals are useful. Clearly, w ∈ L(G) if and only
if L(H w) �= ∅, which can be tested in linear time. Moreover, a derivation tree with value w can be computed from H w in
linear time provided that L(H w) �= ∅. In the next lemma we also state the degree of the polynomial, as taken from [88].41

It involves both the multiplicity μ(G) and the rule-width λ(G) of G .42 It should be noted that, as shown in [84] (see
also [6,52]), the uniform membership problem for MCFGs is NP-hard, even when μ(G) or λ(G) is fixed (except of course for
μ(G) = 1 and for the trivial case λ(G) = 0).

Lemma 72. For every MCFG G with terminal alphabet � ∪ { �} there is a polynomial time algorithm that, on input w ∈ �∗ , outputs
an RTG H w such that L(H w) = {d ∈ L(Gder) | val(d) = w}. The degree of the polynomial is μ(G) · (λ(G) + 1).

Proof. Let G = (N ∪ {S}, N , � ∪ { �}, S, R) and w ∈ �∗ . Moreover, let w = σ1 · · ·σn with n ∈ N0 and σ1, . . . , σn ∈ �. We
define the set of positions of w by pos(w) = {0, 1, . . . , n}. Intuitively, position 0 is just before σ1 and position i is just after
σi for every i ∈ [n]. For positions i, j ∈ pos(w) with i ≤ j we let w[i, j] = σi+1 · · ·σ j be the substring of w between positions
i and j. Note that w[i, i] = ε for every i ∈ pos(w).

The construction of H w is similar to the usual “triple construction” for proving that the intersection of a context-free
language with a regular language is again context-free (in this case the regular language {w}). We construct the RTG
H w = (Nw , R, S w , R w), in which Nw is the set of all sequences (〈�1, A1, r1〉, . . . , 〈�m, Am, rm〉) such that (A1, . . . , Am) ∈ N
and 0 ≤ �i ≤ ri ≤ n for all j ∈ [m]. Moreover, S w = 〈0, S, n〉. The idea of the proof is that (〈�1, A1, r1〉, . . . , 〈�m, Am, rm〉)
generates all derivation trees d ∈ L(Gder, (A1, . . . , Am)) with val(d) = (w[�1, r1], . . . , w[�m, rm]).

We now define the set R w of rules of H w . Let ρ = A → (u, L) be a rule in R such that A = (A1, . . . , Am),
L= {B1, . . . , Bk}, and u = (u1x1, . . . , umx1) if A �= S and u = u1 � otherwise (with A j ∈ N and u j ∈ �∗ for every j ∈ [m]).
Moreover, let �1, r1, . . . , �m, rm ∈ pos(w) and let � and r be mappings from occN(u) to pos(w) such that

(a) �i ≤ ri for every i ∈ [m] and �(C) ≤ r(C) for every C ∈ occN(u),
(b) for every j ∈ [m], if u j = v0C1 v1 · · · C p v p with p ∈N0, v0, vi ∈ �∗ , and Ci ∈ N for every i ∈ [p], then

(1) v0 = w[� j, � j + |v0|] and vi = w[r(Ci), r(Ci) + |vi |] for every i ∈ [p],
(2) �(C1) = � j + |v0| and �(Ci+1) = r(Ci) + |vi | for every i ∈ [p − 1],
(3) r j = l j + |v0| if p = 0 and r j = r(C p) + |v p| otherwise.

Then the set R w contains the rule (〈�1, A1, r1〉, . . . , 〈�m, Am, rm〉) → ρ(ĥ(B1), . . . , ̂h(Bk)), where h is the string homo-
morphism from occN (u) to pos(w) × N × pos(w) such that h(C) = 〈�(C), C, r(C)〉 for every C ∈ occN (u). Note that
occN (u) = ⋃k

i=1 occ(Bi).
The above proof idea can easily be shown by induction on the structure of d. Thus, S w generates all derivation trees in

d ∈ L(Gder) such that val(d) = w[0, n] = w . Before constructing the rules of R w , the set {i ∈ pos(w) | v = w[i, i +|v|]} can be
computed for every string v ∈ �∗ that occurs in a rule of R . Since G is fixed, this can be done in linear time and takes care
of the conditions in (1) above. When constructing a rule in R w corresponding to the rule ρ ∈ R as above, it clearly suffices
to choose �1, . . . , �m and the mapping r, because r1, . . . , rm are determined by (3) above and the mapping � is determined
by (2) above. Since each rule of R w can be constructed in constant time, constructing the rules corresponding to ρ takes
time O (nq) where q = m + ∑k

i=1|Bi | is the number of possible choices of �1, . . . , �m and r. Thus, the algorithm runs in time
O (nk) where k = μ(G) + λ(G) · μ(G) = μ(G) · (λ(G) + 1).

We note that the set Nw can be constructed in quadratic time.43 In fact, it should be clear that H w can be constructed
in such a way that only useful nonterminals occur in its rules. Such a construction corresponds directly to a CYK parsing
algorithm. �

We now generalize this result to MCFTGs. Let G be an MCFTG with terminal alphabet �, and let � ⊆ �(0) \ {e} be a set
of lexical symbols. We can use the MCFTG G to specify the MCF string language yd�(L(G)) together with a set of “syntactic
trees”, where every tree t in L(G) is viewed as a syntactic tree for the string yd�(t). In such a case, the parsing problem
for G amounts to finding the syntactic trees for a given string over �.

41 In [88] a recognition algorithm is presented for MCFGs in a certain normal form. In [54, Section 7] a parsing algorithm is presented for all MCFGs, with
the RTG defined as a chart with back-pointers, but the degree of the polynomial is not analyzed.
42 As defined after Definition 5, the rule-width of G is λ(G) = max{|L(ρ)| | ρ ∈ R} where R is the set of rules of G .
43 In the trivial case where λ(G) = 0 (and hence μ(G) = 1) we can take Nw = {S w }.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 85
Theorem 73. For every MCFTG G with terminal alphabet � and every � ⊆ �, there is a polynomial time algorithm that, on input
w ∈ �∗ , outputs an RTG H w and an MCFTG G w such that

L(H w) = {d ∈ L(Gder) | yd�(val(d)) = w} and L(G w) = {t ∈ L(G) | yd�(t) = w} .

The degree of the polynomial is μ(G) ·(θ(G) +1) ·(λ(G) +1). If G is footed (i.e., is an nsMC-TAG) then the degree is 2 ·μ(G) ·(λ(G) +1).

Proof. Let G ′ be the LDTR-yd�-equivalent MCFG that exists by Lemma 70(1), and let M be the LDTR-transducer from G
to G ′ . It can easily be verified that μ(G ′) = μ(G) · (θ(G) + 1) and λ(G ′) = λ(G), and that M is a (composition of) finite-state
relabeling(s). Moreover, let w ∈ �∗ . By Lemma 72 we can construct an RTG H ′

w such that L(H ′
w) = {d ∈ L(G ′

der) | val(d) = w},
in the required polynomial time. Then, by Proposition 14 and using a product construction with the RTG Gder, we construct
in linear time an RTG H w such that

L(H w) = M−1(L(H ′
w)) ∩ L(Gder) = {d ∈ L(Gder) | val(M(d)) = w} ,

which satisfies the requirement because val(M(d)) = yd�(val(d)). It remains to construct G w from G and H w , which we re-
alize in linear time by an easy product construction. Let G = (N, N , �, S, R) be the MCFTG and H w = (Nw , R, S w , R w)

be the constructed RTG. We construct the MCFTG G w = (N ′, N ′, �, S ′, R ′) such that N ′ = N × Nw and N ′ consists
of all (〈A1, C〉, . . . , 〈An, C〉) with (A1, . . . , An) ∈ N and C ∈ Nw . For A = (A1, . . . , An), we denote (〈A1, C〉, . . . , 〈An, C〉)
by A ⊗ C . The initial nonterminal of G w is S ′ = S ⊗ S w = 〈S, S w〉. If A → (u, L) is a rule in R with L = {B1, . . . , Bk} and
C0 → ρ(C1, . . . , Ck) is a rule in R w , then R ′ contains the rule A ⊗ C0 → (u′, L′), in which u′ = u[Bi ← in(Bi ⊗ Ci) | 1 ≤ i ≤ k]
and L′ = {B1 ⊗ C1, . . . , Bk ⊗ Ck}. It is easy to show that L(G w , A ⊗ C) = val(L(Gder, A) ∩ L(H w , C)) for every big nonterminal
A ⊗ C ∈N ′ . Hence L(G w) = val(L(H w)), which shows that G w satisfies the requirement. �

For � = � this theorem shows that MCFTGs can be parsed as tree grammars in polynomial time. For every input tree
t ∈ T� the parsing algorithm produces as output an RTG Ht such that L(Ht) = {d ∈ L(Gder) | val(d) = t}. The algorithm
can easily be extended to test in linear time whether or not t ∈ L(G) by testing whether L(Ht) is nonempty. Additionally, if
L(Ht) �= ∅, then it can also compute in linear time an element of L(Ht); i.e., a derivation tree d ∈ L(Gder) such that val(d) = t .

For � ⊆ �(0) \ {e} we are in the situation described before the theorem. For every input string w ∈ �∗ the parsing
algorithm outputs an MCFTG G w such that L(G w) is the set of all syntactic trees t ∈ L(G) with yd�(t) = w . Using H w

as in the previous case, the algorithm can be extended to test in linear time whether w ∈ yd�(L(G)), and if so compute
a derivation tree d ∈ L(Gder) such that yd�(val(d)) = w . Moreover, it can then compute t = val(d) in linear time; i.e., a
syntactic tree t ∈ L(G) with yd�(t) = w .

We note that, by the proof of Theorem 73, these parsing algorithms are directly based on a parsing algorithm for MCFGs;
i.e., any algorithm that satisfies Lemma 72. If such a parsing algorithm for the LDTR-yd�-equivalent MCFG G ′ does not
output an RTG H ′

w for all derivation trees d′ with value w , but outputs just one such derivation tree d′ , then there is no
need to construct H w and G w because the above derivation tree d ∈ L(Gder) and syntactic tree t ∈ L(G) can be obtained in
linear time as d = M ′(d′) and t = val(d), where M ′ is the LDTR-transducer from G ′ to G .

8. Characterization

In this section we prove that MCFT is equal to the class DMTfc(RT) of images of the regular tree languages under (total)
deterministic finite-copying macro tree transducers, and hence equal to the class DMSOT(RT) of images of the regular tree
languages under (total) deterministic MSO tree transducers.44 After proving this result we discuss a number of consequences,
in particular several alternative characterizations of MCFT. As opposed to the usual notation in the literature [26,27,34,39],
we use Y as the set of input variables and X as the set of output variables (or parameters) for macro tree transducers. We
only consider total deterministic macro tree transducers that are simple (i.e., linear and nondeleting) in the parameters; this is
indicated by ‘D’ and ‘sp’, respectively.

A macro tree transducer (in short, DMTsp-transducer) is a system M = (Q , 	, �, q0, R), where Q is a finite ranked alpha-
bet of states, 	 and � are finite ranked alphabets of input and output symbols, respectively, with Q ∩ � = ∅, q0 ∈ Q (0) is
the initial state, and R is a finite set of rules. For every q ∈ Q (m) and ω ∈ 	(k) with m, k ∈N0 there is exactly one rule of the
form 〈q, ω(y1, . . . , yk)〉(x1, . . . , xm) → ζ in R such that ζ ∈ P (Q ×Yk)∪�(Xm), where every element 〈q′, yi〉 of Q × Yk has the
same rank as q′ . We denote ζ by rhsM(q, ω).

For every input tree s ∈ T	 and every state q ∈ Q , the q-translation of s by M , denoted by Mq(s), is a tree in P�(Xrk(q))

defined inductively as follows. Let s = ω(s1, . . . , sk) and consider the above rule. Then

Mq(s) = ζ [〈q′, yi〉 ← Mq′(si) | q′ ∈ Q ,1 ≤ i ≤ k] .

44 Since the domain of a macro tree transduction is a regular tree language [34, Theorem 7.4], the class DMTfc(RT) does not depend on the totality of the
transducers. The same is true for MSO tree transductions and the class DMSOT(RT).

86 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
As in the case of LDTR-transducers, we define M(s) = Mq0(s) and call it the translation of s by M . Since q0 has rank 0, M(s)
is a tree in T� . The tree transduction realized by M , also denoted by M , is the total function M = {(s, M(s)) | s ∈ T	} from T	

to T� . A DMTsp-transducer is a (total deterministic) top-down tree transducer (in short, DT-transducer) if all its states have
rank 0.

Finite-copying macro tree transducers were introduced in [26]. To define them, we need the well-known notion of “state
sequence” (cf. [30, Definition 3.1.8]). Let (q1, . . . , qn) ∈ Q ∗ with n ∈N0 and q1, . . . , qn ∈ Q , and let ω ∈ 	(k) for some k ∈N0.
For i ∈ [k] we define stsω,i(q1, . . . , qn) ∈ Q ∗ to be the sequence of states

stsω,i(q1, . . . ,qn) = π∗
i (rhsM(q1,ω) · · · rhsM(qn,ω)) ,

where πi is the string homomorphism from (Q × Yk) ∪� ∪ X to Q such that πi(〈q′, yi〉) = q′ for every q′ ∈ Q and πi(α) = ε

for every α ∈ � ∪ X . For s ∈ T	 and p ∈ pos(s), we define the state sequence of M at p, denoted by sts(s, p), inductively
as follows: (i) sts(s, ε) = q0 and (ii) if sts(s, p) = (q1, . . . , qn) and s(p) = ω ∈ 	(k) , then sts(s, pi) = stsω,i(q1, . . . , qn) for
every i ∈ [k]. The set of state sequences of M , denoted by sts(M), is defined by

sts(M) = {sts(s, p) | s ∈ T	, p ∈ pos(s)} .

Note that it is the smallest subset S of Q ∗ such that (i) q0 ∈ S and (ii) if q ∈ S , then stsω,i(q) ∈ S for all k ∈ N0,
ω ∈ 	(k) , and i ∈ [k]. We say that the DMTsp-transducer M is finite-copying (in short, DMTfc-transducer) if sts(M) is fi-
nite; it is m-copying for m ∈N, if the state sequences in sts(M) have length at most m. A DTfc-transducer is a finite-copying
DT-transducer.

For each notion of X -transducer, we simply denote by X the class of transductions realized by X -transducers. For a
class X of transductions, we denote by X (RT) the class of all tree languages M(L), where M ∈ X and L ∈ RT is a regular
tree language.

The finite-copying macro tree transducers of [26] are not necessarily simple; i.e., linear and nondeleting in the parame-
ters. However, it follows from the results of [26, Section 6] that adding the feature of regular look-ahead, which we do not
need here, to the above finite-copying macro tree transducers yields the same expressive power as in [26]. In particular, our
notion of state sequence corresponds to the one in Definition 6.8 and Lemma 6.9 of [26]. Since regular look-ahead can be
simulated by a relabeling of the input tree (see [17]), the class DMTfc(RT), which we are interested in here, coincides with
the one in [26] (denoted MTTfc(REGT) there). Let us finally note that it is decidable whether or not a macro tree transducer
is finite-copying [29, Lemma 4.10], and if so, its set of state sequences can be computed by iteration.

The inclusion MCFT ⊆ DMTfc(RT) is a direct consequence of the next lemma and Theorem 9. The lemma shows that ‘val’
can be realized by a DMTfc-transducer. In its proof we use the following additional terminology. For q̄ = (q1, . . . , qn) ∈ Q +

with n ∈N and q1, . . . , qn ∈ Q , we define the q̄-translation of s ∈ T	 by Mq̄(s) = (Mq1 (s), . . . , Mqn (s)).

Lemma 74. For every MCFTG G there is a DMTfc-transducer M such that M(d) = val(d) for every d ∈ L(Gder). If G is an MRTG, then
M is a DTfc-transducer.

Proof. Let G = (N, N , �, S, R) be an MCFTG. Since the result is obvious if L(G) = ∅, we may assume that �(0) �= ∅. We
construct the macro tree transducer M = (N, R, �, S, R M). Thus, M uses the nonterminals of G with the same rank as
states, of which S is the initial state. Moreover, the input alphabet is R and the output alphabet is �. If

ρ = (A1, . . . , An) → ((u1, . . . , un),L)

is a rule in R such that L = {B1, . . . , Bk} with B1, . . . , Bk ∈N , then R M contains the following rule for every j ∈ [n]:
〈A j,ρ(y1, . . . , yk)〉(x1, . . . , xrk(A j)) → u j[C ← in(〈C, yi〉) | C ∈ occ(Bi), 1 ≤ i ≤ k] .

Moreover, it has the (dummy) rule 〈C, ρ(y1, . . . , yk)〉(x1, . . . , xm) → tm for every nonterminal C ∈ N \ {A1, . . . , An} of rank m,
where tm is an arbitrary element of P�(Xm).45

Clearly, M is simple in the parameters because u j ∈ P N∪�(Xrk(A j)). Let d ∈ L(Gder). We claim that sts(d, p), the state
sequence of M at a node p of d, is a permutation of the left-hand side of the rule d(p) of G . This is obvious for the root
of d with state sequence S , and if it holds for p, then it holds for pi for every i ∈ [k] by the definition of the above rules
of M . Hence M is finite-copying on L(Gder). It is, in fact, finite-copying everywhere because the state sequence becomes
empty due to the dummy rules as soon as there is a type error in the input tree (which means that the input tree is not a
derivation tree of G).

We now claim that M A(d) = val(d) for every A ∈ N and every derivation tree d ∈ L(Gder, A), where M A(d) is defined
just before this lemma. The proof is by induction on the structure of d. Let d = ρ(d1, . . . , dk). For the above rule ρ of G , let

45 If �(k) �= ∅ for some k ≥ 2, then P�(Xm) �= ∅ for all m (recall that �(0) �= ∅). If � = �(0) ∪ �(1) , then N = N(0) ∪ N(1) (because G is reduced) and we
only need t0 ∈ �(0) and t1 = x1.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 87
A = (A1, . . . , An) and u = (u1, . . . , un). Then val(d) = u[Bi ← val(di) | 1 ≤ i ≤ k]. From the definition of the rules of M we
obtain that

M A(d) = u[C ← MC (di) | C ∈ occ(Bi), 1 ≤ i ≤ k] = u[Bi ← MBi (di) | 1 ≤ i ≤ k] .

By the induction hypotheses, MBi (di) = val(di) for every i ∈ [k]. Consequently, M A(d) = val(d). In particular, if d ∈ L(Gder),
then M(d) = M S (d) = val(d). �

For the converse inclusion we need a normal form for DMTfc-transducers from [26], which is based on the same result
for DTfc-transducers in [92]. The DMTfc-transducer M is repetition-free if all its state sequences in sts(M) are repetition-free.

Proposition 75. For every DMTfc-transducer M there is a repetition-free DMTfc-transducer M ′ that realizes the same tree transduction
as M. Moreover, if M is a DTfc-transducer, then so is M ′ .

Proof. It is proved in [26, Lemma 6.10] that there is a single-use restricted DMTsp-transducer M ′ that realizes the same tree
transduction as M . It is in fact proved for macro tree transducers with regular look-ahead, but the construction preserves the
absence of look-ahead. Moreover, in the proof of [26, Theorem 6.12] it is shown that single-use restricted DMTsp-transducers
are finite-copying and repetition-free. The construction in [26, Lemma 6.10] preserves DTfc-transducers, but for them the
result was already proved in [92, Lemma 5.3]. �

Lemma 76. DMTfc(RT) ⊆ MCFT and DTfc(RT) ⊆ MRT.

Proof. Let M = (Q , 	, �, q0, R M) be a DMTfc-transducer, of which we assume, by Proposition 75, that it is repetition-
free. Moreover, let G = (N, 	, S, R) be an RTG. We can assume that in each of its rules C → ω(C1, . . . , Ck), with
C, C1, . . . , Ck ∈ N and ω ∈ 	(k) , the sequence (C1, . . . , Ck) is repetition-free (cf. Section 2.1). We will construct an
MCFTG G ′ = (N ′, N ′, �, S ′, R ′) such that L(G ′) = M(L(G)). The MCFTG G ′ will simulate both M and G . Thus, we de-
fine N ′ = Q × N , where every 〈q, C〉 ∈ N ′ has the same rank as q, and S ′ = 〈q0, S〉. For every nonempty state sequence
q̄ = (q1, . . . , qn) ∈ Q + and nonterminal C ∈ N , we abbreviate the sequence (〈q1, C〉, . . . , 〈qn, C〉) ∈ (N ′)+ by q̄⊗C . Then we de-
fine N ′ = {q̄ ⊗ C | q̄ ∈ sts(M) \{ε}, C ∈ N}, so in other words, the big nonterminals of G ′ are of the form (〈q1, C〉, . . . , 〈qn, C〉),
where (q1, . . . , qn) is a nonempty state sequence of M , and C is a nonterminal of G . It remains to define the rules of G ′ .
Let ρ = C → ω(C1, . . . , Ck) be a rule of G , and let q̄ = (q1, . . . , qn) be a nonempty state sequence of M . Then R ′ contains
the rule

ρq̄ = (〈q1, C〉, . . . , 〈qn, C〉) → ((u1, . . . , un),L)

with left-hand side q̄ ⊗ C , where u j = rhsM(q j, ω)[〈q, yi〉 ← in(〈q, Ci〉) | q ∈ Q , 1 ≤ i ≤ k] for every j ∈ [n] and
L= {stsω,i(q̄) ⊗ Ci | i ∈ [k]} ∩N ′ . Note that (u1, . . . , un) is uniquely N ′-labeled because (C1, . . . , Ck) is repetition-free and
every state sequence stsω,i(q̄) is repetition-free. The correctness of G ′ is a direct consequence of the following claim.

Claim. For every nonempty state sequence q̄ ∈ sts(M) \ {ε}, nonterminal C ∈ N, and forest t ∈ P�(X)+ we have t ∈ L(G ′, ̄q ⊗ C) if
and only if there exists s ∈ L(G, C) such that Mq̄(s) = t.46

Proof of sufficiency. We have to show that Mq̄(s) ∈ L(G ′, ̄q ⊗ C) for every s ∈ L(G, C). The proof is by induction on the
structure of the input tree s. Let s = ω(s1, . . . , sk). Then there is a rule ρ = C → ω(C1, . . . , Ck) of G such that si ∈ L(G, Ci)

for every i ∈ [k]. Let q̄i = stsω,i(q̄) for every i ∈ [k]. By the induction hypotheses, Mq̄i (si) ∈ L(G ′, ̄qi ⊗ Ci) provided that q̄i �= ε.
Let ρq̄ be the rule in R ′ as defined above. Then the least fixed point semantics of G ′ implies that L(G ′, ̄q ⊗ C) contains the
forest

(u1, . . . , un)[q̄i ⊗ Ci ← Mq̄i (si) | i ∈ [k], q̄i �= ε] ,

which equals Mq̄(s).

Proof of necessity. The proof is similar and proceeds by induction on the structure of a derivation tree d ∈ L(G ′
der, ̄q ⊗ C)

with val(d) = t . Let d = ρq̄(d1, . . . , dk). Then

t = (u1, . . . , un)[q̄i ⊗ Ci ← val(di) | i ∈ [k], q̄i �= ε] .

By the induction hypotheses, there exist trees si ∈ L(G, Ci) such that Mq̄i (si) = val(di) for every i ∈ [k] with q̄i �= ε.
Since we assume that G is reduced, there also exist trees si ∈ L(G, Ci) for every i ∈ [k] with q̄i = ε. Consequently,
s ∈ L(G, C) and Mq̄(s) = t for s = ω(s1, . . . , sk). �

46 In other words, L(G ′, ̄q ⊗ C〉) = Mq̄(L(G, C)). Recall the definition of Mq̄(s) just before Lemma 74.

88 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
From Lemmas 74 and 76 we obtain our characterization result, of which the second part was proved in [79, Proposi-
tion 4.8].

Theorem 77. MCFT = DMTfc(RT) and MRT = DTfc(RT).

We observe that the multiplicity of the MCFTG corresponds to the “copying number” of the corresponding DMTfc-trans-
ducer. For every m ∈ N, let m-MCFT be the class of tree languages generated by MCFTGs G with μ(G) ≤ m, and let
DMTfc(m) be the class of transductions realized by m-copying DMTfc-transducers, and similarly for subclasses of these gram-
mars and transducers. Then, checking the proofs above, we obtain that

m-MCFT = DMTfc(m)(RT) and m-MRT = DTfc(m)(RT)

for every m ∈ N. For the preservation of the m-copying property in Proposition 75 we additionally need to inspect the
proof of [26, Lemma 6.10]). For m = 1 we obtain that CFTsp = DMTfc(1)(RT). A DMTsp-transducer is simple (in short,
DMTsi,sp-transducer) if it is also simple (i.e., linear and nondeleting) in the input variables. Clearly, DMTsi,sp-transducers
are 1-copying. Checking again the proofs above, it is easy to see that CFTsp = DMTsi,sp(RT).47

In the remainder of this section we discuss the consequences of the characterization result in Theorem 77. One immedi-
ate consequence is that MCFT is closed under intersection with regular tree languages: If M is a DMTfc-transducer and R1

and R2 are in RT, then

M(R1) ∩ R2 = M(R1 ∩ M−1(R2)) .

Moreover, M−1(R2) is in RT by [34, Theorem 7.4] and so R1 ∩ M−1(R2) is in RT.
From Theorem 77 and Corollary 71 we obtain two known results. First, MCF = yDTfc(RT). Since it is easy to check from

the proof of Corollary 71 that m-MCF = y(m-MRT), we even obtain that m-MCF = yDTfc(m)(RT) for every m ∈ N. It was, in
fact, proved in [95] that m-MCF equals the class of output languages of deterministic tree-walking transducers with “crossing
number” m, which equals yDTfc(m)(RT) by [30, Corollary 4.11]. Second, yDMTfc(RT) = yDTfc(RT), which was proved in [26,
Corollary 7.10]. Vice versa, this equality and Theorem 77 imply that yMCFT = yMRT (Corollary 71). We also observe that
this equality is a restricted version of yDMTsp(RT) = yDT(RT), which was proved in [28, Theorem 15] (cf. the last sentence
before Theorem 68) and will follow from the results in Section 10.

More interestingly, Theorem 77 implies three other characterizations of MCFT and MCF (of which those of MCF are al-
ready known). First, they can be characterized in monadic second-order logic (MSO). Let DMSOT be the class of deterministic
(or parameterless) MSO-definable tree transductions (see, e.g., [12, Chapter 8]), and let DMSOTS be the analogous class of
tree-to-string transductions. Since regular look-ahead can be simulated by a relabeling of the input tree, it follows from [26,
Theorem 7.1] that DMSOT(RT) = DMTfc(RT) and from [26, Theorem 7.7] that DMSOTS(RT) = yDTfc(RT).

Corollary 78. MCFT = DMSOT(RT) and MCF = DMSOTS(RT).

Since MSO-definable transductions are closed under composition [12, Theorem 7.14], this implies that MCFT is closed
under DMSOT-transductions, and hence under DMTfc-transductions even when they are equipped with regular look-ahead
by [26, Theorem 7.1]. Similarly, MCF is closed under deterministic MSO-definable string transductions, which are the trans-
ductions realized by two-way deterministic finite-state transducers [23]. In particular, it follows from Lemma 74 that MCFT
is closed under control, in the following sense. Let G be an MCFTG and let C be a (“control”) tree language in MCFT. Then
val(L(Gder) ∩ C) is in MCFT. Intuitively, the derivation trees of the grammar G are restricted to be an element of C ; in that
way C “controls” the derivation trees (and hence the derivations) of G .

Second, MCFT and MCF can be characterized in terms of context-free graph grammars. It is known that DMSOT(RT)

equals the class of tree languages that can be generated by (either hyperedge-replacement or vertex-replacement) context-
free graph grammars (see, e.g., [19, Section 6] or the introduction of [12, Section 8.9]). Similarly, DMSOTS(RT) is the class of
string languages generated by such grammars. These facts were also used to obtain [26, Corollaries 7.3 and 7.8].

Corollary 79. MCFT (resp. MCF) is the class of tree languages (resp. string languages) generated by context-free graph grammars.

Remark 80. For completeness’ sake we show here how easy it is to simulate an MCFTG by a context-free graph grammar,
in particular a hyperedge-replacement grammar (HRG). We assume the reader to be familiar with HRGs (see, e.g., [5,14,
19]). Let us first recall how trees and forests can be represented as hypergraphs. Let 	 be a ranked alphabet. A forest
t = (t1, . . . , tn) ∈ P	(X)+ is represented by the hypergraph gr(t) that has the set of nodes pos(t) and the set of hyperedges

47 The only small technical problem is the deletion of all input variables in the dummy rules in the proof of Lemma 74. This can be easily remedied
by introducing an additional state q of rank 1, changing the dummy rules into 〈C, ρ(y1, . . . , yk)〉(x1, . . . , xm) → 〈q, y1〉(· · · (〈q, yk〉(tm)) · · ·) and adding
additionally all dummy rules of the form 〈q, ρ(y1, . . . , yk)〉(x1) → 〈q, y1〉(· · · (〈q, yk〉(x1)) · · ·).

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 89
Fig. 12. Rules of the HRG G ′ corresponding to the MCFTG G of Example 7 (without the rules for B ′). Hypergraphs are drawn as in [14,19]. A hyperedge e
is drawn as a box containing the label of e. A line with label i connects e with its i-th incident node. If the label of e is in N ∪ � with rank k, then the
labels of the incidence lines are dropped; by convention, the first k incident nodes of e are below the box, from left to right, and the last incident node is
above the box. The j-th external node of the hypergraph is labeled j.

{ep | p ∈ pos	(t)} such that ep has label t(p) and sequence of incident nodes inct(p) = (p1, . . . , pk, p) where k = rk(t(p)).
Moreover, gr(t) has the sequence of external nodes ext(t) = ext(t1) · · · ext(tn) such that ext(t j) = (p j,1, . . . , p j,k j , #

j−1)

where t j(p j,�) = x� ∈ X for every j ∈ [n] and � ∈ [k j] with k j = rk(t j). We say that an HRG is tree generating (or, gener-
ates a tree language) if its terminal alphabet is a ranked alphabet � and the generated hypergraph language is a subset of
{gr(t) | t ∈ T�}.

Now let G = (N, N , �, S, R) be an MCFTG. We construct an HRG G ′ that has the set of nonterminals N , with initial
nonterminal S , and the set of terminals �. Let A → (u, L) be a rule in R . Then G ′ has the rule A → gr(u, L), where
gr(u, L) is the hypergraph obtained from gr(u) as follows. For every B = (u(p1), . . . , u(pm)) ∈L with p1, . . . , pm ∈ posN (u),
remove the hyperedges ep1 , . . . , epm and replace them by one new hyperedge eB that has label B and sequence of inci-
dent nodes incu(p1) · · · incu(pm).48 Intuitively, the hyperedge eB explicitly links the occurrences in u of the nonterminals
u(p1), . . . , u(pm) of the link B . Now let tB ∈ P�(X)+ be a forest with rk(tB) = rk(B), for every B ∈ L. Then it is straightfor-
ward to check that gr(u[B ← tB | B ∈ L]) is equal to the result of simultaneously substituting gr(tB) for the hyperedge eB

in gr(u, L) for every B ∈ L. Thus, using the least fixed point semantics of the HRG G ′ (see [14, Theorem 2.4.2]), we obtain
that L(G ′) = {gr(t) | t ∈ L(G)}. It can also easily be checked that the derivations of G , as defined in Section 3.3, can be sim-
ulated by the derivations of G ′: for every t ∈ T(N×N∗)∪� and n ∈ N0, if S ⊗ ε ⇒n

G t then gr(S) ⇒n
G ′ gr(t, L), where gr(t, L) is

defined similarly to gr(u, L) above using the set L ⊆ N ⊗N∗ mentioned at the end of Section 3.3. Moreover, these are all
possible derivations in G ′ . Intuitively, the role of the link identifiers in the derivation S ⊗ ε ⇒n

G t is taken over by explicit
hyperedges.

We say that an HRG is in tree generating normal form if it can be obtained from an MCFTG in the way described above,
eventually followed by a renaming of its nonterminals and an identification of nonterminals that are aliases.49 Then the
above, together with Lemma 41 and Corollary 79, proves that every tree generating HRG has an equivalent HRG in tree
generating normal form (see [27, Theorem 7]). We finally note that there is a similar easy construction showing that every
string language in MCF can be generated by an HRG (see [19, Theorem 6.4]).

As an example of the above construction we consider the MCFTG G of Example 7. The rules of the HRG G ′ are shown in
Fig. 12 (without the rules for the alias B ′ of B) and the derivation of G ′ corresponding to the one of G in Fig. 5 is shown
in Fig. 13. By definition, G ′ is in tree generating normal form. Note that the sequence of external nodes of the right-hand
side of rule ρ4 (and of rule ρ6) of G ′ is not repetition-free, which allows G ′ to erase hyperedges (or “parts” of hyperedges).
For a nonerasing MCFTG G the above construction results in an HRG G ′ for which all sequences of external nodes (and all

48 Every terminal or nonterminal symbol α of an HRG should have a “rank”. For every hyperedge e with label α the “rank” of α should be equal to
the number of nodes that are incident with e. Moreover, for every rule A → g the “rank” of A should be equal to the number of external nodes of the
hypergraph g . In the grammar G ′ , every terminal σ ∈ � has “rank” rk(σ) + 1 and every nonterminal A = (A1, . . . , An) has “rank” ∑n

i=1(rk(Ai) + 1).
49 It can be checked that this is equivalent to [27, Definition 6], provided that the MCFTG is assumed to be nonerasing.

90 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
Fig. 13. Derivation of the HRG of Fig. 12 corresponding to the MCFTG derivation of Fig. 5.

sequences of incident nodes) are repetition-free. Thus by Lemma 41, this requirement can be added to the tree generating
normal form. �

Third, MCFT and MCF can be characterized in terms of second-order abstract categorial grammars. It is shown in [57] that
such grammars have the same tree and string generating power as hyperedge-replacement context-free graph grammars,
which was already known for strings from earlier results as discussed in [57].

Corollary 81. MCFT (resp. MCF) is the class of tree languages (resp. string languages) generated by second-order abstract categorial
grammars.

Proof. Let TR(2AC) denote the class of tree languages generated by second-order abstract categorial grammars (in short,
2ACGs). It is shown in [57] that TR(2AC) is included in the class of tree languages generated by hyperedge-replacement
context-free graph grammars (HRG), and hence TR(2AC) ⊆ MCFT by Corollary 79. In the other direction, it is shown in [57]
by a simple construction that every tree language generated by an HRG in tree generating normal form (as in [27, Defini-
tion 6] or equivalently in Remark 80) is in TR(2AC). Note that together with the construction in Remark 80 this also shows
that there is a simple construction to transform every MCFTG into an equivalent 2ACG. �

We finally observe (cf. the paragraph after [26, Corollary 7.10]) that MRT is properly included in MCFT. The tree lan-
guage {anbn � | n ∈N0} over � = {a(1), b(1), �(0)} is in MCFT and even in CFTsp, but not in DTfc(RT) because all tree languages
over � in this class are regular [81, Theorem 4]. Also CFTsp is properly included in MCFT since it is shown in [20, Section 5]
that the tree language L(G), where G is the MRTG of Example 6, is not in CFTsp. Thus, MRT and CFTsp are incomparable
subclasses of MCFT.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 91
9. Translation

As observed in [79] for MRTGs, MCFTGs are not only a natural generation device but also a natural translation device.
In general, we can also use an MCFTG G to define a forest language (i.e., an n-ary relation on T�) by considering L(G, A)

for a big nonterminal A = (A1, . . . , An) with rk(Ai) = 0 for every i ∈ [n]. In particular, for the case n = 2, the MCFTG can
be used as a synchronous translation device, which we will call an MCFT-transducer. After defining MCFT-transducers we
present two results analogous to those in [73] (see also [69]). Namely, we prove a characterization of the corresponding
MCFT-transductions by macro tree transducers, similar to the one for MCFT tree languages in Theorem 77 (in the previous
section), and we present a solution to the parsing and translation problem for MCFT-transducers, similar to the one for
MCFTGs in Theorem 73 (in Section 7).

A multiple context-free tree transducer (in short, MCFT-transducer) is a system G = (N, N , �, S, R), where N , N , �, and R
are as in Definition 5 and S = (S1, S2) ∈ N is the initial big nonterminal with S1, S2 ∈ N(0) . We require (without loss of
generality) that G is start-separated; i.e., that S1 and S2 do not occur in the right-hand sides of rules. Moreover, we require
that N is partitioned into two subsets N1 and N2 of input nonterminals and output nonterminals, respectively, such that

(1) S1 ∈ N1 and S2 ∈ N2, and
(2) for every rule (A1, . . . , An) → ((u1, . . . , un), L) in R , every j ∈ [n], and every i ∈ [2] we have occN (u j) ⊆ Ni if A j ∈ Ni .

Intuitively this requirement means that the nonterminals in N1 generate the input tree, and those in N2 generate the output
tree. For every A ∈ N , the forest language L(G, A) is defined as for MCFTGs, and the tree transduction realized by G is the
binary relation τ (G) = L(G) = L(G, S) ⊆ T� × T� . We also define Gder as for MCFTGs. Thus, the initial nonterminal of Gder
is S = (S1, S2). Consequently, τ (G) = val(L(Gder)) by Theorem 9. Note that the input and output alphabet of G are the
same ranked alphabet �. This is a slight restriction that could be solved by allowing symbols in a ranked alphabet to have
more than one rank. The latter feature is easy to implement, but technically rather tiresome. We will say that G is an
MCFT-transducer over � and that τ (G) is an MCFT-transduction over �. The synchronous context-free tree grammar of [73]
is the special case of the MCFT-transducer in which N ⊆ N1 × N2.

Our characterization of MCFT-transductions by macro tree transducers uses a generalization of the notion of bimor-
phism. Bimorphisms are a classical symmetrical way to characterize classes of string and tree transductions (see, e.g., [2,
68,75]). Let X be a class of tree transductions. For a finite ranked alphabet �, we define an X -bimorphism over � to be
a transduction τ ⊆ T� × T� such that τ = {(M1(s), M2(s)) | s ∈ L}, where L is a regular tree language over a finite ranked
alphabet 	 and M1 and M2 are X -transductions with input alphabet 	 and output alphabet �. In the classical case X is
a class of tree homomorphisms (or string homomorphisms in the similar case of strings); cf. the proof of Proposition 14.
In the present case we take X = DMTfc and we show that MCFT-transductions are as expressive as DMTfc-bimorphisms.
Clearly, if M1 and M2 are DMTfc-transductions, then the domain L1 = {M1(s) | s ∈ L} and the range L2 = {M2(s) | s ∈ L} of
the DMTfc-bimorphism τ are tree languages in MCFT by Theorem 77 and τ can be viewed as translating L1 into L2. The
inverse of τ is the DMTfc-bimorphism τ−1 = {(M2(s), M1(s)) | s ∈ L} which translates L2 into L1. Thus, DMTfc-bimorphisms
are a natural symmetrical model for the translation of MCFT languages. To prove the characterization we need a few more
definitions.

We first modify the notion of DMTfc-transducer in such a way that it translates trees into forests of length 2. We
define a DMTsp,2-transducer to be a system M = (Q , 	, �, q0, R), where the only difference to a DMTsp-transducer is
that q0 = q1q2 is the initial state sequence with q1, q2 ∈ Q (0) . For s ∈ T	 and q ∈ Q , the tree Mq(s) is defined as for
DMTsp-transducers, and M(s) = Mq0(s) which equals (Mq1 (s), Mq2(s)) by the definition before Lemma 74. The tree trans-
duction realized by M is defined as for DMTsp-transducers; i.e., it is the total function M = {(s, M(s)) | s ∈ T	} from T	

to T� × T� . The state sequences of a DMTsp,2-transducer are defined in the same way as for DMTsp-transducers with
sts(s, ε) = q0, and finite-copying DMTsp,2-transducers are called DMTfc,2-transducers.

We now define the product of two DMTsp-transducers M1 and M2 with the same input and output alphabets to be the
DMTsp,2-transducer M1 ⊗ M2 given as follows. Let Mi = (Q i, 	, �, qi, Ri) with i ∈ [2], where we assume that Q 1 and Q 2

are disjoint. Then

M1 ⊗ M2 = (Q 1 ∪ Q 2,	,�,q1q2, R1 ∪ R2) .

It should be clear that for every s ∈ T	 we have (M1 ⊗ M2)(s) = (M1(s), M2(s)). It should also be clear that for every p ∈
pos(s) the state sequence of M1 ⊗ M2 at p is the concatenation of the state sequences of M1 and M2 at p. This implies that
M1 ⊗ M2 is finite-copying (repetition-free) if and only if M1 and M2 are both finite-copying (repetition-free). Vice versa,
for every DMTsp,2-transducer M there are DMTsp-transducers M1 and M2 such that M and M1 ⊗ M2 realize the same tree
transduction. Clearly, if M = (Q , 	, �, q1q2, R), then we can take

M1 = (Q ,	,�,q1, R) and M2 = (Q ′,	,�,q′
2, R ′) ,

where the primes indicate a consistent renaming of the states of M such that Q ∩ Q ′ = ∅. The transducer M1 ⊗ M2 is
obviously equivalent to M and it is finite-copying if M is. Thus we have shown that DMTfc,2 = {M1 ⊗ M2 | M1, M2 ∈ DMTfc}.
Note that it follows from Proposition 75 that this proposition also holds for DMTfc,2-transducers.

92 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
With these preparations, we can now prove our characterization of MCFT-transductions as bimorphisms of macro tree
transductions.

Theorem 82. Let � be a finite ranked alphabet and τ ⊆ T� × T� be a transduction. Then τ is an MCFT-transduction over � if and
only if it is a DMTfc-bimorphism over �.

Proof. Exactly the same proofs as those of Lemmas 74 and 76 establish that the class of MCFT-transductions equals the
class DMTfc,2(RT). The latter class coincides with the class of DMTfc-bimorphisms because if M = M1 ⊗ M2, where M is
a DMTfc,2-transducer and M1 and M2 are DMTfc-transducers, then M(L) = {(M1(s), M2(s)) | s ∈ L} for every regular tree
language L ∈ RT. Note that if M1 and M2 have the disjoint sets of states Q 1 and Q 2, then the set N ′ of nonterminals of the
MCFT-transducer G ′ constructed in the proof of Lemma 76 is partitioned into the set Q 1 × N of input nonterminals and the
set Q 2 × N of output nonterminals, where N is the set of nonterminals of the given RTG. �

We note that we can define MRT-transducers and DTfc-bimorphisms in the obvious way, and prove as a special case
of Theorem 82 that the MRT-transductions (which are the binary rational tree translations of [79]) coincide with the
DTfc-bimorphisms. In [69] the MRT-transducers are called synchronous forest substitution grammars, and it is shown
in [69, Theorem 3] that the MRT-transductions are the ld-MBOT-bimorphisms, where ld-MBOT is the class of trans-
ductions realized by linear deterministic multi bottom-up tree transducers [24].50 By [24, Theorem 18] and [26, Theo-
rems 5.10 and 7.4], this is essentially the same result. We also note that we can define DMTR

fc-bimorphisms in the obvious
way, where DMTR

fc-transducers are defined just as DMTfc-transducers, but with regular look-ahead as in the definition of
LDTR-transducer. Since regular look-ahead can be simulated by a relabeling of the input tree, the DMTR

fc-bimorphisms are the
same as the DMTfc-bimorphisms. In other words, the addition of regular look-ahead does not increase the power of these bi-
morphisms. Moreover, the class of DMTR

fc-transductions coincides with the class DMSOT of deterministic MSO-definable tree
transductions (cf. Corollary 78 and the preceding paragraph). Thus, the MCFT-transductions are the DMSOT-bimorphisms.
The notion of DMSOT-bimorphism is quite natural as it is a transduction of the form {(M1(s), M2(s)) | s ∈ L}, where L is an
MSO-definable tree language and M1 and M2 are deterministic MSO-definable tree transductions. Even if we assume that
DMSOT transductions need not be total (cf. footnote 44), it follows that the class of MCFT-transductions properly includes
the class DMSOT. To see this note that, in particular, every DMSOT transduction and its inverse are DMSOT-bimorphisms.
Thus, since DMSOT is not closed under inverse (see [12, Remark 7.23]), DMSOT is properly included in the class of
DMSOT-bimorphisms.

We now turn to the parsing and translation problem for MCFT-transducers, generalizing the parsing algorithm for
MCFTGs in Theorem 73. Let G be an MCFT-transducer over �, and let � ⊆ �(0) \ {e} be a set of lexical symbols. We
can view G as translating input strings into output strings, thereby realizing the string transduction

{(yd�(t1),yd�(t2)) | (t1, t2) ∈ τ (G)} .

In such a case the parsing and translation problem for G amounts to finding the syntactic trees for a given string over �

and finding its possible translations together with their syntactic trees. In the next result we show that this can be done in
polynomial time. For its proof we need some more terminology. It is straightforward to prove the analogue of Lemma 22
for MCFT-transducers, which shows that MCFT-transductions are closed under tree homomorphisms. For a given MCFT-
transducer G and tree homomorphism h, the MCFT-transducer Gh has the same initial big nonterminal as G . Moreover, the
lemma implies that τ (Gh) = {(ĥ(t1), ̂h(t2)) | (t1, t2) ∈ τ (G)}. As before, (G, h) is said to be a cover of Gh if h is a projec-
tion. An MCFT-transducer G over � is i/o-disjoint if � is partitioned into subsets �1 and �2 of input and output terminal
symbols, and

(2′) for every rule (A1, . . . , An) → ((u1, . . . , un), L) in R , every j ∈ [n], and every i ∈ [2] we have occN∪�(u j) ⊆ Ni ∪ �i if
A j ∈ Ni .

This guarantees that τ (G) ⊆ T�1 × T�2 . It should be clear that every MCFT-transducer G over � has a cover (Gu, h) such
that Gu is i/o-disjoint, the terminal alphabet � ∪ �′ of Gu is partitioned into �1 = � and �2 = �′ , and the restriction of h
to � is ‘in’. To construct Gu from G , change every u j with A j ∈ N2 in the above rule into u′

j , where u′
j is obtained from u j

by changing every label σ into its primed version σ ′ , and define h(σ ′) = h(σ) = in(σ) for every σ ∈ �.

Theorem 83. For every MCFT-transducer G over � and every � ⊆ �, there is a polynomial time algorithm that, on input w ∈ �∗ ,
outputs an RTG H w and an MCFT-transducer G w such that

L(H w) = {d ∈ L(Gder) | val(d) ∈ τ (G w)} and τ (G w) = {(t1, t2) ∈ τ (G) | yd�(t1) = w} .

The degree of the polynomial is μ(G) · (θ(G) + 1) · (λ(G) + 1).

50 The restriction to linear d-MBOT is implicit in [69].

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 93
Proof. We first show how to construct the RTG H w . Note that L(H w) should consist of all derivation trees d ∈ L(Gder)

such that yd�(val(d)1) = w , where val(d)1 is the first tree of the forest val(d). To show this, we may assume that G is
i/o-disjoint with � partitioned into �1 and �2 and with � ⊆ �1. In fact, let (Gu, h) be an i/o-disjoint cover of G with the
properties described before this theorem. Now let Hu

w be an RTG such that L(Hu
w) = {d ∈ L(Gu

der) | yd�(val(d)1) = w}. By the
proof of Lemma 22 there is a projection π such that π̂ (L(Gu

der)) = L(Gder) and val(π̂ (d)) = ĥ(val(d)) for every d ∈ L(Gu
der).

Applying π̂ to the rules of Hu
w , we obtain an RTG H w , for which we have L(H w) = π̂ (L(Hu

w)). Clearly, H w satisfies the
above requirement.

Assuming that G = (N, N , �, (S1, S2), R) is i/o-disjoint with � partitioned into �1 and �2 and with � ⊆ �1, we con-
struct the MCFTG G# = (N ∪ {S ′}, N ∪ {S ′}, � ∪ {#(2)}, S ′, R#), where S ′ is a new nonterminal, # is a new terminal, and
R# contains all rules of R and the rule ρ# = S ′ → (#(S1, S2), L) with L = {(S1, S2)}. Note that

L(G#) = {#(t1, t2) | (t1, t2) ∈ τ (G)} and L(G#
der) = {ρ#(d) | d ∈ L(Gder)} .

By Theorem 73 there is a polynomial time algorithm that, on input w ∈ �∗ , outputs an RTG H#
w such that

L(H#
w) = {d ∈ L(G#

der) | yd�(val(d)) = w} .

We construct the RTG H w from H#
w by removing ρ#; i.e., changing every initial rule S → ρ#(C) of H#

w into all rules
S → ρ(C1, . . . , Ck) such that C → ρ(C1, . . . , Ck) is a rule of H#

w . Then L(H w) = {d ∈ L(Gder) | yd�(val(d)) = w} because
/∈ �. Clearly, since �1 and �2 are disjoint and � ⊆ �1, we have yd�(val(d)) = w if and only if val(d) = (t1, t2) with
yd�(t1) = w . Thus, H w satisfies the requirement.

Finally, we construct G w from G and H w as in the proof of Theorem 73 with initial big nonterminal

(S1, S2) ⊗ S w = (〈S1, S w〉, 〈S2, S w〉) .

Then τ (G w) = val(L(H w)), and hence G w satisfies the requirement. �

Remarks similar to those following Theorem 73 are also valid here. For � = �, Theorem 83 solves the parsing and
translation problem for MCFTG-transducers as tree transducers in polynomial time. For every input tree t ∈ T� the algorithm
produces as output an RTG Ht such that L(Ht) = {d ∈ L(Gder) | ∃t′ ∈ T� : val(d) = (t, t′)}. The algorithm can be extended to
test in linear time whether or not t is in the domain of τ (G), by testing whether L(Ht) is nonempty. Additionally, if
L(Ht) �= ∅, then it can also compute in linear time a derivation tree d ∈ L(Ht) and a tree t′ ∈ T� such that val(d) = (t, t′).
Thus, t′ is a possible translation of t .

For � ⊆ �(0) \ {e}, we are in the situation described before Theorem 83. For every input string w ∈ �∗ the algorithm
outputs an MCFT-transducer G w such that τ (G w) is the set of all pairs of syntactic trees (t1, t2) ∈ τ (G) such that t1 is a
syntactic tree for w; i.e., yd�(t1) = w . Using H w as before, the algorithm can be extended to test in linear time whether w
is in the domain of the string transduction {(yd�(t1), yd�(t2)) | (t1, t2) ∈ τ (G)} realized by G , and if so compute a derivation
tree d ∈ L(H w), its value (t1, t2) such that yd�(t1) = w , and the string w ′ = yd�(t2). Thus, t1 is a syntactic tree of w and
t2 is a syntactic tree of a possible translation w ′ of w . Note that, since the proof of Theorem 83 is based on Theorem 73,
these parsing and translation algorithms for MCFT-transducers are, again, based on a parsing algorithm for MCFGs.

Let us finally consider the class of string transductions realized by MCFT-transducers as discussed above. We first
restrict attention to the case � = �(0) \ {e}, which means that each MCFT-transducer G realizes the string transduc-
tion {(yd(t1), yd(t2)) | (t1, t2) ∈ τ (G)}. Let us call this a yMCFT-transduction. We can define MCF-transducers in the obvious
way, with S1 and S2 being the only nonterminals of rank 0. It should now be clear that we can generalize Corollary 71 as
follows: The yMCFT-transductions coincide with the MCF-transductions (and with the yMRT-transductions). These MCF-
transductions can also be characterized as the yDTfc-bimorphisms, or equivalently, as the bimorphisms determined by
deterministic tree-walking transducers (cf. the third paragraph after Theorem 77). Since there is an analogue of Lemma 22
for MCFT-transducers (as discussed before Theorem 83), the MCF-transductions are closed under string homomorphisms.
This implies that, for every MCFT-transducer G and every set � ⊆ �(0) \ {e} of lexical symbols, the string transduction
{(yd�(t1), yd�(t2)) | (t1, t2) ∈ τ (G)} is also a yMCFT-transduction.

10. Parallel and general MCFTG

In this last section we consider two natural extensions of the MCFTG that allow the grammar to make an unbounded
number of copies of subtrees. The definitions of the syntax and semantics of these extensions are easy variants of those for
the MCFTG. The first extension is the parallel MCFTG (or PMCFTG), which is the obvious generalization of the well-known
parallel MCFG of [88]. In a parallel MCFTG (or parallel MCFG), two or more occurrences of the same nonterminal may
appear in the right-hand side of a rule. In the least fixed point semantics the terminal tree generated by that nonterminal
is therefore copied. In the derivation semantics, after application of the rule, the occurrences must be rewritten in exactly
the same way in the remainder of the derivation. The second generalization, which we only briefly consider, is the general
(P)MCFTG, for which we drop the restriction that the rules must be linear. Thus, two or more occurrences of the same
variable may appear in the same tree of the right-hand side of a rule and, when the rule is applied in a derivation step,

94 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
the tree that is the current value of the variable is copied. The classical (nondeleting) IO context-free tree grammar is the
general MCFTG of multiplicity 1.

A parallel multiple context-free tree grammar (in short, PMCFTG) is a system G = (N, N , �, S, R) as in Definition 5 except
that the right-hand side u of a rule A → (u, L) ∈ R is not required to be uniquely N-labeled. The least fixed point semantics
of G is defined just as for an MCFTG. As an example, the PMCFTG G with N = N = {S} and � = {σ (2), a(0), b(0)} using the
rules

S → (σ (S, S), {S}) S → (a,∅) and S → (b,∅)

generates the tree language L(G) consisting of all full binary trees over � of which all leaves have the same label. Thus,
yd(L(G)) = {a2n | n ∈N0} ∪{b2n | n ∈N0}. In fact, from the least fixed point semantics we first obtain that a and b are in L(G).
Next, we obtain that the trees σ(S, S)[S ← a] = σ(a, a) and σ(S, S)[S ← b] = σ(b, b) are in L(G), and then we confirm that
σ(S, S)[S ← σ(a, a)] = σ(σ (a, a), σ(a, a)) is in L(G), etc. Here we use the trivial fact that a tree homomorphism (and hence
a second-order substitution) replaces different occurrences of the same nonterminal by the same tree. Since yd(L(G)) is not
semi-linear, PMCFTGs are more powerful than MCFTGs, even when they are used to define string languages via the yields
of the generated tree languages.

Intuitively, for a rule A → (u, L) of G , it is still the case that every big nonterminal B ∈ L occurs “spread-out” exactly
once in u, but now each nonterminal of B may occur more than once in u. More precisely, for each big nonterminal
B = (C1, . . . , Cm) ∈L with C1, . . . , Cm ∈ N , there is a unique set P B ⊆ posN (u) of positions such that

{u(p) | p ∈ P B} = {C1, . . . , Cm} ,

and we have that P B ∩ P B ′ = ∅ for every other B ′ ∈ L and posN(u) = ⋃
B∈L P B . After the application of the rule, all

occurrences of each nonterminal Ci must be rewritten in the same way. This idea was first introduced for context-free
grammars in [80] with a least fixed point semantics; for a rewriting semantics similar to the one in Section 3.3 we refer
to [89].

Derivation trees can be defined for G as in Section 3.2 with the same results, which are proved in the same way, with
one notable exception. Statements (1) and (2) of Lemma 10 do not hold and must be reformulated. For our purposes here
it suffices to replace them by the following weaker statements:

(1) occ�(val(d)) = ⋃
ρ∈occR (d) occ�(rhs(ρ)) for every � ⊆ �, and

(2) occN (val(d)) = ⋃
B∈occN (d) occ(B),

which can easily be proved by induction on the structure of d. The rewriting semantics in Section 3.3 also applies to
PMCFTGs without change. For instance, the tree σ(σ (a, a), σ(a, a)) is derived by the above grammar in three derivation
steps:

Sε ⇒ρ1,ε
G σ(S1, S1) ⇒ρ1,1

G σ(σ (S11, S11),σ (S11, S11)) ⇒ρ2,11
G σ(σ (a,a),σ (a,a)) ,

where ρ1 is the first rule of G and ρ2 is the second.
The results and proofs of Section 4.1 on basic normal forms are also valid for PMCFTGs. The same is true for Lemmas 31

and 41. However, we did not further study the lexicalization of PMCFTGs. Thus, we leave it as an open problem whether
finitely ambiguous PMCFTGs can be lexicalized, which we conjecture to be true. The results and proofs of Section 6 are
also valid for PMCFTGs (without the statements on lexicalization). Thus, for every PMCFTG there are an equivalent monadic
PMCFTG, an equivalent footed PMCFTG, and an equivalent “parallel” MC-TAG (provided that the generated tree language is
root consistent).

Parallel MCFGs (in short, PMCFGs) can be defined as in Section 7, and all the results and proofs in that section are
also valid for the parallel case, except Corollary 66 on lexicalization. Thus, we have that yPMCFT = PMCF = yPMRT. More-
over, PMCFGs and PMCFTGs can be parsed in polynomial time; i.e., Lemma 72 and Theorem 73 also hold in the parallel
case (cf. [66,88]). However, as observed in [88], the degree of the polynomial is one more than in those results because
in the proof of Lemma 72, in the construction of the rules of H w , it must be checked additionally in linear time that
w[�(Ci1), r(Ci1)] = w[�(Ci2), r(Ci2)] whenever Ci1 = Ci2 (where Ci1 may occur in a different u j than Ci2). It should also be
noted that, for a given derivation tree d, the syntactic tree t = val(d) can no longer be computed in linear time. Instead, it
should be clear that in linear time a directed acyclic graph g can be computed that represents the tree t with shared nodes.
In the case where �(0) ⊆ �, this graph g can be unfolded into t in time linear in the size of g plus the size of w = yd�(t),
and thus t is obtained in the required polynomial time from the string w by the parsing algorithm.

The results of Section 8 (except Corollaries 78, 79 and 81) as well as those of Section 9 are also valid for the parallel
case provided that we change DMTfc into DMTsp, and DTfc into DT. The proofs are also the same, except that in the proof
of Lemma 74 we do not have to consider the state sequences of M , and for the proof of Lemma 76 we do not need
Proposition 75 and we have to redefine state sequences, as follows. Roughly speaking, the new state sequences are the old
ones from which repetitions have been removed; thus, they can be viewed as ‘state sets’ (cf. [30, Definition 3.1.8]). Formally,

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 95
let M = (Q , 	, �, q0, R) be a DMTsp-transducer, and consider a fixed order p1 � · · · � pr on the set Q = {p1, . . . , pr} of
states of M . For a subset Q ′ = {pi1 , . . . , pim } of Q with i1 < · · · < im , we define the state sequence seq(Q ′) = pi1 · · · pim .
Now let q1, . . . , qn ∈ Q and n ∈ N0, and let ω ∈ 	(k) with k ∈ N0. For i ∈ [k] we (re-)define stsω,i(q1, . . . , qn) ∈ Q ∗ to be the
sequence of states

stsω,i(q1, . . . ,qn) = seq({q′ ∈ Q | ∃ j ∈ [n] : 〈q′, yi〉 ∈ occQ ×Y (rhsM(q j,ω))}) .

Then sts(s, p) and sts(M) can be defined as in Section 8, and with these definitions the proof of Lemma 76 is valid. Note
that sts(M) is now finite for every DMTsp-transducer. Consequently, we have that PMCFT = DMTsp(RT) and PMRT = DT(RT).
As further consequences we obtain the known result yDMTsp(RT) = yDT(RT), which was proved in [28, Theorem 15], and
the known result PMCF = yDT(RT), which was proved in [92, Theorem 3.1] by taking into account the well-known fact
that string-valued attribute grammars without inherited attributes generate yDT(RT). As in Section 8, the multiplicity of the
grammars corresponds to the copying power of the transducers. Thus, m-PMCFT = DMTsp,(m)(RT) and m-PMRT = DT(m)(RT)

and m-PMCF = yDT(m)(RT), where the prefix ‘m-’ means that the grammars have multiplicity at most m and the sub-
script ‘(m)’ means that the transducers are m-copying (with the new definition of state sequence). As shown in [30,
Theorem 3.2.5] by a pumping lemma for yDT(m)(RT), the language Lm = {an

1an
2 · · ·an

2m+2 | n ∈ N0} is in (m + 1)-MCF but
not in m-PMCF. As results analogous to those in Section 9 we obtain that the PMCFT-transductions are the same as the
DMTsp-bimorphisms, and the PMRT-transductions are the same as the DT-bimorphisms, and hence by [38] they coincide
with the d-MBOT-bimorphisms, where the d-MBOTs are not necessarily linear. Moreover, PMCFT-transductions can be parsed
and translated in polynomial time (with the degree of the polynomial one more than in Theorem 83).

Finally we consider a further extension of PMCFTGs. Until now we have restricted our grammars to be simple (i.e., linear
and nondeleting), which means that for every rule

(A1, . . . , An) → ((u1, . . . , un),L)

and every j ∈ [n], the tree u j contains every variable in Xrk(A j) exactly once. We now drop the linearity condition and
just require every such variable to occur at least once. Technically it is convenient to achieve this by redefining the notion
of pattern (see the first paragraph of Section 2.3). Thus, we redefine the set P�(Xk) of patterns of rank k to consist of all
trees t ∈ T�(Xk) such that occX (t) = Xk; i.e., each x ∈ Xk occurs at least once in t . It should be noted that this also changes
our definition of tree homomorphism, which is now only required to be nondeleting, and hence that of second-order
substitution. Clearly, Lemma 1 is not true anymore. For our purposes here it can be replaced by the following weaker
statements:

(1) occX (ĥ(t)) = occX (t), and
(2) occ�(ĥ(t)) = ⋃

τ∈occ�(t) occ�(h(τ)).

The remaining definitions and results of Section 2.3 can be taken over without change.
The definition of a general parallel multiple context-free tree grammar (in short, gPMCFTG) is identical to the one of

a PMCFTG with the new meaning of P N∪�(X) as above. The semantics of a gPMCFTG G is defined just as for an MCFTG.
The class of tree languages generated by gPMCFTGs is denoted by PMCFTg. Derivation trees are defined for G just as for
an MCFTG, and Section 3.2 is valid for gPMCFTGs with the same change of Lemma 10 as stated above for PMCFTGs. The
rewriting semantics in Section 3.3 is also valid for gPMCFTGs. The semantics of a PMCFTG is essentially an “inside-out”
semantics in the sense of [31]. In fact, consider a classical IO context-free tree grammar G such that (i) G is nondeleting
(i.e., every variable in the left-hand side of a rule also occurs in the right-hand side) and (ii) the right-hand side of each
rule is uniquely N-labeled (i.e., every nonterminal occurs at most once in the right-hand side of each rule). Viewing G as
a gPMCFTG in the obvious way, it is easy to see that the least fixed point semantics of G as a gPMCFTG coincides with
the least fixed point semantics of G as an IO context-free tree grammar as stated in [31, Theorem 3.4]. Since requirements
(i) and (ii) are a normal form for IO context-free tree grammars (cf. [35, Theorem 3.1.10]), this shows that all IO context-free
tree languages can be generated by gPMCFTGs. More precisely, they are the tree languages generated by the (nonparallel)
gMCFTGs of multiplicity 1.

As an example, the gPMCFTG G with N =N = {S(0), A(1), B(1)} and � = {σ (2), a(0), b(0)} using the rules

S → A(b) A(x1) → B(A(σ (a, x1))) A(x1) → x1 and B(x1) → σ(x1, x1) ,

generates the tree language L(G) consisting of all trees t1[x1 ← t2], where t1 is a full binary tree over {σ , x1} of height n and
t2 equals (σa)nb. Thus, yd(L(G)) = Lec = {(anb)2n | n ∈ N}. For n = 2, the tree t = σ(σ (σaσab, σaσab), σ(σaσab, σaσab))

is obtained by the derivation

Sε ⇒ρ1,ε
G A1(b) ⇒ρ2,1

G B11(A12(σab)) ⇒ρ2,12
G B11(B121(A122(σaσab)))

⇒ρ3,122
G B11(B121(σaσab)) ⇒ρ4,121

G B11(σ (σaσab,σaσab)) ⇒ρ4,11
G t ,

96 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
which corresponds to the “inside-out” derivation of the IO context-free tree grammar G , but is, for instance, also obtained
by the “outside-in” derivation

Sε ⇒ρ1,ε
G A1(b) ⇒ρ2,1

G B11(A12(σab)) ⇒ρ4,11
G σ(A12(σab), A12(σab))

⇒ρ2,12
G σ(B121(A122(σaσab)), B121(A122(σaσab)))

⇒ρ4,121
G σ(σ (A122(σaσab), A122(σaσab)),σ (A122(σaσab), A122(σaσab))) ⇒ρ3,122

G t .

The language Lec is the well-known example of an IO context-free tree language that is not an OI context-free tree language
(see [35, Section 4.3]). It is shown in [18, Theorem 3.16], using again the pumping lemma for yDT(RT), that Lec is not
in yDT(RT), and hence not in PMCF. Thus, gPMCFTGs are more powerful than PMCFTGs, even when they are used to define
string languages via the yields of the generated tree languages. Note that the above grammar is even a gMCFTG because
the right-hand sides of its rules are uniquely N-labeled.51 The multiple context-free tree grammars in [8] are the gMCFTGs,
whereas our MCFTGs are there called linear multiple context-free tree grammars. It is shown in [8] that the closure of
MCF under IO-substitution is included in yMCFTg and that the string languages in this closure satisfy the constant-growth
property and can be recognized in polynomial time.

The only result we have for gPMCFTGs is their characterization in terms of macro tree transducers. Let DMTnp denote
the class of tree transductions realized by macro tree transducers with the new definition of pattern (where ‘np’ stands
for ‘nondeleting in the parameters’). The semantics of such transducers is as in Section 8. Using the redefined notion of state
sequence as for PMCFTGs, the proofs of Lemmas 74 and 76 are still valid. Thus, we obtain that PMCFTg = DMTnp(RT). Now
let DMT denote the class of tree transductions realized by all (total deterministic) macro tree transducers as known from
the literature, which means that also deletion of parameters is allowed; i.e., for a rule 〈q, ω(y1, . . . , yk)〉(x1, . . . , xm) → ζ , it
is just required that ζ ∈ T(Q ×Yk)∪�(Xm). Their semantics is still the same as in Section 8. It is proved in [26, Lemma 6.6]
that for every DMT-transducer with regular look-ahead there is an equivalent one that is nondeleting in the parameters.
Since regular look-ahead can be simulated by relabeling the input tree, this implies that DMT(RT) = DMTnp(RT). Thus we
obtain the characterization PMCFTg = DMT(RT). We observe that the two types (P and g) of copying subtrees that can be
realized by gPMCFTGs, correspond for macro tree transducers to the copying of input variables (from Y) and the copying of
output variables (or parameters, from X), respectively.

At the end of this section we discuss the class S-CF of synchronized-context-free tree languages introduced in [9] and
applied, e.g., in [7]. The logic programs generating these tree languages are essentially tree-valued attribute grammars, which
means that S-CF = AT(RT), where AT denotes the class of attributed tree transductions (see, e.g., [26,39]). It was shown
in [22] that AT(RT) is the class of tree languages obtained by unfolding the term graphs generated by a context-free graph
grammar, where a term graph is a directed acyclic graph representing a tree with shared subtrees (cf. Corollary 79). It is well
known that DT � AT � DMT (see, e.g., [39]). Thus, the class AT(RT) is included in PMCFTg. It seems to be unknown whether
the inclusion is proper. It follows from [26, Theorem 7.1] that DMTfc(RT) ⊆ AT(RT). Thus, MCFT is included in AT(RT), but
the relationship of AT(RT) to PMCFT is not clear. However, PMCF = yDT(RT) � yAT(RT), because Lec ∈ yAT(RT). Hence we
have

MCFT � AT(RT) ⊆ PMCFTg and MCF � PMCF � yAT(RT) ⊆ yPMCFTg .

We finally note that the class CFTsp is characterized in terms of a special type of attributed tree transducers in [72].

11. Conclusion

We have proved in Theorem 45 that every finitely ambiguous MCFTG can be lexicalized, for an arbitrary set � of
lexical symbols. For reasons of linguistic relevance, we have measured the complexity of all our grammar transformations
in terms of the increase of the multiplicity, width, and rule-width of the grammars, together with the requirement of
LDTR-equivalence. Thus, we did not consider the equally important aspects of the size increase of the grammars, and the
time complexity of our algorithms. The size increase, and hence time complexity, of our lexicalization algorithm is (at least)
exponential, and we do not know whether this can be improved.

Another remaining question is whether the given bounds on the multiplicity and width of the resulting lexicalized
MCFTG are optimal. In the particular case where all lexical symbols in � have rank 0, the multiplicity stays the same, but the
width increases by 1. By Theorems 45 and 62 together, there is also an equivalent lexicalized grammar of width at most 1
but with increased multiplicity. A similar question is relevant for the transformation of an MCFTG into an equivalent MC-TAG
(Theorem 59), and for the lexicalization of MC-TAGs (Theorem 61). As shown in [25], the factor mrk2

� in Theorems 59, 61,
and 62 can be reduced to mrk� by combining the two constructions in the proofs of Theorem 50 and Lemma 56 into one.

All our grammar transformations produce an MCFTG that is grammatically close (i.e., LDTR-equivalent) to the given
MCFTG, except for the transformation of an MCFTG into a monadic MCFTG (Lemma 48 and Theorem 62), for which we

51 We do not know whether there is a tree language in PMCFT that is not in MCFTg; i.e., we do not know whether PMCFT and MCFTg are incomparable
subclasses of PMCFTg.

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 97
could only prove LDTR-equivalence in the special case in which all lexical symbols in � have rank 0. As already observed
in footnotes 21 and 25, this problem can be “solved” by considering the weaker notion of DTR

fc-equivalence instead of
LDTR-equivalence, where DTR

fc is the class of transductions realized by finite-copying top-down tree transducers with reg-
ular look-ahead. The definition of DTR

fc-equivalence is the same as that of LDTR-equivalence in Definition 15. Since DTR
fc

is closed under composition (see, e.g., [30, Theorem 5.4]), this is indeed an equivalence relation. Actually, we feel that
DTR

fc-equivalence is a better formalization of the notion of grammatical closeness than LDTR-equivalence because it can also
handle the combination of rules as needed, e.g., in the proof of Lemma 48. Such a combination of rules is also needed
for the binarization of grammars (which we did not study for MCFTGs), to transform the derivation trees of the binarized
grammar into those of the original one. An MCFTG G is binary if its rule-width λ(G) is at most 2. In view of Lemma 72 and
Theorem 73, binarization is important for parsing (see, e.g., [45,78]). We note that most of our constructions preserve λ(G).
The two exceptions are Lemmas 29 and 48 which decrease and increase λ(G), respectively.

In Theorem 77 we have proved a characterization of MCFTGs in terms of finite-copying macro tree transducers, and from
that we have deduced characterizations in terms of monadic second-order logic (Corollary 78), context-free graph grammars
(Corollary 79), and abstract categorial grammars (Corollary 81). It would be worthwhile to investigate whether there are
more results from the literature on macro tree transducers that can be applied to MCFTGs.

In Section 9 we have introduced the MCFT-transducer and we have shown that they realize the DMTfc-bimorphisms
and hence the DMSOT-bimorphisms. This class of MCFT-transductions deserves further study. Only subclasses have been
investigated in the literature. As stated in [77, Example 5], the MRT-transductions are not closed under composition. We
do not know whether the MCFT-transductions are closed under composition or whether composition gives rise to a proper
hierarchy. Another question is whether or not every functional MCFT-transduction is a composition of deterministic macro
tree transductions.

Our remaining problems concern the extensions of MCFTGs that we discussed in Section 10: the PMCFTGs and the
g(P)MCFTGs. As observed in that section it is open whether PMCFTGs can be lexicalized, and the same is true for
g(P)MCFTGs. Although Theorem 77 can be generalized to PMCFTGs and gPMCFTGs, it is not clear whether there are natu-
ral generalizations of the three corollaries mentioned above. Also, a characterization of MCFTg is missing. Finally, it would
be interesting to determine the correctness (or incorrectness) of the obvious Hasse diagram of the six classes MRT, MCFT,
PMRT, PMCFT, MCFTg, PMCFTg. The tree language {anbn � | n ∈N0}, which we considered at the end of Section 8, is in MCFT
(even in CFTsp) but not in PMRT because all monadic tree languages in the class DT(RT) are regular [81, Theorem 4]. The
IO context-free tree language Lec that we considered in Section 10 is in MCFTg but not in PMCFT. The PMRTG (of multiplic-
ity 1) that we considered in the second paragraph of Section 10, generates a tree language that is not in MCFT. However,
we do not know whether there exists a tree language in PMCFT (or even in PMRT) that is not in MCFTg. If we also add
the six classes (as above) with multiplicity 1, then the situation is less clear. In view of [33, Corollary 3.5] we guess that
1-PMRT = HOM(RT) where HOM is the class of all (not necessarily simple) tree homomorphisms. Thus, apart from the triv-
ial inclusions, we obtain the additional inclusion 1-PMRT ⊆ 1-MCFTg because the class of IO context-free tree languages is
closed under arbitrary tree homomorphisms [32, Corollary 6.4]. The tree language of Example 6, which we also considered
at the end of Section 8, is in MRT but not in 1-MCFTg because it cannot be generated by an IO context-free tree grammar as
shown in [20, Section 5]. However, we do not know whether there exists a tree language in MRT that is not in 1-PMCFTg;
i.e., that cannot be generated by a parallel IO context-free tree grammar.

Acknowledgement

We are grateful to the referee for several constructive comments.

References

[1] Rajeev Alur, Loris D’Antoni, Streaming tree transducers, J. ACM 64 (5) (2017).
[2] André Arnold, Max Dauchet, Bi-transductions de forêts, in: Sidney Michaelson, Robin Milner (Eds.), Proc. 3rd Int. Coll. Automata, Languages and

Programming, Edinburgh University Press, 1976, pp. 74–86.
[3] Jean-Michel Autebert, Jean Berstel, Luc Boasson, Context-free languages and pushdown automata, in: Grzegorz Rozenberg, Arto Salomaa (Eds.), Hand-

book of Formal Languages, vol. 1, Springer, 1997, pp. 111–174 (chapter 3).
[4] Brenda S. Baker, Composition of top-down and bottom-up tree transductions, Inf. Control 41 (2) (1979) 186–213.
[5] Michel Bauderon, Bruno Courcelle, Graph expressions and graph rewritings, Math. Syst. Theory 20 (2–3) (1987) 83–127.
[6] Henrik Björklund, Martin Berglund, Petter Ericson, Uniform vs. nonuniform membership for mildly context-sensitive languages: a brief survey, Algo-

rithms 9 (2) (2016) 32.
[7] Yohan Boichut, Jacques Chabin, Pierre Réty, Towards more precise rewriting approximations, in: Adrian Horia Dediu, Enrico Formenti, Carlos Martín-

Vide, Bianca Truthe (Eds.), Proc. 9th Int. Conf. Language and Automata Theory and Applications, in: Lecture Notes in Comput. Sci., vol. 8977, Springer,
2015, pp. 652–663.

[8] Pierre Bourreau, Laura Kallmeyer, Sylvain Salvati, On IO-copying and mildly-context sensitive formalisms, in: Glyn Morrill, Mark-Jan Nederhof (Eds.),
Proc. 17th and 18th Int. Conf. Formal Grammar, in: Lecture Notes in Comput. Sci., vol. 8036, Springer, 2013, pp. 1–16.

[9] Jacques Chabin, Jing Chen, Pierre Réty, Synchronized-Contextfree Tree-Tuple Languages, Technical Report RR-2006-13, INRIA, France, 2006, available at
https://hal .inria .fr /inria -00464114.

[10] John Chen, Towards Efficient Statistical Parsing using Lexicalized Grammatical Information, PhD thesis, University of Delaware, Newark, USA, 2001.
[11] Bruno Courcelle, An axiomatic definition of context-free rewriting and its application to NLC graph grammars, Theoret. Comput. Sci. 55 (2–3) (1987)

141–181.

http://refhub.elsevier.com/S0304-3975(18)30175-0/bib616C7564616E3131s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib61726E6461753736s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib61726E6461753736s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib61756265626F3937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib61756265626F3937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib62616B3739s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib626175636F753837s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib626A6F6265726572693136s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib626A6F6265726572693136s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib626F696368617265743135s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib626F696368617265743135s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib626F696368617265743135s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib626F756B616C73616C3132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib626F756B616C73616C3132s1
https://hal.inria.fr/inria-00464114
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6368653031s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib636F753837s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib636F753837s1

98 J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99
[12] Bruno Courcelle, Joost Engelfriet, Graph Structure and Monadic Second-Order Logic — A Language-Theoretic Approach, Encyclopedia of Mathematics
and its Applications, vol. 138, Cambridge University Press, 2012.

[13] Bruno Courcelle, Paul Franchi-Zannettacci, Attribute grammars and recursive program schemes, Theoret. Comput. Sci. 17 (1982) 163–191, 235–257.
[14] Frank Drewes, Hans-Jörg Kreowski, Annegret Habel, Hyperedge replacement graph grammars, in: Grzegorz Rozenberg (Ed.), Handbook of Graph Gram-

mars and Computing by Graph Transformations, Volume 1: Foundations, World Scientific, 1997, pp. 95–162.
[15] Joost Engelfriet, Bottom-up and top-down tree transformations—a comparison, Math. Syst. Theory 9 (3) (1975) 198–231.
[16] Joost Engelfriet, Tree Automata and Tree Grammars, Technical Report DAIMI FN-10, Aarhus University, 1975, a slightly revised version is available at

http://arxiv.org /abs /1510 .02036.
[17] Joost Engelfriet, Top-down tree transducers with regular look-ahead, Math. Syst. Theory 10 (1977) 289–303.
[18] Joost Engelfriet, Three hierarchies of transducers, Math. Syst. Theory 15 (2) (1982) 95–125.
[19] Joost Engelfriet, Context-free graph grammars, in: Grzegorz Rozenberg, Arto Salomaa (Eds.), Handbook of Formal Languages, vol. 3, Springer, 1997,

pp. 125–213 (chapter 3).
[20] Joost Engelfriet, Gilberto Filé, The formal power of one-visit attribute grammars, Acta Inform. 16 (1981) 275–302.
[21] Joost Engelfriet, Linda Heyker, The string generating power of context-free hypergraph grammars, J. Comput. System Sci. 43 (2) (1991) 328–360.
[22] Joost Engelfriet, Linda Heyker, Context-free hypergraph grammars have the same term-generating power as attribute grammars, Acta Inform. 29 (2)

(1992) 161–210.
[23] Joost Engelfriet, Hendrik Jan Hoogeboom, MSO definable string transductions and two-way finite-state transducers, ACM Trans. Comput. Log. 2 (2)

(2001) 216–254.
[24] Joost Engelfriet, Eric Lilin, Andreas Maletti, Extended multi bottom-up tree transducers, Acta Inform. 46 (8) (2009) 561–590.
[25] Joost Engelfriet, Andreas Maletti, Multiple context-free tree grammars and multi-component tree adjoining grammars, in: Ralf Klasing, Marc Zeitoun

(Eds.), Proc. 21st Int. Symp. Fundamentals of Computation Theory, in: Lecture Notes in Comput. Sci., vol. 10472, Springer, 2017, pp. 217–229.
[26] Joost Engelfriet, Sebastian Maneth, Macro tree transducers, attribute grammars, and MSO definable tree translations, Inform. and Comput. 154 (1)

(1999) 34–91.
[27] Joost Engelfriet, Sebastian Maneth, Tree languages generated by context-free graph grammars, in: Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski

(Eds.), Proc. 8th Int. Workshop Theory and Application of Graph Transformation, in: Lecture Notes in Comput. Sci., vol. 1764, 2000, pp. 15–29.
[28] Joost Engelfriet, Sebastian Maneth, Output string languages of compositions of deterministic macro tree transducers, J. Comput. System Sci. 64 (2002)

350–395.
[29] Joost Engelfriet, Sebastian Maneth, Macro tree translations of linear size increase are MSO definable, SIAM J. Comput. 32 (4) (2003) 950–1006.
[30] Joost Engelfriet, Grzegorz Rozenberg, Giora Slutzki, Tree transducers, L systems, and two-way machines, J. Comput. System Sci. 20 (2) (1980) 150–202.
[31] Joost Engelfriet, Erik M. Schmidt, IO and OI I, J. Comput. System Sci. 15 (3) (1977) 328–353.
[32] Joost Engelfriet, Erik M. Schmidt, IO and OI II, J. Comput. System Sci. 16 (1) (1978) 67–99.
[33] Joost Engelfriet, Sven Skyum, The copying power of one-state tree transducers, J. Comput. System Sci. 25 (3) (1982) 418–435.
[34] Joost Engelfriet, Heiko Vogler, Macro tree transducers, J. Comput. System Sci. 31 (1) (1985) 71–146.
[35] Michael J. Fischer, Grammars with Macro-Like Productions, PhD thesis, Harvard University, 1968.
[36] Akio Fujiyoshi, Epsilon-free grammars and lexicalized grammars that generate the class of the mildly context-sensitive languages, in: Owen Rambow,

Matthew Stone (Eds.), Proc. 7th Int. Workshop Tree Adjoining Grammar and Related Formalisms, ACL, 2004, pp. 16–23.
[37] Akio Fujiyoshi, Takumi Kasai, Spinal-formed context-free tree grammars, Theory Comput. Syst. 33 (1) (2000) 59–83.
[38] Zoltán Fülöp, Armin Kühnemann, Heiko Vogler, A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead,

Inform. Process. Lett. 91 (2) (2004) 57–67.
[39] Zoltán Fülöp, Heiko Vogler, Syntax-Directed Semantics—Formal Models Based on Tree Transducers, Monogr. Theoret. Comput. Sci. EATCS Ser., Springer,

1998.
[40] Kilian Gebhardt, Johannes Osterholzer, A direct link between tree-adjoining and context-free tree grammars, in: Thomas Hanneforth, Christian Wurm

(Eds.), Proceedings of the 12th Int. Conf. Finite-State Methods and Natural Language Processing, ACL, 2015.
[41] Ferenc Gécseg, Magnus Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984, a re-edition is available at http://arxiv.org /abs /1509 .06233.
[42] Ferenc Gécseg, Magnus Steinby, Tree languages, in: Grzegorz Rozenberg, Arto Salomaa (Eds.), Handbook of Formal Languages, vol. 3, Springer, 1997,

pp. 1–68 (chapter 1).
[43] Jonathan Goldstine, Hing Leung, Detlef Wotschke, On the relation between ambiguity and nondeterminism in finite automata, Inform. and Comput.

100 (2) (1992) 261–270.
[44] Carlos Gómez-Rodríguez, Marco Kuhlmann, Giorgio Satta, Efficient parsing of well-nested linear context-free rewriting systems, in: Ron Kaplan, Jill

Burstein, Mary Harper, Gerald Penn (Eds.), Proc. 11th Ann. Conf. North American Chapter of the Association for Computational Linguistics, ACL, 2010,
pp. 276–284.

[45] Carlos Gómez-Rodríguez, Giorgio Satta, An optimal-time binarization algorithm for linear context-free rewriting systems with fan-out two, in: Keh-Yih
Su, Jian Su, Janyce Wiebe (Eds.), Proc. 47th Ann. Meeting Association for Computational Linguistics, ACL, 2009, pp. 985–993.

[46] James N. Gray, Michael A. Harrison, On the covering and reduction problems for context-free grammars, J. ACM 19 (4) (1972) 675–698.
[47] Hendrik Jan Hoogeboom, Paulien ten Pas, Monadic second-order definable text languages, Theory Comput. Syst. 30 (4) (1997) 335–354.
[48] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, second edition, Addison-Wesley

Series in Computer Science, Addison Wesley, 2001.
[49] Aravind K. Joshi, Leon S. Levy, Masako Takahashi, Tree adjunct grammars, J. Comput. System Sci. 10 (1) (1975) 136–163.
[50] Aravind K. Joshi, Yves Schabes, Tree-adjoining grammars and lexicalized grammars, in: Maurice Nivat, Andreas Podelski (Eds.), Tree Automata and

Languages, North-Holland, 1992, pp. 409–431.
[51] Aravind K. Joshi, Yves Schabes, Tree-adjoining grammars, in: Grzegorz Rozenberg, Arto Salomaa (Eds.), Beyond Words, in: Handbook of Formal Lan-

guages, vol. 3, Springer, 1997, pp. 69–123.
[52] Yuichi Kaji, Ryuchi Nakanishi, Hiroyuki Seki, Tadao Kasami, The computational complexity of the universal recognition problem for parallel multiple

context-free grammars, Comput. Intell. 10 (1994) 440–452.
[53] Laura Kallmeyer, A declarative characterization of different types of multicomponent tree adjoining grammars, Res. Lang. Comput. 7 (1) (2009) 55–99.
[54] Laura Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies, Springer, 2010.
[55] Makoto Kanazawa, The convergence of well-nested mildly context-sensitive grammar formalisms, invited talk at the 14th Int. Conf. Formal Grammar,

2009, slides available at research .nii .ac .jp /~kanazawa.
[56] Makoto Kanazawa, The pumping lemma for well-nested multiple context-free languages, in: Volker Diekert, Dirk Nowotka (Eds.), Proc. 13th Int. Conf.

Developments in Language Theory, in: Lecture Notes in Comput. Sci., vol. 5583, Springer, 2009, pp. 312–325.
[57] Makoto Kanazawa, Second-order abstract categorial grammars as hyperedge replacement grammars, J. Log. Lang. Inf. 19 (2) (2010) 137–161.
[58] Makoto Kanazawa, Multidimensional trees and a Chomsky–Schützenberger–Weir representation theorem for simple context-free tree grammars, J. Logic

Comput. 26 (5) (2016) 1469–1516.

http://refhub.elsevier.com/S0304-3975(18)30175-0/bib636F75656E673132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib636F75656E673132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib636F756672613832s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6472656B72656861623937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6472656B72656861623937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E673735s1
http://arxiv.org/abs/1510.02036
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E673737s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E67383262s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E673937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E673937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E6766696C3831s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676865793931s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676865793932s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676865793932s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E67686F6F3031s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E67686F6F3031s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676C696C6D616C3039s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6D616C656E673137s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6D616C656E673137s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676D616E3939s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676D616E3939s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676D616E3030s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676D616E3030s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676D616E3032s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676D616E3032s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E676D616E303361s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E67726F7A736C753830s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E677363683737s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E677363683738s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E67736B793832s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib656E67766F673835s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib666973363862s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib66756A3035s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib66756A3035s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib66756A6B61733030s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib66756C6B7568766F673034s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib66756C6B7568766F673034s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib66756C766F673938s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib66756C766F673938s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6765626F73743135s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6765626F73743135s1
http://arxiv.org/abs/1509.06233
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6765637374653937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6765637374653937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib676F6C6C6575776F743932s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib676F6C6C6575776F743932s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib726F646B75687361743130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib726F646B75687361743130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib726F646B75687361743130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib676F6D7361743039s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib676F6D7361743039s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6772616861723732s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib686F6F7061733937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib686F706D6F74756C6C3031s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib686F706D6F74756C6C3031s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6A6F736C657674616B3735s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6A6F737363683932s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6A6F737363683932s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6A6F737363683937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6A6F737363683937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616A6E616B73656B6B61733934s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616A6E616B73656B6B61733934s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616C6C3039s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616C6C3130s1
http://research.nii.ac.jp/~kanazawa
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616E303962s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616E303962s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616E3130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616E3136s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616E3136s1

J. Engelfriet et al. / Theoretical Computer Science 728 (2018) 29–99 99
[59] Makoto Kanazawa, Sylvain Salvati, The copying power of well-nested multiple context-free grammars, in: Adrian Horia Dediu, Henning Fernau, Carlos
Martín-Vide (Eds.), Proc. 4th Int. Conf. Language and Automata Theory and Applications, in: Lecture Notes in Comput. Sci., vol. 6031, Springer, 2010,
pp. 344–355.

[60] Makoto Kanazawa, Ryo Yoshinaka, Lexicalization of Second-Order ACGs, Technical Report NII-2005-012E, National Institute of Informatics, Tokyo, Japan,
2005.

[61] Stephan Kepser, James Rogers, The equivalence of tree adjoining grammars and monadic linear context-free tree grammars, J. Log. Lang. Inf. 20 (3)
(2011) 361–384.

[62] Ines Klimann, Sylvain Lombardy, Jean Mairesse, Christophe Prieur, Deciding unambiguity and sequentiality from a finitely ambiguous max-plus au-
tomaton, Theoret. Comput. Sci. 327 (3) (2004) 349–373.

[63] Donald E. Knuth, A characterization of parenthesis languages, Inf. Control 11 (3) (1967) 269–289.
[64] Marco Kuhlmann, Dependency Structures and Lexicalized Grammars: An Algebraic Approach, Lecture Notes in Artificial Intelligence, vol. 6270, Springer,

2010.
[65] Marco Kuhlmann, Giorgio Satta, Tree-adjoining grammars are not closed under strong lexicalization, Comput. Linguist. 38 (3) (2012) 617–629.
[66] Peter Ljunglöf, Practical parsing of parallel multiple context-free grammars, in: Giorgio Satta, Chung-Hye Han (Eds.), Proc. 11th Int. Workshop Tree

Adjoining Grammars and Related Formalisms, ACL, 2012, pp. 144–152.
[67] Markus Lohrey, Sebastian Maneth, Manfred Schmidt-Schauß, Parameter reduction and automata evaluation for grammar-compressed trees, J. Comput.

System Sci. 78 (5) (2012) 1651–1669.
[68] Andreas Maletti, Compositions of extended top-down tree transducers, Inform. and Comput. 206 (9–10) (2008) 1187–1196.
[69] Andreas Maletti, Synchronous forest substitution grammars, in: Traian Muntean, Dimitrios Poulakis, Robert Rolland (Eds.), Proc. 5th Int. Conf. Algebraic

Informatics, in: Lecture Notes in Comput. Sci., vol. 8080, Springer, 2013, pp. 235–246.
[70] Andreas Maletti, Joost Engelfriet, Strong lexicalization of tree adjoining grammars, in: Haizhou Li, Chin-Yew Lin, Miles Osborne, Gary Geunbae Lee,

Jong C. Park (Eds.), Proc. 50th Ann. Meeting Association for Computational Linguistics, ACL, 2012, pp. 506–515.
[71] Uwe Mönnich, Adjunction as substitution: an algebraic formulation of regular, context-free and tree adjoining languages, in: Geert-Jan M. Kruijff, Glyn

Morill, Richard T. Oehrle (Eds.), Proc. 3rd Int. Conf. Formal Grammar, Université de Provence, France, 1997, pp. 169–178, available at arxiv.org /abs /cmp -
lg /9707012v1.

[72] Uwe Mönnich, Well-nested tree languages and attributed tree transducers, in: Srinivas Bangalore, Robert Frank, Maribel Romero (Eds.), Proc. 10th Int.
Workshop Tree Adjoining Grammars and Related Formalisms, ACL, 2010, pp. 35–44.

[73] Mark-Jan Nederhof, Heiko Vogler, Synchronous context-free tree grammars, in: Giorgio Satta, Chung-Hye Han (Eds.), Proc. 11th Int. Workshop Tree
Adjoining Grammars and Related Formalisms, ACL, 2012, pp. 55–63.

[74] Anton Nijholt, Context-Free Grammars: Covers, Normal Forms, and Parsing, Lecture Notes in Comput. Sci., vol. 93, Springer, 1980.
[75] Maurice Nivat, Transductions des langages de Chomsky, Ann. Inst. Fourier 18 (1) (1968) 339–455, available at https://eudml .org /doc /73950.
[76] Andreas Potthoff, Wolfgang Thomas, Regular tree languages without unary symbols are star-free, in: Zoltán Ésik (Ed.), Proc. 9th Int. Symp. Fundamentals

of Computation Theory, in: Lecture Notes in Comput. Sci., vol. 710, Springer, 1993, pp. 396–405.
[77] Frank G. Radmacher, An automata theoretic approach to rational tree relations, in: Viliam Geffert, Juhani Karhumäki, Alberto Bertoni, Bart Preneel,

Pavol Návrat, Mária Bieliková (Eds.), Proc. 34th Conf. Current Trends in Theory and Practice of Computer Science, in: Lecture Notes in Comput. Sci.,
vol. 4910, Springer, 2008, pp. 424–435.

[78] Owen Rambow, Giorgio Satta, Independent parallelism in finite copying parallel rewriting systems, Theoret. Comput. Sci. 223 (1–2) (1999) 87–120.
[79] Jean-Claude Raoult, Rational tree relations, Bull. Belg. Math. Soc. 4 (1997) 149–176.
[80] Gene F. Rose, An extension of ALGOL-like languages, Commun. ACM 7 (2) (1964) 52–61.
[81] William C. Rounds, Mappings and grammars on trees, Math. Syst. Theory 4 (3) (1970) 257–287.
[82] Sylvain Salvati, Encoding second order string ACG with deterministic tree walking transducers, in: Shuly Wintner (Ed.), Proc. 11th Int. Conf. Formal

Grammars, CSLI Publications, 2007, pp. 143–156, FG Online Proceedings.
[83] Aniello De Santo, Alëna Aksënova, Thomas Graf, An alternate view on strong lexicalization in TAG, in: David Chiang, Alexander Koller (Eds.), Proc. 12th

Int. Workshop Tree Adjoining Grammars and Related Formalisms, ACL, 2016, pp. 93–102.
[84] Giorgio Satta, Recognition of linear context-free rewriting systems, in: Henry S. Thompson (Ed.), Proc. 30th Ann. Meeting Association for Computational

Linguistics, ACL, 1992, pp. 89–95.
[85] Yves Schabes, Mathematical and Computational Aspects of Lexicalized Grammars, PhD thesis, University of Pennsylvania, Philadelphia, USA, 1990.
[86] Yves Schabes, Anne Abeillé, Aravind K. Joshi, Parsing strategies with ‘lexicalized’ grammars: application to tree adjoining grammars, in: Dénes Vargha

(Ed.), Proc. 12th Int. Conf. Computational Linguistics, John von Neumann Society for Computing Sciences, Budapest, 1988, pp. 578–583.
[87] Hiroyuki Seki, Yuki Kato, On the generative power of multiple context-free grammars and macro grammars, IEICE Trans. 91-D (2) (2008) 209–221.

Preprint available as Technical Report NAIST-IS-TR2006007 of the Nara Institute of Science and Technology (2006).
[88] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, Tadao Kasami, On multiple context-free grammars, Theoret. Comput. Sci. 88 (2) (1991) 191–229.
[89] Sven Skyum, On extensions of ALGOL-like languages, Inf. Control 26 (1) (1974) 82–97.
[90] Heiko Stamer, Restarting Tree Automata: Formal Properties and Possible Variations, PhD thesis, University of Kassel, Germany, 2009.
[91] Heiko Stamer, Friedrich Otto, Restarting tree automata and linear context-free tree languages, in: Symeon Bozapalidis, George Rahonis (Eds.), Proc. 2nd

Int. Conf. Algebraic Informatics, in: Lecture Notes in Comput. Sci., vol. 4728, Springer, 2007, pp. 275–289.
[92] Nikè van Vugt, Generalized Context-Free Grammars, Technical Report 96-12, Department of Computer Science, Leiden University, 1996, Master’s Thesis,

http://liacs .leidenuniv.nl /assets /PDF /vvugt .96 .pdf.
[93] K. Vijay-Shanker, David J. Weir, Aravind K. Joshi, Characterizing structural descriptions produced by various grammatical formalisms, in: Candy Sidner

(Ed.), Proc. 25th Ann. Meeting Association for Computational Linguistics, ACL, 1987, pp. 104–111.
[94] David J. Weir, Characterizing Mildly Context-Sensitive Grammar Formalisms, PhD thesis, University of Pennsylvania, 1988.
[95] David J. Weir, Linear context-free rewriting systems and deterministic tree-walking transducers, in: Henry S. Thompson (Ed.), Proc. 30th Ann. Meeting

Association for Computational Linguistics, ACL, 1992, pp. 136–143.
[96] Ryo Yoshinaka, Extensions and Restrictions of Abstract Categorial Grammars, PhD thesis, University of Tokyo, 2006.

http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616E73616C3130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616E73616C3130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B616E73616C3130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib796F736B616E3035s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib796F736B616E3035s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B6570726F673131s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B6570726F673131s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B6C696C6F6D6D61697072693034s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B6C696C6F6D6D61697072693034s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B6E753637s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B75683130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B75683130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6B75687361743132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6C6A753132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6C6A753132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6C6F686D616E7363683132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6C6F686D616E7363683132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6D616C303765s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6D616C3133s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6D616C3133s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6D616C656E673132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6D616C656E673132s1
http://arxiv.org/abs/cmp-lg/9707012v1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6D6F6E3130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6D6F6E3130s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6E6564766F673132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6E6564766F673132s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib6E696A3830s1
https://eudml.org/doc/73950
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib706F7474686F3933s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib706F7474686F3933s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7261643038s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7261643038s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7261643038s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib72616D7361743939s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib72616F3937s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib726F73653634s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib726F753730s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib73616C3037s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib73616C3037s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib73616E616B736772613136s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib73616E616B736772613136s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7361743932s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7361743932s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7363683930s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7363686162656A6F733838s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7363686162656A6F733838s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib73656B6B61743038s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib73656B6B61743038s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib73656B6D617466756A6B61733931s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib736B79756D3734s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7374613039s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7374616F74743037s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7374616F74743037s1
http://liacs.leidenuniv.nl/assets/PDF/vvugt.96.pdf
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7368617765696A6F733837s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7368617765696A6F733837s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7765693838s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7765693932s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib7765693932s1
http://refhub.elsevier.com/S0304-3975(18)30175-0/bib796F733036s1
http://arxiv.org/abs/cmp-lg/9707012v1

	Multiple context-free tree grammars: Lexicalization and characterization
	1 Introduction
	2 Preliminaries
	2.1 Sequences and strings
	2.2 Trees and forests
	2.3 Substitution

	3 Multiple context-free tree grammars
	3.1 Syntax and least ﬁxed point semantics
	3.2 Derivation trees
	3.3 Derivations

	4 Normal forms
	4.1 Basic normal forms
	4.2 Lexical normal forms

	5 Lexicalization
	6 MCFTG and MC-TAG
	6.1 Footed MCFTGs
	6.2 MC-TAL almost equals MCFT
	6.3 Monadic MCFTGs

	7 Multiple context-free grammars
	7.1 String generating power of MCFTGs
	7.2 Parsing of MCFTGs

	8 Characterization
	9 Translation
	10 Parallel and general MCFTG
	11 Conclusion
	Acknowledgement
	References

