
Theoretical Computer Science 850 (2021) 40–97
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

XML navigation and transformation by tree-walking automata

and transducers with visible and invisible pebbles

Joost Engelfriet ∗, Hendrik Jan Hoogeboom, Bart Samwel

LIACS, Leiden University, P.O. Box 9512, 2300 RA Leiden, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 September 2018
Accepted 23 October 2020
Available online 28 October 2020
Communicated by D. Perrin

Keywords:
Tree transducers
Tree-walking automata
Pebbles
XML document navigation
XML document transformation

The pebble tree automaton and the pebble tree transducer are enhanced by additionally
allowing an unbounded number of “invisible” pebbles (as opposed to the usual “visible”
ones). The resulting pebble tree automata recognize the regular tree languages (i.e., can
validate all generalized DTD’s) and hence can find all matches of MSO definable patterns.
Moreover, when viewed as a navigational device, they lead to an XPath-like formalism
that has a path expression for every MSO definable binary pattern. The resulting pebble
tree transducers can apply arbitrary MSO definable tests to (the observable part of) their
configurations, they (still) have a decidable typechecking problem, and they can model
the recursion mechanism of XSLT. The time complexity of the typechecking problem for
conjunctive queries that use MSO definable patterns can often be reduced through the use
of invisible pebbles.

© 2020 Elsevier B.V. All rights reserved.

Contents

1. Introduction . 41
2. Preliminaries . 43
3. Automata and transducers . 45
4. Decomposition . 49
5. Typechecking . 55
6. Trees, tests and trips . 56
7. The power of the I-PTT . 60
8. Look-ahead tests . 63
9. Document navigation . 65

10. Pattern matching . 71
11. Pebble forest transducers . 74
12. Document transformation . 76
13. A TL program in XSLT . 85
14. Data complexity . 86
15. Variations of decomposition . 88
16. Conclusion . 95

Declaration of competing interest . 96
References . 96

* Corresponding author.
E-mail addresses: j.engelfriet@liacs.leidenuniv.nl (J. Engelfriet), h.j.hoogeboom@liacs.leidenuniv.nl (H.J. Hoogeboom), bsamwel@gmail.com (B. Samwel).
https://doi.org/10.1016/j.tcs.2020.10.030
0304-3975/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2020.10.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.10.030&domain=pdf
mailto:j.engelfriet@liacs.leidenuniv.nl
mailto:h.j.hoogeboom@liacs.leidenuniv.nl
mailto:bsamwel@gmail.com
https://doi.org/10.1016/j.tcs.2020.10.030

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
1. Introduction

Pebble tree transducers, as introduced by Milo, Suciu, and Vianu [41], are a formal model of XML navigation and trans-
formation for which typechecking is decidable. The pebble tree transducer is a tree-walking tree transducer with nested
pebbles, i.e., it walks on the input tree, dropping and lifting a bounded number of pebbles that have nested life times,
whereas it produces the output tree in a parallel top-down fashion. We enhance the power of the pebble tree transducer
by allowing an unbounded number of (coloured) pebbles, still with nested life times, i.e., organized as a stack. However,
apart from a bounded number, the pebbles are “invisible”, which means that they can be observed by the transducer only
when they are on top of the stack (and thus the number of observable pebbles is bounded at each moment in time). We
will call v-ptt the pebble tree transducer of [41] (or rather, the one in [20]: an obvious definitional variant), and vi-ptt the
enhanced pebble tree transducer. Moreover, i-ptt refers to the vi-ptt that does not use visible pebbles, which can be viewed
as a generalization of the indexed tree transducer of [23]. And tt refers to the pebble tree transducer without pebbles, i.e.,
to the tree-walking tree transducer, cf. [14] and [10, Section 8]. Tree-walking transducers were introduced in [2], where they
translate trees into strings.1

The navigational part of the v-ptt, i.e., the behaviour of the transducer when no output is produced, is the pebble tree
automaton (v-pta), introduced in [15], which is a tree-walking automaton with nested pebbles. It was shown in [15] that the
v-pta recognizes regular tree languages only. In [8] the important result was proved that not all regular tree languages can
be recognized by the v-pta, and thus [11,54] the navigational power of the v-ptt is below Monadic Second Order (mso) logic,
which is undesirable for a formal model of XML transformation (see, e.g., [46]). One of the reasons for introducing invisible
pebbles is that the vi-pta, and even the i-pta, recognizes exactly the regular tree languages (Theorem 11). Thus, since
the regular tree grammar is a formal model of DTD (Document Type Definition) in XML, the vi-pta can validate arbitrary
generalized DTD’s. We note that the i-pta is a straightforward generalization of the two-way backtracking pushdown tree
automaton of Slutzki [51].

Surveys on the use of tree-walking automata and transducers for XML can be found in [45,50]. For a survey on tree-
walking automata see [7].

It is easy to show that every regular tree language can be recognized by an i-pta, just simulating a bottom-up finite-
state tree automaton. The proof that all vi-pta tree languages are regular, is based on a decomposition of the vi-ptt into tt’s
(Theorem 5), similar to the one for the v-ptt in [20]. Since the inverse type inference problem is solvable for tt’s (where a
“type” is a regular tree language), this shows that the domain of a vi-ptt is regular, and so even the alternating vi-pta tree
languages are regular. It also shows that the typechecking problem is decidable for vi-ptt’s, by the same arguments as used
in [41] for v-ptt’s. More precisely, we prove (Theorem 8, based on [14, Theorem 3]) that a vi-ptt with k visible pebbles
can be typechecked in (k + 3)-fold exponential time. For varying k the complexity is non-elementary (as in [41]), but it is
observed in [42] that “non-elementary algorithms on tree automata have previously been seen to be feasible in practice”.

Generalizing the fact that the i-pta can recognize the regular tree languages, we prove that the vi-pta and the vi-ptt

can perform mso tests on the observable part of their configuration, i.e., they can check whether or not the observable
pebbles on the input tree (i.e., the visible ones, plus the top pebble on the stack) satisfy certain mso requirements with
respect to the current position of the reading head (Theorem 16). If all the observable pebbles are visible this is obvious
(drop an additional visible pebble, simulate an i-pta that recognizes the regular tree language corresponding to the mso

requirements, return to the pebble and lift it), but if the top pebble is invisible (or if there is no visible pebble left) that
does not work and a more complicated technique must be used. Consequently, the vi-pta can match arbitrary mso definable
n-ary patterns, using n visible pebbles to find all candidate matches as in [41, Example 3.5], and using invisible pebbles to
perform the mso test; the vi-ptt can also output the matches. In fact, instead of the n visible pebbles the vi-pta can use
n − 2 visible pebbles, one invisible pebble (on top of the stack), and the reading head (Theorem 29).

As the navigational part of the vi-ptt, the vi-pta in fact computes a binary pattern on trees, i.e., a binary relation
between two nodes of a tree: the position of the reading head of the vi-ptt before and after navigation. We prove that also
as a navigational device the vi-pta and the i-pta have the same power as mso logic: they compute exactly the mso definable
binary patterns (Theorem 15). This improves the result in [17] (where binary patterns are called “trips”), because the i-pta

is a more natural automaton than the one considered in [17].
One of the research goals of Marx and ten Cate (see [30,39,52,53] and the entertaining [40]) has been to combine Core

XPath of [31] which models the navigational part of XPath 1.0, with regular path expressions [1] (or caterpillar expressions
[9]) which naturally correspond to tree-walking automata. An important feature of XPath is the “predicate”: it allows to test
the context node for the existence of at least one other node that matches a given path expression. Thus, the path expression
α1[β]/α2 takes an α1-walk from the context node to the new context node v , checks whether there exists a β-walk from v
to some other node, and then takes an α2-walk from v to the match node. For tree automata this corresponds to the notion
of “look-ahead” (cf. [23, Definition 6.5]). We prove (Theorem 19) that an i-pta A can use another i-pta B as look-ahead test,
i.e., A can test whether or not B has a successful computation when started in the current configuration of A (and similarly
for vi-pta and vi-ptt). Since XPath expressions can be nested arbitrarily, we even allow B to use yet another i-pta as look-
ahead test, etcetera (Theorem 20). Due to this “iterated look-ahead” feature, we can use Kleene’s classical construction to

1 In [10, Section 8] the tt is called tree-walking transducer and the transducer of [2] is called tree-walking tree-to-word transducer.
41

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
translate the i-pta into an XPath-like algebraic formalism, which we call Pebble XPath, with the same expressive power as
mso logic for defining binary patterns (Theorem 21). In fact, Pebble XPath is the extension of Regular XPath [39,52] with a
stack of invisible pebbles. It is proved in [53] that Regular XPath is not mso complete (see also [40]).2 Other mso complete
extensions of Regular XPath are considered in [30,52].

To explain another reason for introducing invisible pebbles we consider XQuery-like conjunctive queries of the form

for x1, . . . , xn where ϕ1 ∧ · · · ∧ ϕm return r,

where x1, . . . , xn are variables, each ϕ� (with 1 ≤ � ≤ m) is an mso formula with two free variables xi and x j , and r is an
output tree with variables at the leaves. As observed above, such pattern matching queries can be evaluated by a vi-ptt

with n − 2 visible pebbles, even if the where-clause contains an arbitrary mso formula. In many cases, however, a much
smaller number of visible pebbles suffices (Theorem 31). This is an enormous advantage when typechecking the query, as
for the time complexity every visible pebble counts (viz. it counts as an exponential). For instance if j = i + 1 for every ϕ� ,
then no visible pebbles are needed, i.e., the query can be evaluated by an i-ptt: we use invisible pebbles p1, . . . , pn on
the stack (in that order), representing the variables, and move them through the input tree in document order, in a nested
fashion; just before dropping pebble pi+1, each formula ϕ�(xi, xi+1) can be verified by an MSO test on the observable part
of the configuration (which consists of the top pebble pi and the reading head position).

The pebble tree transducer transforms ranked trees. However, an XML document is not ranked; it is a forest: a sequence
of unranked trees. To model XML transformation by ptt’s, forests are encoded as binary trees in the usual way. For the
input, it does not make much of a difference whether the ptt walks on a binary tree or a forest. However, as opposed to
what is suggested in [41], for the output it does make a difference, as pointed out in [47] for macro tree transducers. For
that reason we also consider pebble forest transducers (abbreviated with pft instead of ptt) that walk on encoded forests,
but construct forests directly, using forest concatenation as basic operation. As in [47], pft are more powerful than ptt, but
the complexity of the typechecking problem is the same, i.e., vi-pft with k visible pebbles can be typechecked in (k +3)-fold
exponential time (Theorem 34). In fact, pft have all the properties mentioned before for ptt.

The document transformation languages dtl and tl were introduced in [38] and [37], respectively, as a formal model of
the recursion mechanism in the template rules of XSLT, with mso logic rather than XPath to specify matching and selection.
Documents are modeled as forests. The language dtl has no variables or parameters, and its only instruction is apply-
templates. The language tl is the extension of dtl with accumulating parameters, i.e., the parameters of XSLT 1.0 whose
values are “result tree fragments” (and on which no operations are allowed). We prove that every dtl program can be
simulated, with forests encoded as binary trees, by an i-ptt (Theorem 37). More importantly, we prove that tl and i-pft

have the same expressive power (Theorem 46). Thus, in its forest version, our new model the vi-pft can be viewed as the
natural combination of the pebble tree transducer of [41] (v-ptt) and the tl program of [37] (i-pft). Note that v-ptt and tl

have incomparable expressive power. As claimed by [37], tl can “describe many real-world XML transformations”. We show
that it contains all deterministic vi-pft transformations for which the size of the output document is linear in the size of
the input document (Theorem 57). However, the visible pebbles seem to be a requisite for the XQuery-like queries discussed
above, and we conjecture that not all such queries can be programmed in tl (though they can, e.g., in the case that j = i +1
for every �). As shown in [4] (for a subset of mso), these queries can be programmed in XSLT 1.0 using parameters that
have input nodes as values; however, with such parameters even v-ptt’s with nonnested pebbles can be simulated, and
typechecking is no longer decidable. In XSLT 2.0 all (computable) queries can be programmed [33]. The main result of [37]
is that typechecking is decidable for tl programs. Assuming that mso formulas are represented by deterministic bottom-
up finite-state tree automata, the above relationship between tl and i-pft allows us to prove that tl programs can be
typechecked in 4-fold exponential time (Theorem 41), which seems to be one exponential better than the algorithm in [37].

In addition to the time complexity of typechecking a vi-ptt, also the time complexity of evaluating the queries realized
by a vi-pta or a vi-ptt is of importance. The binary pattern (or “trip”) computed by a vi-pta, i.e., the binary relation between
two nodes of the input tree, can be evaluated in polynomial time. The same is true for every (fixed) expression of Pebble
XPath (see the last two paragraphs of Section 9). Deterministic vi-ptt’s have exponential time data complexity, provided
that the output tree can be represented by a DAG (directed acyclic graph). To be precise, for every deterministic vi-ptt there
is an exponential time algorithm that transforms any input tree of that vi-ptt into a DAG that represents the corresponding
output tree (Theorem 47). For the vi-ptt’s that match mso definable n-ary patterns (as discussed above) the algorithm is
polynomial time (Theorem 48). Note that v-ptt’s have polynomial time data complexity [41, Proposition 3.8].

Apart from the above results that are motivated by XML navigation and transformation, we also prove some more theo-
retical results. We show that (as opposed to the v-ptt) the i-ptt can simulate the bottom-up tree transducer (Theorem 18).
We show that the composition of two deterministic tt’s can be simulated by a deterministic i-ptt (Theorem 17). This even
holds when the tt’s are allowed to perform mso tests on their configuration, and then also vice versa, every deterministic
i-ptt can be decomposed into two such extended tt’s (Theorem 53).

We show that every deterministic vi-ptt can be decomposed into deterministic tt’s (Theorem 55) and that, for the
deterministic vi-ptt, k + 1 visible pebbles are more powerful than k visible pebbles (Theorem 56). Pebbles have to be lifted

2 To be precise, it is proved in [53] that Regular XPath with “subtree relativisation” is not mso complete and has the same power as first-order logic with
monadic transitive closure.
42

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Fig. 1. Picture of the forest σ(a, τ (b, a), b) τ (σ (a), b). Formal at the left, with dotted lines for the horizontal edges and solid lines for the vertical edges, and
informal at the right.

from the position where they were dropped; however, in [16] it was convenient to consider a stronger type of pebbles that
can also be retrieved from a distance. Whereas i-ptt’s with strong invisible pebbles can recognize nonregular tree languages,
we show that vi-ptt’s with strong visible pebbles can still be decomposed into tt’s (Theorems 60 and 64) and hence their
typechecking is decidable (as already proved for v-ptt’s with strong pebbles in [27]). Similarly, deterministic vi-ptt’s with
strong visible pebbles can be decomposed into deterministic tt’s (Theorems 62 and 65).

Some of these theoretical results can be viewed as (slight) generalizations of existing results for formal models of com-
piler construction (in particular attribute grammars), such as attributed tree transducers [25], macro tree transducers [22],
and macro attributed tree transducers [35], see also [26]. As explained in [20, Section 3.2], attributed tree transducers are
tt’s that satisfy an additional requirement of “noncircularity”. Similarly, as observed in [37], macro attributed tree trans-
ducers (that generalize both attributed tree transducers and macro tree transducers) are closely related to tl programs, and
hence to i-ptt’s by Theorem 46. For instance, Theorem 17 slightly generalizes the fact that the composition of two attributed
tree transducers can be simulated by a macro attributed tree transducer, as shown in [35].

Most of the results of this paper were announced in the PODS’07 conference [18]. The remaining results are based on
technical notes of the authors from the years 2004–2008. This paper has not been updated with the literature of later years
(with the exception of [10,14,53]).

2. Preliminaries

Sets, strings, and relations. The set of natural numbers is N = {0, 1, 2, . . . }. For m, n ∈ N , we denote the interval {k ∈ N |
m ≤ k ≤ n} by [m, n]. The cardinality or size of a set A is denoted by #(A), and its powerset, i.e., the set of all its subsets,
by 2A . The set of strings over A is denoted by A∗ . It consists of all sequences w = a1 · · ·am with m ∈ N and ai ∈ A for
every i ∈ [1, m]. The length m of w is denoted by |w|. The empty string (of length 0) is denoted by ε. The concatenation
of two strings v and w is denoted by v · w or just v w . Moreover, w0 = ε and wn+1 = w · wn for n ∈N . The composition
of two binary relations R ⊆ A × B and S ⊆ B × C is R ◦ S = {(a, c) | ∃ b ∈ B : (a, b) ∈ R, (b, c) ∈ S}. The inverse of R is
R−1 = {(b, a) | (a, b) ∈ R}, and if A = B then the transitive-reflexive closure of R is R∗ = ⋃

n∈N Rn where R0 = {(a, a) | a ∈ A}
and Rn+1 = R ◦ Rn . The composition of two classes of binary relations R and S is R ◦S = {R ◦ S | R ∈R, S ∈ S}. Moreover,
R1 =R and Rn+1 =R ◦Rn for n ≥ 1.

Trees and forests. An alphabet is a finite set of symbols. Let 	 be an alphabet, or an arbitrary set. Unranked trees and forests
over 	 are recursively defined to be strings over the set 	 ∪ {(,)} consisting of the elements of 	, the left parenthesis, and
the right parenthesis, as follows. If σ ∈ 	 and t1, . . . , tm are unranked trees, with m ∈ N , then their concatenation t1 · · · tm

is a forest, and σ(t1 · · · tm) is an unranked tree. For m = 0, t1 · · · tm is the empty forest ε. For readability we also write the
tree σ(t1 · · · tm) as σ(t1, . . . , tm), and even as σ when m = 0. Obviously, the concatenation of two forests is again a forest.
It should also be noted that every nonempty forest can be written uniquely as σ(f1) f2 where σ is in 	 and f1 and f2 are
forests. The set of forests over 	 is denoted F	 . For an arbitrary set A, disjoint with 	, we denote by F	(A) the set of all
forests f over 	 ∪ A such that every node of f that is labeled by an element of A, is a leaf.

As usual trees and forests are viewed as directed labeled graphs. Here we distinguish between two types of edges:
“vertical” and “horizontal” ones. The root of the tree t = σ(t1, . . . , tm) is labeled by σ . It has vertical edges to the roots of
subtrees t1, . . . , tm , which are the children of the root of t and have child number 1 to m. The root of t is their parent. The
roots of t1, . . . , tm are siblings, also in the case of the forest t1 · · · tm . There is a horizontal edge from each sibling to the next,
i.e., from the root of ti to the root of ti+1 for every i ∈ [1, m − 1]. Thus, the vertical edges represent the usual parent/child
relationship, whereas the horizontal edges represent the linear order between children (and between the roots in a forest),
see Fig. 1.3 For a tree t , its root is denoted by roott , which is given child number 0 for technical convenience. Its set of
nodes is denoted by N(t). For a forest f = t1 · · · tm , the set of nodes N(f) is the disjoint union of the sets N(ti), i ∈ [1, m].
For a node u of a tree t the subtree of t with root u is denoted t|u , and the i-th child of u is denoted ui (and similarly for
a forest f instead of t). The nodes of a tree t correspond one-to-one to the positions of the elements of 	 in the string t ,
i.e., for every σ ∈ 	, each occurrence of σ in t corresponds to a node of t with label σ . Since the positions of string t are

3 In informal pictures the horizontal edges are usually omitted because they are implicit in the left-to-right orientation of the page. Similarly, the arrows
of the vertical edges are omitted because of the top-down orientation of the page.
43

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Fig. 2. Encoding of the forest of Fig. 1 by enc (at the left) and by enc′ (at the right).

naturally ordered from left to right, this induces an order on the nodes of t , which is called pre-order (or document order,
when viewing t as an XML document). For example, the tree σ(τ (α, β), γ)) has five nodes which have the labels σ , τ , α,
β , and γ in pre-order.

A ranked alphabet (or set) 	 has an associated mapping rank	 : 	 →N . The maximal rank of elements of 	 is denoted
mx	 . By 	(m) we denote the elements of 	 with rank m. Ranked trees over 	 are recursively defined as above with the
requirement that m = rank	(σ). The set of ranked trees over 	 is denoted T	 . For an arbitrary set A, disjoint with 	, we
denote by T	(A) the set T	∪A where each element of A has rank 0. We will not consider ranked forests.

Forests over an alphabet 	 can be encoded as binary trees, in the usual way: each node has a label in 	, a “vertical”
pointer to its first child, and a “horizontal” pointer to its next sibling; the pointer is nil if there is no such child or sibling.
Such a binary tree can be modeled as a ranked tree over the ranked alphabet 	 ∪ {e} where every σ ∈ 	 has rank 2
and e is a symbol of rank 0 that represents the empty forest ε (or nil). Formally, the encoding of the empty forest equals
enc(ε) = e, and recursively, the encoding enc(f) of a forest f = σ(f1) f2 equals σ(enc(f1), enc(f2)). Obviously, enc is a
bijection between forests over 	 and ranked trees over 	 ∪ {e}. The decoding which is its inverse will be denoted by dec.
For an example of enc(f) see Fig. 2 at the left.

The disadvantage of this encoding is that the tree enc(f) has more nodes than the forest f , viz. all nodes with label e.
That is inconvenient when comparing the behaviour of tree-walking automata on f and enc(f). Thus, we will also use
an encoding that preserves the number of nodes (and thus cannot encode the empty forest). For this we use the ranked
alphabet 	′ consisting, for every σ ∈ 	, of the symbols σ 11 of rank 2 (for a binary node without nil-pointers), σ 01 and σ 10

of rank 1 (for a binary node with vertical or horizontal nil-pointer, respectively), and σ 00 of rank 0 (for a binary node with
two nil-pointers). The encoding enc′(f) of a nonempty forest f = σ(f1) f2 equals σ 11(enc′(f1), enc′(f2)) or σ 01(enc′(f2))

or σ 10(enc′(f1)) or σ 00, where the first (second) superscript of σ equals 0 if and only if f1 = e (f2 = e). Now, enc′ is a
bijection between nonempty forests over 	 and ranked trees over 	′ . The decoding which is its inverse will be denoted by
dec′ . For an example of enc′(f) see Fig. 2 at the right. From the point of view of graphs, we assume that enc′(f) has the
same nodes as f , i.e., N(enc′(f)) = N(f). The label of a node u of f is changed from σ to σ i j where i = 1 if and only if
u has at least one child, and j = 1 if and only if u has a next sibling. If u has children, then its first child in enc′(f) is its
first child in f , and its second child in enc′(f) is its next sibling (if it has one). If u has no children, then its only child in
enc′(f) is its next sibling (if it has one). Although this encoding is intuitively clear, it is technically less attractive. We will
use enc′ for the input forest of automata and transducers, and enc for the output forest of the transducers.

We assume the reader to be familiar with the notion of a regular tree grammar. It is a context-free grammar G of which
every rule is of the form X0 → σ(X1 · · · Xm) where Xi is a nonterminal and σ is a terminal symbol of rank m. Thus, G
generates a set L(G) of ranked trees, which is called a regular tree language. The class of regular tree languages will be
denoted REGT. We define a regular forest grammar to be a context-free grammar G of which every rule is of the form
X0 → σ(X1)X2 or X → ε, where σ is from an unranked alphabet. It generates a set L(G) of (unranked) forests, which is
called a regular forest language. Obviously, L is a regular forest language if and only if enc(L) is a regular tree language,
and, as one can easily prove, if and only if enc′(L) is a regular tree language. The regular tree/forest grammar is a formal
model of DTD (Document Type Definition) in XML.4

Monadic second-order logic (abbreviated as mso logic) is used to describe properties of forests and trees. It views each
forest or tree as a logical structure that has the set of nodes as domain. As basic properties of a forest over alphabet 	 it
uses the atomic formulas labσ (x), down(x, y), and next(x, y), meaning that node x has label σ ∈ 	, that y is a child of x,
and that y is the next sibling of x, respectively. Thus, down(x, y) and next(x, y) represent the vertical and horizontal edges

4 In the literature regular forest languages are usually defined in a different way, after which it is proved that L is a regular forest language if and only
if enc(L) is a regular tree language, thus showing the equivalence with our definition, see, e.g., [45, Proposition 1].
44

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
of the graph representation of the forest. For a ranked tree over ranked alphabet 	 we could use the same atomic formulas,
but it is customary to replace down(x, y) and next(x, y) by the atomic formulas downi(x, y), for every i ∈ [1, mx], meaning
that y is the i-th child of x. Additionally, mso logic has the atomic formulas x = y and x ∈ X , where X is a set of nodes.
The formulas are built with the usual connectives ¬, ∧, ∨, and →; both node variables x, y, . . . and node-set variables
X, Y , . . . can be quantified with ∃ and ∀. For a forest (or ranked tree) f over 	 and a formula ϕ(x1, . . . , xn) with n free
node variables x1, . . . , xn , we write f |= ϕ(u1, . . . , un) to mean that ϕ holds in f for the nodes u1, . . . , un of f (as values of
the variables x1, . . . , xn respectively).

We will occasionally use the following formulas: root(x) and leaf(x) test whether node x is a root or a leaf, and first(x)
and last(x) test whether x is a first or a last sibling. Also, childi(x) tests whether x is an i-th child, up(x, y) expresses that
y is the parent of x, and stay(x, y) expresses that y equals x. Thus, we define stay(x, y) ≡ x = y and

root(x) ≡ ¬∃z(down(z, x)), leaf(x) ≡ ¬∃z(down(x, z)),

first(x) ≡ ¬∃z(next(z, x)), last(x) ≡ ¬∃z(next(x, z)),

childi(x) ≡ ∃z(downi(z, x)), up(x, y) ≡ down(y, x).

Patterns. Let 	 be a ranked alphabet and n ≥ 0. An n-ary pattern (or n-ary query) over 	 is a set T ⊆ {(t, u1, . . . , un) | t ∈
T	, u1, . . . , un ∈ N(t)}. For n = 0 this is a tree language, for n = 1 it is a site (trees with a distinguished node), for n = 2 it
is a trip [17] (or a binary tree-node relation [5]).

We introduce a new ranked alphabet 	 × {0, 1}n , the rank of (σ , �) equals that of σ in 	. For a tree t over 	 and n
nodes u1, . . . , un we define mark(t, u1, . . . , un) to be the tree over 	 × {0, 1}n that is obtained by adding to the label of
each node u in t a vector � ∈ {0, 1}n such that the i-th component of � equals 1 if and only if u = ui . The n-ary pattern T
is regular if its marked representation is a regular tree language, i.e., mark(T) ∈ REGT.

An mso formula ϕ(x1, . . . , xn) over 	, with n free node variables x1, . . . , xn , defines the n-ary pattern T (ϕ) =
{(t, u1, . . . , un) | t |= ϕ(u1, . . . , un)}. Note that T (ϕ) also depends on the order x1, . . . , xn of the free variables of ϕ . It easily
follows from the result of Doner, Thatcher and Wright [11,54] that a pattern is mso definable if and only if it is regular
(see [5, Lemma 7]).

We will also consider patterns on forests. For an unranked alphabet 	, a (forest) pattern over 	 is a subset of
{(f , u1, . . . , un) | f ∈ F	, u1, . . . , un ∈ N(f)}. As for ranked trees, an mso formula ϕ(x1, . . . , xn) over 	, defines the n-ary
(forest) pattern {(f , u1, . . . , un) | f |= ϕ(u1, . . . , un)}.

3. Automata and transducers

In this section we define tree-walking automata and transducers with pebbles, and discuss some of their properties.

Automata. A tree-walking automaton with nested pebbles (pebble tree automaton for short, abbreviated pta) is a finite state
device with one reading head that walks from node to node over its ranked input tree following the vertical edges in either
direction. Additionally it has a supply of pebbles that can be used to mark the nodes of the tree. The automaton may drop
a pebble on the node currently visited by the reading head, but it may only lift any pebble from the current node if that
pebble was the last one dropped during the computation. Thus, the life times of the pebbles on the tree are nested. Here
we consider two types of pebbles. First there are a finite number of “classical” pebbles, which we here call visible pebbles.
Each of these has a distinct colour, and at most k visible pebbles (each with a different colour) can be present on the input
tree during any computation, where k is fixed. Second there are invisible pebbles. Again, these pebbles have a finite number
of colours (distinct from those of the visible pebbles), but for each colour there is an unlimited supply of pebbles that can
be present on the input tree. Visible pebbles can be observed by the automaton at any moment when it visits the node
where they were dropped. An invisible pebble can only be observed when it was the last pebble dropped on the tree during
the computation.

The possible actions of the automaton are determined by its state, the label of the current node, the child number of the
node, and the set of observable pebbles on the current node, that is, visible pebbles and an invisible pebble when it was the
last pebble dropped on the tree. Unlike the pta from [41], our automata do not branch (i.e., are not alternating).

The pta is specified as a tuple A = (, Q , Q 0, F , C, Cv, C i, R, k), where 	 is a ranked alphabet of input symbols, Q is
a finite set of states, Q 0 ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, Cv and C i are the finite sets
of visible and invisible colours, C = Cv ∪ C i , Cv ∩ C i = ∅, R is a finite set of rules, and k ∈ N . Each rule is of the form
〈q, σ , j, b〉 → 〈q′, α〉 such that q, q′ ∈ Q , σ ∈ 	, j ∈ [0, mx], b ⊆ C with #(b ∩ Cv) ≤ k and #(b ∩ C i) ≤ 1, and α is one of
the following instructions:

stay,

up provided j �= 0,

downi with 1 ≤ i ≤ rank	(σ),

dropc with c ∈ C, and

lift with c ∈ b,
c

45

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
where the first three are move instructions and the last two are pebble instructions. Note that, due to the nested life times of
the pebbles, at most one pebble c in b can actually be lifted; however, the subscript c of liftc often increases the readability
of a pta.

A situation 〈u, π〉 of the pta A on ranked tree t over 	 is given by the position u of the head of A on t , and the
stack π containing the positions and colours of the pebbles on the tree in the order in which they were dropped. Formally,
u ∈ N(t) and π ∈ (N(t) × C)∗ . The last element of π represents the top of the stack. The set of all situations of A on t
is denoted Sit(t), i.e., Sit(t) = N(t) × (N(t) × C)∗; note that it only depends on C . A configuration 〈q, u, π〉 of A on t
additionally contains the state q of A, q ∈ Q . It is final when q ∈ F . An initial configuration is of the form 〈q0, roott , ε〉
where q0 ∈ Q 0, roott is the root of t , and ε is the empty stack. The set of all configurations of A on t is denoted Con(t),
i.e., Con(t) = Q × N(t) × (N(t) × C)∗ .

We now define the computation steps of the pta A, which lead from one configuration to another. For a given input
tree t they form a binary relation on Con(t). A rule 〈q, σ , j, b〉 → 〈q′, α〉 is relevant to every configuration 〈q, u, π〉 with
state q and with a situation 〈u, π〉 that satisfies the tests σ , j, and b, i.e., σ and j are the label and child number of node u,
and b is the set of colours of the observable pebbles dropped on the node u. More precisely, b consists of all c ∈ Cv such that
(u, c) occurs in π , plus c ∈ C i if (u, c) is the topmost (i.e., last) element of π . Application of the rule to such a configuration
possibly leads to a new configuration 〈q′, u′, π ′〉, in which case we write 〈q, u, π〉 ⇒t,A 〈q′, u′, π ′〉. The new state is q′ and
the new situation 〈u′, π ′〉 is obtained from the situation 〈u, π〉 by the instruction α. For the move instructions α = stay,
α = up, and α = downi the pebble stack does not change, i.e., π ′ = π , and the new node u′ equals u, is the parent of u,
or is the i-th child of u, respectively. For the pebble instructions the node does not change, i.e., u′ = u. When α = dropc ,
A drops a pebble with colour c on the current node, thus the node-colour pair (u, c) is pushed onto the pebble stack π , i.e.,
π ′ = π(u, c), unless c is a visible colour and the stack already contains a pebble of that colour or already contains k visible
pebbles, in which case the rule is not applicable.5 When α = liftc , A lifts a pebble with colour c from the current node,
only allowed if the topmost element of the pebble stack is the pair (u, c), which is subsequently popped from the stack, i.e.,
π = π ′(u, c); otherwise this rule is not applicable. We will also allow instructions like liftc ; up with the obvious meaning
(first lift the pebble, then move up). In this way we have defined the binary relation ⇒t,A on Con(t), which represents
the computation steps of M. We will say informally that a computation step of M halts successfully if it leads to a final
configuration.

The tree language L(A) accepted by pta A consists of all ranked trees t over 	 such that A has a successful computation
on t that starts in an initial configuration. Formally, L(A) = {t ∈ T	 | ∃ q0 ∈ Q 0, q∞ ∈ F , 〈u, π〉 ∈ Sit(t) : 〈q0, roott , ε〉 ⇒∗

t,A〈q∞, u, π〉}. Note that pebbles may remain in the final configuration and that the head need not return to the root. Two
pta’s A and B are equivalent if L(A) = L(B).

By vki-pta we denote a pta with last component k, i.e., that uses at most k visible pebbles in its computations, and an
unbounded number of invisible pebbles, and by Vk I-PTA we denote the class of tree languages accepted by vki-pta’s. For
k = 0, an automaton that only uses invisible pebbles, we also use the notation i-pta, and for an automaton that only uses k
visible pebbles we use vk-pta. Moreover, ta is used for a tree-walking automaton without pebbles, i.e., a v0-pta. The lower
case d or d is added when we only consider deterministic automata, which have a unique initial state, no final state in the
left-hand side of a rule, and no two rules with the same left-hand side. Thus we have vki-dpta, Vk I-dPTA, and variants.

Properties of automata. It is natural, and sometimes useful, to extend the vki-pta with the facility to test whether its pebble
stack is nonempty, and if so, to test the colour of the topmost pebble. Thus, we define a pta with stack tests in the same
way as an ordinary pta except that its rules are of the form 〈q, σ , j, b, γ 〉 → 〈q′, α〉 with γ ∈ C ∪ {ε}. Such a rule is relevant
to a configuration 〈q, u, π〉 if, in addition, the pebble stack π is empty if γ = ε, and the topmost pebble of π has colour γ
if γ ∈ C .6 All other definitions are the same. Note that, obviously, we may require for the above rule that γ = c if α = liftc ,
which ensures that relevant rules with a lift-instruction are always applicable.7

It is not difficult to see that these new tests do not extend the expressive power of the pta. Informally we will say that
the vki-pta can perform stack tests.

Lemma 1. Let k ≥ 0. For every vki-pta with stack tests A an equivalent (ordinary) vki-pta A′ can be constructed in polynomial time.
The construction preserves determinism and the absence of invisible pebbles.8

Proof. Let A = (, Q , Q 0, F , C, Cv, C i, R, k). The new automaton A′ stepwise simulates A and, additionally, stores in its
finite state whether or not the pebble stack is nonempty, and if so, what is the colour in C of the topmost pebble. Thus,
Q ′ = Q × (C ∪ {ε}), Q ′

0 = Q 0 × {ε}, and F ′ = F × (C ∪ {ε}). Moreover, the colour sets of A′ are C ′
v = Cv × (C ∪ {ε}) and

C ′
i = C i × (C ∪{ε}). In fact, if the pebble stack of A is π = (u1, c1)(u2, c2) · · · (un, cn), with (un, cn) being the topmost pebble,

then the stack of A′ is π ′ = (u1, (c1, ε))(u2, (c2, c1)) · · · (un, (cn, cn−1)), where ε is viewed as a bottom symbol. Thus, the

5 To be precise, the rule is not applicable if c ∈ Cv, π = (u1, c1) · · · (un, cn), and there exists i ∈ [1, n] such that c = ci , or #({i ∈ [1, n] | ci ∈ Cv}) = k.
6 To be precise, for π = (u1, c1) · · · (un, cn) the requirements are the following: If γ = ε then n = 0, i.e., π = ε. If γ ∈ C then n ≥ 1 and cn = γ .
7 Additionally, we can require the following: If γ = ε then b =∅. If b ∩ Ci = {c} then γ = c.
8 In other words, the statement of the lemma also holds for vk i-dpta, vk-pta and vk-dpta.
46

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
new colour of a pebble contains its old colour together with the old colour of the previously dropped pebble (or ε if there
is none). This allows A′ to update its additional finite state component when A lifts a pebble. More precisely, when A is in
configuration 〈q, u, π〉, the automaton A′ is in configuration 〈(q, γ), u, π ′〉, where γ = cn if n ≥ 1 and γ = ε otherwise.

The rules of A′ are defined as follows. Let 〈q, σ , j, b, γ 〉 → 〈q′, α〉 be a rule of A, and let b′ be (the graph of) a mapping
from b to C ∪ {ε}. If α is a move instruction, then A′ has the rule 〈(q, γ), σ , j, b′〉 → 〈(q′, γ), α〉. If α = dropc , then A′ has
the rule 〈(q, γ), σ , j, b′〉 → 〈(q′, c), drop(c,γ)〉. If α = liftc , γ = c, and (c, γ ′) ∈ b′ , then A′ has the rule 〈(q, γ), σ , j, b′〉 →
〈(q′, γ ′), lift(c,γ ′)〉.

It should be clear that the construction of A′ takes polynomial time. Note that k is fixed and #(b) ≤ k +1 in the left-hand
side of the rule 〈q, σ , j, b, γ 〉 → 〈q′, α〉 of A. �

pta’s with stack tests will only be used in Sections 8 and 15. The next two properties of pta’s will not be used in later
sections, but are meant to clarify some of the details in the semantics of the pta.

A rule of a vki-pta A is progressive if it is applicable to every reachable configuration9 to which it is relevant. The vki-pta

A is progressive if all its rules are progressive. Intuitively this means that A knows that its instructions can always be
executed. Clearly, according to the syntax of a pta, every rule with a move instruction is progressive. The same is true for
rules with a pebble instruction dropc or liftc with c ∈ C i: an invisible pebble can always be dropped and an observable
invisible pebble can always be lifted. Thus, only the dropping and lifting of visible pebbles is problematic. It is easy to see
that, for the vki-pta A′ constructed in the proof of Lemma 1, every rule with a lift-instruction is progressive.

A vki-pta A is counting if Cv = [1, k] and, in each reachable configuration, the colours of the visible pebbles on the
tree are 1, . . . , � for some � ∈ [0, k], in the order in which they were dropped.10 Note that in the literature vk-pta’s are
usually counting. We have chosen to allow arbitrarily many visible colours in a vki-pta because we want to be able to
store information in the pebbles, as in the proof of Lemma 1. It is straightforward to construct an equivalent counting vki-

pta A′ for a given vki-pta A (preserving determinism and the absence of invisible pebbles). The automaton A′ stepwise
simulates A and, additionally, stores in its finite state the colours of the visible pebbles that are dropped on the tree, in the
order in which they were dropped. Thus, the states of A′ are of the form (q, ϕ) where q is a state of A and ϕ is a string
over Cv without repetitions, of length at most k. The state (q, ϕ) is final if q is final. The initial states are (q, ε) where q
is an initial state of A. The rules of A′ are defined as follows. Let 〈q, σ , j, b〉 → 〈q′, α〉 be a rule of A and let (q, ϕ) be
a state of A′ such that every c ∈ b ∩ Cv occurs in ϕ . Moreover, let b′ ⊆ [1, k] ∪ C i be obtained from b by changing every
c ∈ Cv into i, if c is the i-th element of ϕ . If α is a move instruction, or a pebble instruction dropc or liftc with c ∈ C i
then A′ has the rule 〈(q, ϕ), σ , j, b′〉 → 〈(q′, ϕ), α〉. If α = dropc with c ∈ Cv, c does not occur in ϕ , and |ϕ| < k, then A′
has the rule 〈(q, ϕ), σ , j, b′〉 → 〈(q′, ϕc), drop|ϕ|+1〉. Finally, if α = liftc with c ∈ Cv, and ϕ = ϕ′c for some ϕ′ ∈ C∗

v , then A′
has the rule 〈(q, ϕ), σ , j, b′〉 → 〈(q′, ϕ′), lift|ϕ|〉. It should be clear that A′ is counting. Note also that all rules of A′ with a
drop-instruction are progressive. Thus, if we first apply the construction in the proof of Lemma 1 and then the one above,
we obtain an equivalent progressive vki-pta. Obviously, every progressive vki-pta can be turned into an equivalent vk+1i-pta

by simply changing its last component k into k + 1, and hence Vk I-PTA ⊆ Vk+1I-PTA and Vk I-dPTA ⊆ Vk+1I-dPTA.11

Transducers. A tree-walking tree transducer with nested pebbles (abbreviated ptt) is a pta without final states that ad-
ditionally produces an output tree over a ranked alphabet �. Thus, omitting F , it is specified as a tuple M =
(, �, Q , Q 0, C, Cv, C i, R, k), where 	, Q , Q 0, C , Cv, C i , and k are as for the pta. The rules of M in the finite set R are of the
same form as for the pta, except that M additionally has output rules of the form 〈q, σ , j, b〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉)
with δ ∈ �, and q1, . . . , qm ∈ Q , where m is the rank of δ. Intuitively, the output tree is produced recursively. In other words,
in a configuration to which the above output rule is relevant (defined as for the pta) the ptt M outputs δ, and for each
child 〈qi, stay〉 branches into a new process, a copy of itself started in state qi at the current node, retaining the same stack
of pebbles; thus, the stack is copied m times. Note that a relevant output rule is always applicable. As a shortcut we may
replace the stay-instruction in any 〈qi, stay〉 by another move instruction or a pebble instruction, with obvious semantics.

An output form of the ptt M on ranked tree t over 	 is a tree in T�(Con(t)), where Con(t) is defined as for the pta.
Intuitively, such an output form consists on the one hand of �-labeled nodes that were produced by M previously in the
computation, using output rules, and on the other hand of leaves that represent the independent copies of M into which
the computation has branched previously, due to those output rules, where each leaf is labeled by the current configuration
of that copy. Note that Con(t) ⊆ T�(Con(t)), i.e., every configuration of M is an output form.

The computation steps of the ptt M lead from one output form to another. Let s be an output form and let v be
a leaf of s with label 〈q, u, π〉 ∈ Con(t). If 〈q, u, π〉 ⇒t,M 〈q′, u′, π ′〉, where the binary relation ⇒t,M on Con(t) is de-
fined as for the pta (disregarding the output rules of M), then we write s ⇒t,M s′ where s′ is obtained from s by
changing the label of v into 〈q′, u′, π ′〉. Moreover, for every output rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉) that is
relevant to configuration 〈q, u, π〉, we write s ⇒t,M s′ where s′ is obtained from s by replacing the node v by the subtree

9 The configuration 〈q, u, π 〉 on the tree t is reachable if 〈q0, roott , ε〉 ⇒∗
t,A 〈q, u, π 〉 for some q0 ∈ Q 0.

10 To be precise, for π = (u1, c1) · · · (un, cn) we require that there exists � ∈ [0, k] such that (ci1 , . . . , cim) = (1, . . . , �) where {i1, . . . , im} = {i ∈ [1, n] | ci ∈
Cv} and i1 < · · · < im .
11 In fact, these four classes are equal, as will be shown in Theorem 11.
47

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
δ(〈q1, u, π〉, . . . , 〈qm, u, π〉). In the particular case that m = 0, s′ is obtained from s by changing the label of v into δ. In
that case we will say informally that M halts successfully, meaning that the copy of M corresponding to the node v of s
disappears. In this way we have extended ⇒t,M to a binary relation on T�(Con(t)).

The transduction τM realized by M consists of all pairs of trees t over 	 and s over � such that M has a (successful)
computation on t that starts in an initial configuration and ends with s. Formally, we define τM = {(t, s) ∈ T	 × T� | ∃ q0 ∈
Q 0 : 〈q0, roott , ε〉 ⇒∗

t,M s}. Two ptt’s M and N are equivalent if τM = τN .
The domain of M is defined to be the domain of τM , i.e., the tree language L(M) = {t ∈ T	 | ∃ s ∈ T� : (t, s) ∈ τM}.

When M is viewed as a recognizer of its domain, it is actually the same as an alternating pta. Existential states in the
alternation correspond to the nondeterminism of the ptt, universal states correspond to the recursive way in which output
trees are generated. More precisely, an output rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉) corresponds to a universal
state q that requires every state qi to have a successful computation (and the output symbol δ is irrelevant). An ordinary
(non-alternating) pta then corresponds to a ptt for which every output symbol has rank 0; for m = 0 the above output rule
means that the pta halts in a final state. We say that the ptt M is total if L(M) = T	 , i.e., τM(t) �= ∅ for every input tree t .

Similar to the notation Vk I-PTA for tree languages, we use the notation Vk I-PTT for the class of transductions defined
by tree-walking tree transducers with k visible nested pebbles and an unbounded number of invisible pebbles, as well as
the obvious variants Vk-PTT, and I-PTT. Additionally TT denotes the class of transductions realized by tree-walking tree
transducers without pebbles, i.e., V0-PTT. Such a transducer is specified as a tuple M = (, �, Q , Q 0, R), and the left-hand
sides of its rules are written 〈q, σ , j〉, omitting b = ∅. As for pta’s, lower case d is added for deterministic transducers,
which have a unique initial state and no two rules with the same left-hand side. Moreover, lower case td is used for total
deterministic transducers, i.e., transducers that are both total and deterministic. Note that a deterministic ptt realizes a
function, and a total deterministic ptt a total function from T	 to T� .

Properties of transducers. Stack tests are defined for the ptt as for the pta, and Lemma 1 and its proof carry over to ptt’s.
If a given ptt M with stack tests has the output rule 〈q, σ , j, b, γ 〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉), and b′ is (the graph of) a
mapping from b to C ∪{ε}, then the constructed ptt M′ has the rule 〈(q, γ), σ , j, b′〉 → δ(〈(q1, γ), stay〉, . . . , 〈(qm, γ), stay〉).

Progressive ptt’s can be defined as for pta’s, based on the notion of a reachable configuration, cf. footnote 9. An output
form s of the ptt M on the input tree t is reachable if 〈q0, roott , ε〉 ⇒∗

t,M s for some q0 ∈ Q 0. A configuration of M on t is
reachable if it occurs in some reachable output form of M on t . Note that every i-ptt is progressive.

Also, counting ptt’s can be defined as for pta’s. For every vki-ptt M an equivalent counting vki-ptt M′ can be con-
structed, just as for pta’s. If 〈q, σ , j, b, γ 〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉) is an output rule of M, and ϕ and b′ are as in the
proof for pta’s, then M′ has the rule 〈(q, ϕ), σ , j, b′〉 → δ(〈(q1, ϕ), stay〉, . . . , 〈(qm, ϕ), stay〉). Thus, as for pta’s, every vki-ptt

can be turned into an equivalent progressive vki-ptt, with determinism and the absence of invisible pebbles preserved. That
implies that Vk I-PTT ⊆ Vk+1I-PTT and Vk I-dPTT ⊆ Vk+1I-dPTT.

We end this section with an example of an i-ptt.

Example 2. We want to generate itineraries for a trip along the Trans-Siberian Railway, starting in Moscow and ending in
Vladivostok, and optionally visiting some cities along the way. An XML document lists all the stops:

<stop name="Moscow" large="1" initial="1">
...
<stop name="Birobidzhan" large="0">
...
<stop name="Vladivostok" large="1" final="1" />
...
</stop>

...
</stop>

The initial and final stops are marked, and for every stop the large attribute indicates whether or not the stop is in a
large city. We want to generate a list

<result>it-1
<result>it-2

...
<result>it-n

<endofresults />
</result>

...
</result>

</result>

where it-1,it-2,...,it-n are all itineraries (i.e., lists of stops) that satisfy the constraint that one does not visit a small
city twice in a row. An example input XML document, with the corresponding output XML document is given in Tables 1
48

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Table 1
Input.
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="transsiberie.xsl"?>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 2" large="0">

<stop name="Stop 3" large="0">
<stop name="LargeStop 4" large="1">

<stop name="Stop 5" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^5

and 2 (where, e.g., </stop>^3 abbreviates </stop></stop></stop>). A deterministic i-ptt Msib is able to perform this
XML transformation by systematically enumerating all possible lists of stops, marking each stop in the list (except the initial
and final stop) by a pebble. Since the pebbles are invisible, Msib constructs a possible list of stops on the pebble stack in
reverse, so that the stops will appear in the output tree in the correct order.

Since in this example the XML tags are ranked, there is no need for a binary encoding of the XML documents. The
input alphabet 	 of Msib consists of all <stop at> where at is a possible value of the attributes. The rank of <stop at>
is 0 if final="1" and 1 otherwise. The output alphabet � consists of 	, the tag r = <result> of rank 2, and the tag
e = <endofresults> of rank 0. The set of pebble colours is C = C i = {0, 1}, with Cv = ∅. The transducer Msib will not use
the attribute initial, as it can recognize the root by its child number 0. Also, it will disregard the attribute large of the
initial and the final stop, and always consider them as large cities. The set of states of Msib is Q = {qstart, q1, q0, qout, qnext}
with Q 0 = {qstart}.

In the rules below the variables range over the following values: σ0 ∈ 	(0) , σ1 ∈ 	(1) , j, c ∈ {0,1}, and, for i ∈ {0, 1},
λi ∈ {<stop at> ∈ 	 | large="i"}. The i-ptt Msib first walks from Moscow to Vladivostok in state qstart:

〈qstart,σ1, j,∅〉 → 〈qstart,down1〉
〈qstart,σ0,1,∅〉 → 〈q1,up〉

State qc remembers whether the most recently marked city is small or large; when a new city is marked with a pebble, it
gets the colour c. In states q0 and q1 as many cities are marked as possible (in the second rule, c = 1 or i = 1):

〈q0, λ0,1,∅〉 → 〈q0,up〉
〈qc, λi,1,∅〉 → 〈qi,dropc;up〉
〈qc,σ1,0,∅〉 → r(〈qout, stay〉, 〈qnext,down1〉)

In state qout an itinerary is generated as output, while state qnext continues the search for itineraries by unmarking the most
recently marked city:

〈qout,σ1,0,∅〉 → σ1(〈qout,down1〉)
〈qout,σ1,1,∅〉 → 〈qout,down1〉
〈qout,σ1,1, {c}〉 → σ1(〈qout, liftc;down1〉)
〈qout,σ0,1,∅〉 → σ0

〈qnext,σ1,1,∅〉 → 〈qnext,down1〉
〈qnext,σ1,1, {c}〉 → 〈qc, liftc;up〉
〈qnext,σ0,1,∅〉 → e

Note that this XML transformation cannot be realized by a v-ptt, because the height of the output tree is, in general,
exponential in the size of the input tree, whereas it is polynomial for v-ptt’s (cf. [20, Lemma 7]). �
4. Decomposition

In this section we decompose every ptt into a sequence of tt’s, i.e., transducers without pebbles. This is useful as it will
give us information on the domain of a ptt, see Theorem 11, and on the complexity of typechecking the ptt, see Theorem 8.

It is possible to reduce the number of visible pebbles used, by preprocessing the input tree with a total deterministic tt.
This was shown in [20, Lemma 9] for transducers with only visible pebbles. The basic idea of that proof can be extended to
include invisible pebbles.
49

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Table 2
Output.
<result>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 3" large="0">
<stop name="LargeStop 4" large="1">
<stop name="Stop 5" large="0">

<stop name="Vladivostok" large="1" final="1"/>
</stop>^4
<result>
<stop name="Moscow" large="1" initial="1">
<stop name="Stop 2" large="0">
<stop name="LargeStop 4" large="1">

<stop name="Stop 5" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^4
<result>
<stop name="Moscow" large="1" initial="1">
<stop name="LargeStop 4" large="1">

<stop name="Stop 5" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^3
<result>
<stop name="Moscow" large="1" initial="1">

<stop name="Stop 5" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^2
<result>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 3" large="0">
<stop name="LargeStop 4" large="1">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^3
<result>
<stop name="Moscow" large="1" initial="1">
<stop name="Stop 2" large="0">
<stop name="LargeStop 4" large="1">

<stop name="Vladivostok" large="1" final="1"/>
</stop>^3
<result>
<stop name="Moscow" large="1" initial="1">
<stop name="LargeStop 4" large="1">

<stop name="Vladivostok" large="1" final="1"/>
</stop>^2
<result>
<stop name="Moscow" large="1" initial="1">

<stop name="Stop 3" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^2
<result>

<stop name="Moscow" large="1" initial="1">
<stop name="Stop 2" large="0">
<stop name="Vladivostok" large="1" final="1"/>

</stop>^2
<result>
<stop name="Moscow" large="1" initial="1">
<stop name="Vladivostok" large="1" final="1"/>

</stop>
<endofresults/>

</result>
</result>

</result>^8

Lemma 3. Let k ≥ 1. For every vki-ptt M a total deterministic tt N and a vk−1i-ptt M′ can be constructed in polynomial time such
that τN ◦ τM′ = τM . If M is deterministic, then so is M′. Hence, for every k ≥ 1,

VkI-PTT ⊆ tdTT ◦ Vk−1I-PTT and VkI-dPTT ⊆ tdTT ◦ Vk−1I-dPTT.

Proof. Let M = (, �, Q , Q 0, C, Cv, C i, R, k) be a ptt with k visible pebbles. The construction of the tt N and the ptt M′
with k − 1 visible pebbles is a straightforward extension of the one in [14, Theorem 5], which slightly differs from the one
in the proof of [20, Lemma 9], but uses the same basic idea. For completeness sake we repeat a large part of the proof of
[14, Theorem 5], adapted to the current formalism. The simple idea of the proof is to preprocess the input tree t ∈ T	 in
such a way that the dropping and lifting of the first visible pebble can be simulated by walking into and out of specific
areas of the preprocessed input tree pp(t). This preprocessing is independent of the given pebble tree transducer M. More
precisely, pp(t) is obtained from t by attaching to each node u of t , as an additional (last) subtree, a fresh copy of t in
50

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Fig. 3. Output tree pp(t) of the tt N of Lemma 3 for input tree t .

which (the copy of) node u is marked; let us denote this subtree by tu . Thus, if t has n nodes, then pp(t) has n + n2 nodes.
The subtrees tu of pp(t) are the “specific areas” mentioned above. As long as there are no visible pebbles on t , M′ stepwise
simulates M on the original nodes of t , which form the “top level” of pp(t). When M drops the first visible pebble c on
node u, M′ enters tu and walks to the marked node, storing c in its finite state. As long as M keeps pebble c on the tree,
M′ stays in tu , stepwise simulating M on tu rather than t . Since u is marked in tu , M’s pebble c at u is visible to the
transducer M′ , not as a pebble but as a marked node. Thus, during this time, M′ only uses k − 1 visible pebbles. When M
lifts pebble c from u (and hence all visible pebbles are lifted), M′ walks from the copy of u out of tu , back to the original
node u, and continues simulating M on the top level of pp(t) until M again drops a visible pebble. There is one problem:
how does M′ know whether or not pebble c is on top of the stack when M tries to lift it? To solve this problem, M′ uses
an additional special invisible pebble �. It drops pebble � at the copy of u and thus knows that pebble c is at the top of
the stack (for M) when it observes pebble �. Thus, at any moment of time, M′ has the same pebble stack as M, except
that c is replaced by � and, moreover, the (invisible) pebbles below � are on the top level of pp(t), whereas � and the
pebbles above it are on tu .

Unfortunately, this preprocessing cannot be realized by a tt (though it can easily be realized by a v1-ptt). For this reason
we “fold” tu at the node u, such that (the marked copy of) u becomes its root; let us denote the resulting tree by t̂u . Roughly,
t̂u is obtained from tu by inverting the parent-child relationship between the ancestors of u (including u), similarly as in
the tree traversal algorithm sometimes known as “link inversion” [34, p.562]. Appropriate information is added to the node
labels of those ancestors to reflect this inversion. As these changes are local (i.e., each node keeps the same neighbours) and
clearly marked in the tree, M′ can easily reconstruct the unfolded tu , and simulate M as before. Note also that, with this
change of pp(t), dropping or lifting of the first visible pebble can be simulated by M′ in one computation step, because the
marked copy of u is the last child of the original u.

Now a tt N can compute pp(t), as follows.12 It copies t to the output (adding primes to its labels), but when it arrives
at node u it additionally outputs the copy t̂u of t in a side branch of the computation. Copying the descendants of u “down
stream” is an easy recursive task. To invert the parent-child relationship between the nodes on the path from u to roott ,
N uses a single process that walks along the nodes of that path “up stream” to the root, inverting the relationships in
the copy. Copies of other siblings of children on the path are connected as in t , and their descendants are copied “down
stream”. More precisely, if in t the i-th child v of parent w is on the path, then, in the output t̂u , v has an additional (last)
child that corresponds to w , and w has the same children (with their descendants) as in t , except that its i-th child is a
node that is labeled by the bottom symbol ⊥ of rank 0. For the sake of uniformity, roott is also given an additional (last)
child, with label ⊥. Note that the nodes of t correspond one-to-one to the non-bottom nodes of t̂u ; in particular, the path
in t from u to roott corresponds to the path in t̂u from its root to the parent of its rightmost leaf. The bottom nodes of t̂u
will not be visited by M′ .

A picture of pp(t) is given in Fig. 3, where t̂u is drawn for two nodes only. Note that in this picture the root of the copy
of t (which is also the root of pp(t)) is the top of the triangle, but the root of t̂u is u (and, of course, similarly for v). As a
concrete example, consider t = σ(δ(a, b), c) where σ , δ have rank 2 and a, b, c rank 0. We will name the nodes of t by their
labels. Then

pp(t) = σ ′(δ′(a′(t̂a),b′(t̂b), t̂δ), c′(t̂c), t̂σ)

where

t̂a = a0,1(δ1,1(⊥,b,σ1,0(⊥, c,⊥))),

t̂b = b0,2(δ2,1(a,⊥,σ1,0(⊥, c,⊥))),

t̂δ = δ0,1(a,b,σ1,0(⊥, c,⊥)),

t̂c = c0,2(σ2,0(δ(a,b),⊥,⊥)), and

t̂σ = σ0,0(δ(a,b), c,⊥).

12 See also [41, Example 3.7] where t̂u occurs as “a complex rotation of the input tree” t , albeit for leaves u only.
51

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
The subscripted node labels are on the rightmost paths of the t̂u ’s; the subscripts contain “reconstruction” information, to
be explained below. As another example, if t is the monadic tree a(bm(c(dn(e)))) of height m + n + 3, and u is the c-labeled
node, then t̂u = c0,1(s1, s2) with s1 = dn(e) and s2 is the binary tree b1,1(⊥, b1,1(⊥, . . .b1,1(⊥, a1,0(⊥, ⊥)) · · ·)) of height
m + 2. This shows more clearly that t̂u is obtained by “folding”.

We now formally define the deterministic tt N that, for given ranked alphabet 	, realizes the preprocessing pp (called
EncPeb in [20]). The definition is identical to the one in [14, Section 6]. Since N has no pebbles, we abbreviate the
left-hand side 〈q, σ , j, ∅〉 of a rule by 〈q, σ , j〉. To simplify the definition of N we additionally allow output rules of
the form 〈q, σ , j〉 → δ(s1, . . . , sm) where δ is an output symbol of rank m and every si is either the output symbol ⊥
or it is of the form 〈q′, ϕ〉 where ϕ is stay, up, or downi with i ∈ [1, m]. Such a rule should be replaced by the rules
〈q, σ , j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) and 〈p j, σ , j〉 → s j for all j ∈ [1, m], where p1, . . . , pm are new states. Obviously this
replacement can be done in quadratic time.

We introduce the states and rules of N one by one; in what follows σ ranges over 	, with m = rank	(σ), j ranges over
[0, mx], and i over [1, m]. First, N has an “identity” state d that just recursively copies the subtree of the current node
to the output, using the rules 〈d, σ , j〉 → σ(〈d, down1〉, . . . , 〈d, downm〉). Then, N has initial state g that copies the input
tree t to the output (with primed labels) and at each node u of t “generates” a new copy t̂u of the input tree by calling the
state f that computes t̂u by “folding” tu . The rules for g are

〈g,σ , j〉 → σ ′(〈g,down1〉, . . . , 〈g,downm〉, 〈 f , stay〉).
Note that σ ′ has rank m + 1: the root of t̂u is attached to u as its last child. The rules for f are

〈 f ,σ , j〉 → σ0, j(〈d,down1〉, . . . , 〈d,downm〉, ξ j)

where ξ j = 〈 f j, up〉 for j �= 0, and ξ0 = ⊥. The “reconstruction” subscripts of σ0, j mean the following: subscript 0 indicates
that this node is the root of some t̂u , and subscript j is the child number of u in t . Note that σ0, j has rank m + 1: its
last child corresponds to the parent of u in t (viewing ⊥ as the “parent” of roott in t). The tt N walks up along the path
from u to the root of t using “folding” states f i , where the i indicates that in the previous step N was at the i-th child of
the current node. The rules for f i are

〈 f i,σ , j〉 → σi, j(

〈d,down1〉, . . . , 〈d,downi−1〉,
⊥,

〈d,downi+1〉, . . . , 〈d,downm〉,
ξ j)

where ξ j is as above. If a node (in t̂u) with label σi, j corresponds to the node v in t , then the “reconstruction” subscript i
means that its parent corresponds to the i-th child of v in t (and its own i-th child is ⊥), and, as above, “reconstruction”
subscript j is the child number of v . Just as σ0, j , also σi, j has rank m + 1: its last child corresponds to the parent of v in t .
Note that the copy t̂u of the input tree is computed by the states f , f i (for every i) and d, such that f copies node u to
the output and the other states walk from u to every other node v of t and copy v to the output. To be precise, N walks
from u to v along the shortest (undirected) path from u to v , from u up to the least common ancestor of u and v (in the
states f i), and then down to v (in the state d). Arriving in a node v from a neighbour of v , the transducer N branches into
a new process for every other neighbour of v .

This ends the description of the tt N . The output alphabet � of N (which will also be the input alphabet of M′) is the
union of 	, {⊥}, {σ ′ | σ ∈ 	}, and {σi, j | σ ∈ 	, i ∈ [0, rank	(σ)], j ∈ [0, mx]}. Thus, N has O (n2) output symbols, where
n is the size of 	.13 So, since mx� = mx	 + 1, the size of � is polynomial in n. The set of states of N is {d, g, f } ∪ { f i | i ∈
[1, mx]}, with initial state g . Thus, it has O (n) states and O (n3) rules; moreover, each of these rules is of size O (n logn).
Hence, the size of N is polynomial in the size of 	, and it can be constructed in polynomial time.

We now turn to the description of the vk−1i-ptt M′ . It has input alphabet �, output alphabet �, set of states
Q ∪ (Q × Cv), and the same initial states and visible colours as M. Its invisible colour set is C ′

i = C i ∪ {�}. It remains
to discuss the set R ′ of rules of M′ . Let 〈q, σ , j, b〉 → ζ be a rule of M with rank	(σ) = m. We consider four cases,
depending on the variant σ ′ , σ0, j , σi, j with i �= 0, or σ in � of the input symbol σ ∈ 	.

In the first case, we consider the behaviour of M′ in state q on σ ′ , and we assume that b ∩ Cv = ∅. If ζ = 〈q′, dropc〉
with c ∈ Cv, then R ′ contains the rule 〈q, σ ′, j, b〉 → 〈(q′, c), downm+1; drop�〉,14 and otherwise R ′ contains the rule
〈q, σ ′, j,b〉 → ζ . Thus, M′ simulates M on the original (now primed) part of the input tree t in pp(t), until M drops

13 We assume here that the rank of each symbol of the ranked alphabet 	 is specified in unary rather than decimal notation, and thus mx	 ≤ n; cf. the
last paragraph of [14, Section 2].
14 To be completely formal, this rule should be replaced by the two rules 〈q, σ ′, j, b〉 → 〈p, downm+1〉 and 〈p, σ0, j, m + 1, ∅〉 → 〈(q′, c), drop�〉, where p

is a new state.
52

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
a visible pebble c on node u. Then M′ steps to the root of t̂u where it drops the invisible pebble �, and stores c in its
finite state.

Next, we let c ∈ Cv and we consider the behaviour of M′ in state (q, c) on the remaining variants of σ . Let ζc be the
result of changing in ζ every occurrence of a state q′ into (q′, c).

In the second case we assume that c ∈ b (corresponding to the fact that σ0, j labels the marked node of some t̂u). If
b = {c} and ζ = 〈q′, liftc〉, then R ′ contains the rule 〈(q, c), σ0, j, m + 1, {�}〉 → 〈q′, lift�; up〉.15 Thus, when M lifts visible
pebble c from node u, M′ lifts invisible pebble � and steps from the root of t̂u back to node u. Otherwise, R ′ contains the
rules

〈(q, c),σ0, j,m + 1,b \ {c} ∪ {�}〉 → ζ ′
c

(provided b ∩ C i =∅) and

〈(q, c),σ0, j,m + 1,b \ {c}〉 → ζ ′
c,

where ζ ′
c is obtained from ζc by changing up into downm+1. These two rules correspond to whether or not the invisible

pebble � is observable. Note that the child number in pp(t) of a node with label σ0, j is always m + 1 (and the label of its
parent is σ ′).

In the remaining two cases we assume that c /∈ b in the above rule of M. In the third case, we consider σi, j with i �= 0.
Then R ′ contains the rules 〈(q, c), σi, j, j′, b〉 → ζ ′

c for every j′ ∈ [1, mx�], where ζ ′
c is now obtained from ζc by changing

up into downm+1, and downi into up. In the fourth and final case, we consider σ itself (in �). Then R ′ contains the rule
〈(q, c), σ , j, b〉 → ζc . Thus, M′ stepwise simulates M on every t̂u .

This ends the description of the vk−1i-ptt M′ . It should now be clear that τM′ (pp(t)) = τM(t) for every t ∈ T	 , and
hence τN ◦ τM′ = τM . Each rule of M is turned into at most 1 + #(Cv) · (2 + mx	(mx	 + 1)) rules of M′ , of the same
size as that rule (disregarding the space taken by the occurrences of c and m + 1). Thus, M′ can be computed from M in
polynomial time. �

The tree pp(t) that is used in the previous proof consists of two levels of copies of the original input tree t; on the first
level a straightforward copy of t (used until the first visible pebble is dropped) and a second level of copies t̂u (used to
“store” the first visible pebble dropped). It is tempting to add another level, meant as a way to store the next visible pebble
dropped. The problem with this is that it would make the first visible pebble effectively unobservable when the next one is
dropped. The idea can be used for invisible pebbles, for arbitrarily many levels.

Lemma 4. For every i-ptt M a tt N and a tt M′ can be constructed in polynomial time such that τN ◦ τM′ = τM . If M is
deterministic, then so is M′ . Hence, I-PTT ⊆ TT ◦ TT and I-dPTT ⊆ TT ◦ dTT.

Proof. The computation of a ptt M with invisible pebbles on tree t is simulated by a tt M′ (without pebbles) on tree t′ .
The input tree t is preprocessed in a nondeterministic way by a tt N to obtain t′ . The top level of t′ is a copy of t , as
before. On the next level, since the simulating transducer M′ cannot store the colours of all the pebbles in its finite state
(as we did for one colour in the proof of Lemma 3), N does not attach one copy t̂u of t to each node u of t but #(C i) such
copies, one for each pebble colour. In this way, the child number in t′ of the root of t̂u represents the pebble colour. In
fact, in each node u of t the transducer N nondeterministically decides for each pebble colour c whether or not to spawn
a process that copies t into t̂u , and this is a recursive process: in each node in each copy of t it can be decided to spawn
such processes that generate new copies.

In this way a “tree of trees” is constructed. For an “artist impression” of such an output tree t′ , see Fig. 4. The child
number in t′ of the root of each copy t̂u indicates an invisible pebble of colour c placed at node u in the original tree t .
In each copy only one pebble is observable, the one represented by the child number of its root, exactly as the last pebble
dropped in the original computation. In the simulation, moving down or up along the tree of trees corresponds to dropping
and lifting invisible pebbles.

In general there is no bound on the depth of the stack of pebbles during a computation of M. The preprocessor N
nondeterministically constructs t′ . If t′ is not sufficiently deep, the simulating transducer M′ aborts the computation. Con-
versely, for every computation of M a tree t′ of sufficient depth can be constructed nonderministically from t .

We now turn to the formal definitions. Let M = (, �, Q , Q 0, C, Cv, C i, R, 0) be an i-ptt. Without loss of generality we
assume that C = C i and that C = [1, γ] for some γ ∈ N . This choice of C simplifies the representation of colours by child
numbers.

First, we define the nondeterministic tt N that preprocesses the trees over 	. It is a straightforward variant of the
one in the proof of Lemma 3. The output alphabet � of N is now the union of {⊥}, {σ ′ | σ ∈ 	}, and {σ ′

i, j | σ ∈ 	, i ∈

15 Again, to be completely formal, this rule should be replaced by the two rules 〈(q, c), σ0, j, m + 1, {�}〉 → 〈p, lift�〉 and 〈p, σ0, j, m + 1, ∅〉 → 〈q′, up〉,
where p is a new state.
53

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Fig. 4. An output tree t′ of the tt N of Lemma 4 for input tree t .

[0, rank	(σ)], j ∈ [0, mx]} where, for every σ ∈ 	 of rank m, σ ′ has rank m + γ and σ ′
i, j has rank m + γ + 1, because

γ processes are spawned at each node, and each of these processes generates, nondeterministically, either a copy t̂u of t or
the bottom symbol ⊥. The set of states of N is as before, except that the state d is removed (with its rules). In the rules
of N we will use 〈 f , stay〉γ as an abbreviation of the sequence 〈 f , stay〉, . . . , 〈 f , stay〉 of length γ . The rules for the initial
state g are

〈g,σ , j〉 → σ ′(〈g,down1〉, . . . , 〈g,downm〉, 〈 f , stay〉γ).

The rules for f are

〈 f ,σ , j〉 → ⊥
〈 f ,σ , j〉 → σ ′

0, j(〈g,down1〉, . . . , 〈g,downm〉, 〈 f , stay〉γ , ξ j)

where, as before, ξ j = 〈 f j, up〉 for j �= 0, and ξ0 = ⊥. Finally, the rules for f i are

〈 f i,σ , j〉 → σ ′
i, j(

〈g,down1〉, . . . , 〈g,downi−1〉,
⊥,

〈g,downi+1〉, . . . , 〈g,downm〉,
〈 f , stay〉γ ,

ξ j)

where ξ j is as above. This ends the definition of N .
Next, we define the simulating tt M′ . It has input alphabet � (the output alphabet of N), output alphabet �, and the

same set of states and initial states as M. The set R ′ of rules of M′ is defined as follows. Let 〈q, σ , j, b〉 → ζ be a rule
of M with rank	(σ) = m. Note that b is either empty or a singleton. We consider three cases, that describe the behaviour
of M′ on the symbols σ ′ , σ ′

0, j , and σ ′
i, j with i �= 0.

In the first case we assume that b = ∅ (and hence ζ does not contain a lift-instruction). Then R ′ contains the rule
〈q, σ ′, j〉 → ζ ′ where ζ ′ is obtained from ζ by changing dropc into downm+c for every c ∈ C .

In the second case we assume that b = {c} for some c ∈ C . Then R ′ contains the rule 〈q, σ ′
0, j, m + c〉 → ζ ′ where ζ ′ is

now obtained from ζ by changing up into downm+γ +1, liftc into up, and dropd into downm+d for every d ∈ C . Note that
the child number in t′ of a node with label σ ′

0, j is always m + c for some c ∈ C (and the label of its parent is σ ′ or σ ′
i, j for

some i ∈ [0, m]).
In the third case we assume (as in the first case) that b = ∅. Then R ′ contains the rule 〈q, σ ′

i, j, j
′〉 → ζ ′ for every

j′ ∈ [1, mx�], where ζ ′ is now obtained from ζ by changing up into downm+γ +1, downi into up, and dropc into downm+c
for every c ∈ C .

This ends the definition of M′ . It should, again, be clear that for every t ∈ T	 and s ∈ T� , s ∈ τM(t) if and only if there
exists t′ ∈ τN (t) such that s ∈ τM′ (t′). Hence τN ◦ τM′ = τM . It is straightforward to show, as in the proof of Lemma 3,
that N and M′ can be constructed in polynomial time from M. Note that mx� = mx	 + #(C i) + 1 and so the size of � is
polynomial in the size of M. �

Combining the previous two results we can inductively decompose tree transducers with (visible and invisible) pebbles
into tree transducers without pebbles.

Theorem 5. For every k ≥ 0, Vk I-PTT ⊆ TTk+2 . For fixed k, the involved construction takes polynomial time.
54

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Observe that Vk-PTT ⊆ Vk−1I-PTT as the topmost pebble can be replaced by an invisible one, thus Vk -PTT ⊆ TTk+1, which
was proved in [20, Theorem 10], also for the deterministic case.

We do not know whether Theorem 5 is optimal, i.e., whether or not Vk I-PTT is included in TTk+1. The deterministic
version of Theorem 5 (for k �= 0) will be proved in Section 15 (Theorem 55), and we will show that it is optimal (after
Theorem 56).

The nondeterminism of the “preprocessing” transducer N in the proof of Lemma 4 is rather limited. The general form of
the constructed tree is completely determined by the input tree, only the depth of the construction is nondeterministically
chosen. At the same time it remains nondeterministic even when we start with a deterministic ptt with invisible pebbles:
I-dPTT ⊆ TT ◦ dTT. However, we can obtain a deterministic transduction if the number of invisible pebbles used by the
transducer is bounded (over all input trees), cf. the M. Sc. Thesis of the third author [49] (where visible and invisible
pebbles are called global and local pebbles, respectively). In Section 7 we will show that if we start with a deterministic
tree transduction, then the inclusions of Lemma 4 also hold in the other direction (Theorem 17). In Section 15 we will show
that I-dPTT ⊆ dTT3 (Corollary 54).

5. Typechecking

The inverse type inference problem is to construct, for a tree transducer M and a regular tree grammar Gout, a regular tree
grammar G in such that L(G in) = τ−1

M (L(Gout)). The typechecking problem asks, for a tree transducer M and two regular tree
grammars G in and Gout, whether or not τM(L(G in)) ⊆ L(Gout). The inverse type inference problem can be used to solve the
typechecking problem, because τM(L(G in)) ⊆ L(Gout) if and only if L(G in) ∩ τ−1

M (L′
out) = ∅, where L′

out is the complement
of L(Gout).

It was shown in [41] (see also [20, Section 7]) that both problems are solvable for tree-walking tree transducers with
visible pebbles, i.e., for v-ptt’s, and hence in particular for tree-walking tree transducers without pebbles, i.e., for tt’s.16 This
was extended in [14] to compositions of such transducers and, moreover, the time complexity of the involved algorithms
was improved, using a result of [3] for attributed tree transducers.

We define a k-fold exponential function to be a function of the form 2g(n) where g is a (k − 1)-fold exponential function;
a 0-fold exponential function is a polynomial.

Proposition 6. For fixed k ≥ 0, the inverse type inference problem is solvable

(1) for compositions of k tt’s in k-fold exponential time, and
(2) for vk-ptt’s in (k + 1)-fold exponential time.

Proposition 7. For fixed k ≥ 0, the typechecking problem is solvable

(1) for compositions of k tt’s in (k + 1)-fold exponential time, and
(2) for vk-ptt’s in (k + 2)-fold exponential time.

As also observed in [14], one exponential can be taken off the results of Proposition 7 if we assume that Gout is a total
deterministic bottom-up finite-state tree automaton, because that exponential is due to the complementation of L(Gout).

It is immediate from Theorem 5 and Propositions 6(1) and 7(1) that both problems are also solvable for tree-walking
tree transducers with invisible pebbles.

Theorem 8. For fixed k ≥ 0, the inverse type inference problem and the typechecking problem are solvable for vki-ptt’s in (k + 2)-fold
and (k + 3)-fold exponential time, respectively.

The main conclusion from Proposition 7(2) and Theorem 8 is that the complexity of typechecking ptt’s basically depends
on the number of visible pebbles used. Thus we can improve the complexity of the problem by changing visible pebbles
into invisible ones as much as possible, see Section 10.

Note that the solvability of the inverse type inference problem for a tree transducer M means in particular that its do-
main is a regular tree language, taking L(Gout) = T� where � is the output alphabet of M. Thus, it follows from Theorem 8
that the domains of ptt’s are regular, or in other words, that every alternating pta accepts a regular tree language.

Corollary 9. For every ptt M, its domain L(M) is regular.

16 Note however that our definition of inverse type inference differs from the one in [41], where it is required that L(G in) = { s | τM(s) ⊆ L(Gout) }. The
reason is that our definition is more convenient when considering compositions of tree transducers.
55

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
6. Trees, tests and trips

In this section we show that vi-pta’s recognize the regular tree languages, that they compute the mso definable binary
patterns (or trips), and that they can perform mso tests on the observable part of their configuration (which consists of the
position of the head and the positions of the observable pebbles).

For “classical” tree-walking automata with a bounded number of visible pebbles, i.e., for v-pta’s, it was shown in [15,
Section 5] that these automata accept regular tree languages only. However, as proved in [8], they cannot accept all regular
tree languages. One of the main reasons for introducing an unbounded number of invisible pebbles is that they can be used
to recognize every regular tree language. Recall that REGT denotes the class of regular tree languages.

Lemma 10. REGT ⊆ I-dPTA.

Proof. As the regular tree languages are recognized by deterministic bottom-up finite-state tree automata, it suffices to
explain how the computation of such an automaton A can be simulated by a deterministic pta A′ with invisible pebbles.
The computation of A on the input tree can be reconstructed by a post-order evaluation of the tree. At the current node u,
A′ uses an invisible pebble to store the states in which A arrives at the first m children of u, for some m. The colour of
the pebble represents the sequence of states. For each ancestor v of u the pebble stack contains a similar pebble for the
first i − 1 children of v , where vi is the unique child of v that is also an ancestor of u (or u itself). If u has more than
m children, then A′ moves to its (m + 1)-th child and drops a pebble that represents the empty sequence of states of A.
Otherwise, A′ computes the state assumed by A in u based on the states of the children, lifts the pebble at u, and moves
to the parent of u to update its pebble with that state. The post-order evaluation ensures that pebbles are used in a nested
fashion.

Formally, let A = (, P , F , δ) where 	 is a ranked alphabet, P is a finite set of states, F ⊆ P is the set of final states, and
δ is the transition function that assigns a state δ(σ , p1, . . . , pm) ∈ P to every σ ∈ 	 and p1, . . . , pm ∈ P with m = rank	(σ).
As pebble colours the i-pta A′ has all strings in P∗ of length at most mx	 . Its states and rules are introduced one by one as
follows, where σ ranges over 	, j and m range over [0, rank(σ)], and p, p1, . . . , pm range over P . The initial state q0 does
not occur in the right-hand side of any rule. In the initial state, the automaton A′ drops a pebble at the root representing
the empty sequence of states of A, and goes into the main state q◦ . The rule is

ρ1 : 〈q0,σ ,0,∅〉 → 〈q◦,dropε〉.
In state q◦ , A′ consults the pebble to see whether or not all children have been evaluated, and acts accordingly. For
m < rank(σ) it has the rule

ρ2 : 〈q◦,σ , j, {p1 · · · pm}〉 → 〈q◦,downm+1;dropε〉,
which handles the case that the state of A is not yet known for all children of node u. For m = rank(σ) and p =
δ(σ , p1, . . . , pm) it has the rules

ρ3 : 〈q◦,σ , j, {p1 · · · pm}〉 → 〈q̄p, liftp1···pm ;up〉 if j �= 0,

ρ4 : 〈q◦,σ ,0, {p1 · · · pm}〉 → 〈qyes, stay〉 if p ∈ F ,

ρ5 : 〈q◦,σ ,0, {p1 · · · pm}〉 → 〈qno, stay〉 if p /∈ F ,

and for m < rank(σ) it has the rule

ρ6 : 〈q̄p,σ , j, {p1 · · · pm}〉 → 〈q◦, liftp1···pm ;dropp1···pm p〉.
Thus, if the states p1, . . . , pm of A at all the children of node u are known, A′ computes the state p = δ(σ , p1, . . . , pm)

of A at u. If u is not the root of the input tree, then A′ stores p in its own state q̄p , lifts the pebble p1 · · · pm , and moves
up to the parent of u. Since the pebble at the parent is now observable, it can be updated. If u is the root of the input tree,
then A′ knows whether or not A accepts that tree, and correspondingly goes into state qyes or state qno, where qyes is the
unique final state of A′ . Note that there is one pebble left on the root of the tree. �

Adding an infinite supply of invisible pebbles on the other hand does not lead out of the regular tree languages. It is
possible to give a proof of this fact by reducing vki-pta’s to the backtracking pushdown tree automata of [51], but here we
deduce it from the results of the previous section.

Theorem 11. For each k ≥ 0, Vk I-PTA = Vk I-dPTA = REGT.

Proof. By Lemma 10, REGT ⊆ Vk I-dPTA. Conversely, as observed before, a pta A is easily turned into a ptt M that outputs
single node tree δ (with rank(δ) = 0) for trees accepted by A: for every final state q of A add all rules 〈q, σ , j, b〉 → δ. Then
L(A) = L(M), the domain of M, which is regular by Corollary 9. �
56

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Note that an infinite supply of visible pebbles could be used to mark a’s and b’s alternatingly and thus accept the
nonregular language {anbn | n ∈ N} (and similarly {anbncn | n ∈ N}). Note also that the stack of pebbles cannot be replaced
by two independent stacks, one for visible and one for invisible pebbles. Then we could accept {anbn | n ∈N} with just one
visible pebble: drop an invisible pebble on each a, and then use the visible pebble on the b’s to count the number of a’s,
by lifting one invisible pebble (in fact, the unique observable one) for each b.

Recall from Section 2 that an n-ary pattern over a ranked alphabet 	 is a set T ⊆ {(t, u1, . . . , un) | t ∈ T	, u1, . . . , un ∈
N(t)}. Recall also that the pattern T is said to be regular if its marked representation mark(T) ⊆ T	×{0,1}n is a regular tree
language. In fact, T is regular if and only if it is mso definable, which means that there is an mso formula ϕ(x1, . . . , xn)

over 	 such that T = T (ϕ), where T (ϕ) = {(t, u1, . . . , un) | t |= ϕ(u1, . . . , un)}. Recall finally that a unary pattern (n = 1) is
called a site, and a binary pattern (n = 2) is called a trip.

With the help of an unbounded supply of invisible pebbles tree-walking automata can recognize regular tree languages,
Lemma 10. Likewise vni-pta’s can match arbitrary mso definable n-ary patterns ϕ . When n visible pebbles are dropped on a
sequence of n nodes, the invisible pebbles can be used to evaluate the tree, and test whether it belongs to the regular tree
language mark(T (ϕ)). In Section 10 we will consider pattern matching in detail.

Ignoring the visible pebbles, it is also possible to consider just the position of the head, and test whether the input tree
together with that position belongs to a given regular “marked” tree language. We say that a family F of pta’s (or ptt’s) can
perform mso head tests if, for a regular site T over 	, an automaton (or transducer) in F can test whether or not (t, h) ∈ T ,
where t is the input tree and h the position of the head at the moment of the test. Admittedly, this is a very informal
definition. To formalize it we have to define a pta

mso (or a ptt
mso), i.e., a pta (or ptt) with mso head tests, that has rules of

the form 〈q, σ , j, b, T 〉 → ζ where T is a regular site over 	 (specified in some effective way). Such a rule is relevant to a
configuration 〈q, h, π〉 on a tree t if, in addition, (t, h) ∈ T . Since the regular tree languages are closed under complement,
the complement T c of T can be tested in a rule with left-hand side 〈q, σ , j, b, T c〉. Such an automaton (or transducer) is
deterministic if for every two distinct rules 〈q, σ , j, b, T 〉 → ζ and 〈q, σ , j, b, T ′〉 → ζ ′ , the site T ′ is the complement of the
site T . For a family F of pta’s (or ptt’s), such as the vki-pta or vki-dptt or vk-pta, we denote by Fmso the corresponding
family of pta

mso ’s (or ptt
mso ’s). With this definition of pta

mso we can formally define that a family F of pta’s can perform
mso head tests if for every pta

mso in Fmso an equivalent pta in F can be constructed, and similarly for ptt’s.
Obviously, as v-pta’s cannot recognize all regular tree languages, they cannot perform mso head tests either: for any

regular tree language T the set {(t, roott) | t ∈ T } is a regular site.
The next result shows that any vi-pta that uses mso head tests as a built-in feature (i.e., any vi-pta

mso) can be replaced
by an equivalent vi-pta without such tests. The result holds for vi-pta’s with any fixed number of visible pebbles, either
deterministic or nondeterministic, and it also holds for the corresponding vi-ptt’s.

Lemma 12. For each k ≥ 0, the vki-pta can perform mso head tests. The same holds for the vki-dpta, vki-ptt, and vki-dptt.

Proof. Let AT be a deterministic bottom-up finite-state tree automaton recognizing the regular tree language mark(T) over
	 ×{0, 1}, representing the site T , trees with a single marked node. We show how a deterministic i-pta A′

T can test whether
or not the input tree with current head position h is accepted by AT , in a computation starting in configuration 〈q0, h, ε〉
and ending in configuration 〈qyes, h, ε〉 or 〈qno, h, ε〉, where q0 is the initial state and {qyes, qno} the set of final states of A′

T .
Moreover, it starts the computation by dropping a pebble on h, and it keeps a pebble on h until the final computation step.
It should be obvious that this i-pta A′

T can be used as a subroutine by any vki-pta or vki-ptt A, starting in configuration
〈(q̃, q0), h, π〉 and ending in configuration 〈(q̃, qyes), h, π〉 or 〈(q̃, qno), h, π〉, for every state q̃ and pebble stack π of A. Just
replace each rule 〈q, σ , j, b〉 → 〈q′, α〉 of A′

T by all possible rules 〈(q̃, q), σ , j, b ∪b′〉 → 〈(q̃, q′), α〉 where b′ is a set of visible
pebble colours of A (except that in the first rule of A′

T , which drops a pebble on h, the set b′ possibly contains an invisible
pebble colour of A).

The post-order evaluation of Lemma 10 does not work here without precautions. If we mark node h with an invisible
pebble the pebble becomes unobservable during the evaluation. In this way we cannot take the special “marked” position
of h into account.17 Instead, we first evaluate the subtree rooted at h, and subsequently the subtrees rooted at the ancestors
of h, moving along the path from h to the root of the input tree. At the start of the evaluation of a subtree, we “paint” its
root u by adding a special colour to the pebble on u, and preserving that information when the pebble is updated. In this
way it is always clear when the painted node is visited. We paint node h with the special additional colour � and use the
evaluation process of Lemma 10 to compute the state of AT at h, viewing the label σ of each node as (σ , 0) except for the
label σ of h which is treated as (σ , 1). We paint each ancestor u of h with an additional colour (j, p) which indicates the
child number j of the previous ancestor of h and the state p at which AT arrives at that child of u (with h as a marked
node). Then we use, again, the evaluation process of Lemma 10 to compute the state of AT at u (with every σ viewed as
(σ , 0)), except that the information in the pebble (j, p) is used for the state p of the j-th child of u, which is the unique
child that has h as a descendant. Repeating this process for each ancestor, we eventually reach the root of the tree, and
know the outcome of the test. Then we return to the original position h picking up the pebbles left on the path from that
position to the root.

17 Marking h with a visible pebble would easily work, showing that vi-pta’s can perform mso head tests.
57

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Formally, let AT = (× {0, 1}, P , F , δ). For convenience we will identify the symbols (σ , 0) and σ . The i-pta A′
T is

an extension of the i-pta A′ in the proof of Lemma 10. It has the additional states q↓yes and q↓no, and in addition to the
pebble colours p1 · · · pm of A′ it has the pebble colours (μ, p1 · · · pm) where either μ = � or μ = (i, r) for some i ∈ [1, mx]
and r ∈ P . The additional pebbles are used to “paint” h (with μ = �) and the ancestors of h (with some μ = (i, r)). The
automaton A′

T has all the rules of A′ , except that rules ρ4 and ρ5 will become superfluous, and rule ρ1 is replaced by the
rule

ρ ′
1 : 〈q0,σ , j,∅〉 → 〈q◦,drop(�,ε)〉.

Thus, A′
T starts by evaluating the subtree rooted at h, with h as marked node. For m < rank(σ) and every μ as above,

except when μ = (m + 1, r) for some r ∈ P , A′
T has the rules

ρ
μ
2 : 〈q◦,σ , j, {(μ, p1 · · · pm)}〉 → 〈q◦,downm+1;dropε〉

ρ
μ
6 : 〈q̄p,σ , j, {(μ, p1 · · · pm)}〉 → 〈q◦, lift(μ,p1···pm);drop(μ,p1···pm p)〉

which intuitively means that the pebble (μ, p1 · · · pm) is treated in the same way as p1 · · · pm when not all children of the
current node have been evaluated: A′

T moves to the (m + 1)-th child and calls A′ , and when A′ returns with the state p,
A′

T adds p to the sequence of states in the pebble. However, in the exceptional case where m < rank(σ) and μ = (m + 1, r),
A′

T has the rule

ρ
μ
2,6 : 〈q◦,σ , j, {(μ, p1 · · · pm)}〉 → 〈q◦, lift(μ,p1···pm);drop(μ,p1···pmr)〉

which means that for the (m + 1)-th child A′
T does not call A′ but uses the state r that was previously computed and

stored in μ.
The remaining rules of A′

T handle the situations that A′
T has just evaluated the subtrees rooted at the children of h or

of one of the ancestors u of h, in state q◦ . The automaton A′
T computes the state p of AT at the marked node h or the

unmarked node u, and drops the pebble ((j, p), ε) at its parent v , where j is the child number of h or u, thus indicating
that the subtree rooted at the j-th child of v (with h as a marked node) evaluates to p. Then A′

T evaluates the subtree
rooted at v .

For m = rank(σ) and every μ as above, A′
T has the rules

ρ
μ
3 : 〈q◦,σ , j, {(μ, p1 · · · pm)}〉 → 〈q◦,up;drop((j,p),ε)〉 if j �= 0,

ρ
μ
4 : 〈q◦,σ ,0, {(μ, p1 · · · pm)}〉 → 〈q↓yes, stay〉 if p ∈ F ,

ρ
μ
5 : 〈q◦,σ ,0, {(μ, p1 · · · pm)}〉 → 〈q↓no, stay〉 if p /∈ F ,

where p = δ((σ , 1), p1, . . . , pm) if μ = � and p = δ(σ , p1, . . . , pm) otherwise.
When A′

T arrives at the root of the input tree, it knows whether or not AT accepts that tree (with h as a marked node),
and moves down to h. For the outcome x ∈ {yes, no} the rules are

〈q↓x,σ , j, {((i, r), p1 · · · pm)}〉 → 〈q↓x, lift((i,r),p1···pm);downi〉
〈q↓x,σ , j, {(�, p1 · · · pm)}〉 → 〈qx, lift(�,p1···pm)〉.

This ends the description of A′
T . �

This result can easily be extended, using the same proof technique: pta’s and ptt’s can test their visible configuration, the
position of the head together with the positions and colours of the visible pebbles. Later we will show the more complicated
result that pta’s and ptt’s can even test their observable configuration, i.e., the visible configuration plus the topmost pebble
(Theorem 16).

Let C be the set of colours of a pta or ptt. To represent the visible and observable configurations, we introduce a new
ranked alphabet 	 × 2C , such that the rank of (σ , b) equals that of σ in 	. A tree over 	 × 2C is a “coloured tree”. For
each pebble stack π on a tree t over 	 we define two coloured trees. The visible configuration tree vis(t, π) is obtained by
adding to the label of each node u of t the set b ⊆ C such that b contains c if and only if (u, c) occurs in π and c ∈ Cv.
Similarly for obs(t, π), the observable configuration tree, b contains c if and only if (u, c) occurs in π and c is observable
(i.e., c ∈ Cv or (u, c) is the top element of π). Note that as long as a pta does not change its pebble stack by a drop- or
lift-instruction, it behaves just as a ta on obs(t, π).

We say that a family F of pta’s (or ptt’s) can perform mso tests on the visible configuration if, for a regular site T over
	 × 2C , an automaton (or transducer) in F can test whether or not (vis(t, π), h) ∈ T , where t is the input tree, π the
current pebble stack, and h the current position of the head. A similar definition can be given for mso tests on the observable
configuration. These informal definitions could be formalized in a way explained for mso head tests before Lemma 12.

We now show that the vi-pta and vi-ptt can perform mso tests on the visible configuration. Note that for a regular
site T over 	 × 2C , mark(T) is a regular tree language over 	 × 2C × {0, 1}.
58

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Lemma 13. For each k ≥ 0, the vki-pta and vki-dpta can perform mso tests on the visible configuration. The same holds for the vki-ptt
and vki-dptt.

Proof. As in the proof of Lemma 12, let AT be a deterministic bottom-up finite-state tree automaton recognizing the
regular tree language mark(T) over 	 × 2C × {0, 1}, representing the site T , coloured trees with a single marked node.
As observed in the first paragraph of that proof the i-ptt A′

T (of that proof) can be turned into a subroutine for any vki-

pta or vki-ptt A with visible colour set Cv by replacing each rule 〈q, σ , j, b〉 → 〈q′, α〉 of A′
T (except ρ ′

1) by all possible
rules 〈(q̃, q), σ , j, b ∪ b′〉 → 〈(q̃, q′), α〉 with b′ ⊆ Cv. This subroutine can easily be turned into one that tests whether or
not (vis(t, π), h) ∈ T as follows. For the rules corresponding in this way to ρ3, ρ4, ρ5 (in the proof of Lemma 10), change
p = δ(σ , p1, . . . , pm) into p = δ((σ , b′, 0), p1, . . . , pm). Similarly, for ρμ

3 , ρμ
4 , ρμ

5 change p = δ((σ , 1), p1, . . . , pm) into p =
δ((σ , b′, 1), p1, . . . , pm) and, again, p = δ(σ , p1, . . . , pm) into p = δ((σ , b′, 0), p1, . . . , pm). �

We now turn to the pta as a navigational device: the trip T (A) computed by a pta A consists of all triples (t, u, v)

such that A, on input tree t , started at node u in an initial state without pebbles on the tree, walks to node v , and
halts in a final state (possibly leaving pebbles on the tree). Formally, T (A) = {(t, u, v) ∈ T	 × N(t) × N(t) | ∃ q0 ∈ Q 0, q∞ ∈
F , π ∈ (N(t) × C)∗ : 〈q0, u, ε〉 ⇒∗

A 〈q∞, v, π〉}. Two pta’s A and B are trip-equivalent if T (A) = T (B). Since it is clear that
L(A) = {t ∈ T	 | ∃ u ∈ N(t) : (t, roott , u) ∈ T (A)}, trip-equivalence implies (language-)equivalence. A trip T is functional if, for
every t , {(u, v) | (t, u, v) ∈ T } is a function. Note that the trip computed by a deterministic pta is functional.

It is straightforward to check that Lemma 1 also holds for the pta as navigational device, replacing equivalence by trip-
equivalence. Thus, vki-pta’s can perform stack tests also when computing a trip. Similarly, they can perform the mso tests
discussed in Lemmas 12 and 13, and to be discussed in Theorem 16.

In [5, Theorem 8] it is shown that every mso definable trip (tree-node relation) can be computed by a ta
mso , i.e., a tree-

walking automaton with mso head tests (and vice versa). Moreover, by (the corrected version of) [5, Theorem 9], if the trip
is functional, then the automaton is deterministic. We will also use the fact that, according to the proof of [5, Theorem 8],
the mso definable trips can be computed in a special way.

Proposition 14. Every mso definable trip can be computed by a tree-walking automaton with mso head tests that has the following
two properties:

(1) it never walks along the same edge twice (in either direction), and
(2) it visits each node at most twice.

If the trip is functional, then the automaton is deterministic.

The first property means that, when walking from a node u to a node v , the automaton always takes the shortest
(undirected) path from u to v , i.e., the path that leads from u up to the least ancestor of u and v , and then down to v . The
second property means that the automaton does not execute two consecutive stay-instructions.

The next result provides a characterization of the mso definable trips by pebble automata that is more elegant than the
one in [17], which uses so-called marble/pebble automata, a restricted kind of v1i-pta (marbles are invisible pebbles only
dropped on the path from the root to the current position of the head; a single visible pebble may only be dropped and
picked up on a tree without marbles).

Theorem 15. For each k ≥ 0, the trips computed by vki-pta’s are exactly the mso definable trips. Similarly for vki-dpta’s and functional
trips.

Proof. Consider a trip T computed by vki-pta A. Thus, for any (t, u, v) in T , starting at node u of input tree t , A walks to
node v and halts. Then mark(T) can be recognized by another vki-pta as follows. First it searches (deterministically) for the
marked starting node u, then it simulates A, and when A halts in a final state, verifies that the marked node v is reached.
By Theorem 11 this tree language is regular and hence T is mso definable.

By Proposition 14 every mso definable trip can be computed by a tree-walking automaton B with mso head tests. Since
(as observed above) Lemma 12 also holds for the pta as a navigational device, it can therefore be computed by an i-pta B′ .
Moreover, if the trip is functional, then the automata B and B′ are deterministic. �

Note that the automaton B′ in the above proof always removes all its pebbles before halting. Thus, that requirement
could be added to the definition of the trip computed by a vki-pta (implying that not every vki-pta computes a trip). This
conforms to the idea that one should not leave garbage after a picknick.

Using the above result, or rather Proposition 14, we are now able to show that the pta and ptt can perform mso tests on
the observable configuration, i.e., they can evaluate mso formulas ϕ(x) on the observable configuration tree obs(t, π) with
the variable x assigned to the position of the reading head.
59

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Theorem 16. For each k ≥ 0, the vki-pta and vki-dpta can perform mso tests on the observable configuration. The same holds for the
vki-ptt and vki-dptt.

Proof. Let T be a regular site over 	 × 2C , and let A be a vki-pta that uses T as a test to find out whether or not
(obs(t, π), h) ∈ T . Our aim is to construct a trip-equivalent vki-pta A′ that does not use mso tests on the observable
configuration. The proof is exactly the same for the case where A and A′ are vki-ptt (with equivalence instead of trip-
equivalence).

Essentially, A′ simulates A. When A uses the test T , there are two cases. In the first case, either the pebble stack
of A is empty or the colour of the topmost pebble of A is visible. Then the observable configuration equals the visible
configuration, and so A′ can use the test T too, by Lemma 13. The remaining, difficult case is that the colour d of the
topmost pebble of A is invisible. To implement the test T in this case it seems that A′ cannot use any additional invisible
pebbles (as in the proof of Lemma 13), because they make pebble d unobservable. However, this is not a problem as long
as the additional pebbles carry sufficient information about the position u of pebble d. The solution is to view T as a trip
from u to h (the position of the head), and to keep track of an automaton Bd that computes that trip. Although Bd is
nondeterministic, it is straightforward for A′ to employ the usual subset construction for finite-state automata.

For every d ∈ C i , let Td be the trip over 	 × 2C defined by Td = {(s, u, h) | (s′, h) ∈ T }, where s′ is obtained from s
by changing the label (σ , b) of u into (σ , b ∪ {d}). Then (obs(t, π), h) ∈ T if and only if (vis(t, π), u, h) ∈ Td , if (d, u) is
the topmost element of π . It should be clear from the regularity of T that Td is a regular trip. Hence, by Proposition 14,
there is a ta with mso head tests Bd that computes Td and that has the special properties mentioned there. Therefore (see
the paragraph after Proposition 14), to keep track of the possible computations of Bd , the automaton A′ uses additional
invisible pebbles to cover the shortest (undirected) path from u to h. These pebbles will be called beads to distinguish
them from A’s original pebbles. Each bead carries state information on computations of Bd that start at position u (in
an initial state) and end at position h. More precisely, each bead is a triple (S, δ, d) where S is a set of states of Bd and
δ ∈ {up, stay} ∪ {downi | i ∈ [1, mx]}. There is one such bead (S, δ, d) on every node v on the path from u to h (including u
and h) where S is the set of states p of Bd such that Bd has a computation on vis(t, π) starting at u in an initial state and
ending at v in state p. Moreover, δ indicates the node w just before v on the path, which is the parent or i-th child of v if
δ is up or downi , respectively, and which is nonexistent when v = u, if δ = stay. The bead at v is on top of the bead at w
in the pebble stack of A′ . Thus, the bead at h is always on the top of the stack of A′ and hence is always observable.

The automaton A′ can still simulate A because if the bead (S, δ, d) is at head position h, then the invisible pebble d is
observable at h by A if and only if δ = stay. If A lifts d, then A′ lifts both (S, stay, d) and d. If A drops another pebble
d′ at h, then so does A′ (and starts a new chain of beads on top of that pebble if d′ is invisible). When pebble d′ is lifted
again, the beads for pebble d are still available and can be used as before.

Now, suppose that A uses the test T at position h. If A′ does not see a bead at position h, then it uses T as a test on
the visible configuration. If A′ sees a bead (S, δ, d) at h, then A′ just checks whether or not S contains a final state of Bd ,
i.e., whether or not (vis(t, π), u, h) ∈ Td .

It remains to show how A′ computes the beads. The path of beads is initialized by A′ when A drops invisible pebble d.
Then A′ also drops pebble d, computes the relevant set S of states of Bd , and drops bead (S, stay, d). The set S contains
all initial states of Bd , plus all states that Bd can reach from an initial state by applying one relevant rule with a stay-
instruction (cf. the second property in Proposition 14). To find the latter states, A′ just simulates all those rules. Note that
the mso head tests of Bd on vis(t, π) are mso tests on the visible configuration of A′ . That is because during the simulation
of A by A′ the visible configuration vis(t, π ′) of A′ equals the visible configuration vis(t, π) of A: the pebble stack π of A
is obtained from the corresponding pebble stack π ′ of A′ by removing all (invisible) beads.

The path of beads is updated as follows. If we backtrack on the path from u to h, i.e., the current bead is (S, δ, d)

with δ �= stay and we move in the direction δ, we just lift the current bead before moving. If we move away from u, we
must compute new bead information. Suppose the current bead on h is (S, up, d) and we move down to the i-th child hi
of h. Then the bead at hi is (S ′, up, d) where S ′ can be computed in a similar way as the set S above: A′ simulates all
computations of Bd that start at h in a state of S and end at hi (and note that such a computation consists of one step,
possibly followed by another step with a stay-instruction). Now suppose that the current bead is (S, downi, d), which means
that u is a descendant of h. If we move up to the parent v of h, then the new bead is (S ′, down j, d) where j is the child
number of h. If we move down to a child v of h with child number �= i, then the new bead is (S ′, up, d). In each of these
cases S ′ can be computed as before, by simulating the computations of Bd from h to v .

In general, A can of course use several regular sites T1, . . . , Tn as tests on the observable configuration. It should be
obvious how to extend the proof to handle that. The beads are then of the form (S1, . . . , Sn, δ, d) where Si is a set of states
of a ta with mso head tests Bid that computes the trip Tid . To test Ti in the presence of such a bead, A′ just checks whether
or not Si contains a final state of Bid . �
7. The power of the I-PTT

In this section we discuss some applications of the fact that the i-ptt can perform mso head tests (Lemma 12). We prove
that it can simulate the composition of two tt’s of which the first is deterministic (cf. Lemma 4), and that it can simulate
the bottom-up tree transducer.
60

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Composition of TT’s. We now prove that the inclusions of Lemma 4 also hold in the other direction, provided that we start
with a deterministic tt.

Theorem 17. dTT ◦ dTT ⊆ I-dPTT and dTT ◦ TT ⊆ I-PTT.

Proof. Consider two deterministic tt’s M1 and M2. Assume that input tree t is translated into tree s by transducer M1.
We will simulate the computation of M2 on s directly on t using a ptt M with invisible pebbles. Any action taken by
M2 on node v of tree s will be simulated by M on the node u of t that was the position of M1 when it generated v .
This means that if M2 moves down in the tree s to one of the children of v , the computation of M1 is simulated until
it generates that child. On the other hand, if M2 moves up in the tree s to the parent of v , it is necessary to backtrack
on the computation of M1, back to the moment that parent was generated. In this way, tree s is never fully reconstructed
as a whole, but at every moment M has access to a single node of s. The necessary node, the current node of M2, is
continuously updated by moving back and forth along the computation of M1 on t .

Moving forward on the computation of M1 is straightforward. To be able to retrace, M uses its pebbles to record the
output-generating steps of the computation of M1 on t . Each output rule of M1 is represented by a pebble colour, and is
put on the node u of t where it was applied. The pebble colour also codes the child number of the generated node v in s.
Thus the pebble stack represents a (shortest) path in s from the root to v . For each node on that path the stack contains a
pebble with the rule of M1 used to generate that node and with its child number, from bottom to top.

Note that the determinism of M1 is an essential ingredient for this construction. Simulating M2, walking along the
virtual tree s, one has to ensure that each time a node v is revisited, the same rule of M1 is applied to u.

The above intuitive description assumes that the input tree t is in the domain L(M1) of M1. In fact, it suffices to
construct an i-ptt M such that τM(t) = τM2 (τM1 (t)) for every such t , because M can then easily be adapted to start
with an mso head test verifying that the input tree is in L(M1), which is regular by Corollary 9.

Let us now give the formal definitions. Let M1 = (, �, P , {p0}, R1) be a deterministic tt and let M2 = (�, �, Q , Q 0, R2)

be an arbitrary tt. To define the i-ptt M it is convenient to extend the definition of an i-ptt with a new type of instruction:
we allow the right-hand side of a rule to be of the form 〈q′, to-top〉, which when applied to a configuration 〈q, u, π〉 leads
to the next configuration 〈q′, v, π〉 where v is the node in the topmost element of π . Obviously this does not extend the
expressive power of the i-ptt: it is straightforward to write a subroutine that searches for the (unique observable) pebble
on the tree, by first walking to the root and then executing a depth-first search of the tree until a pebble is observed.

The i-ptt M has input alphabet 	 and output alphabet �. Its set C i of pebble colours consists of all pairs (ρ, i) where
ρ is an output rule of M1, i.e., a rule of the form 〈p, σ , j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) with p, p1, . . . , pm ∈ P , and i is a
child number of �, i.e., i ∈ [0, mx�]. The set of states of M is defined to be Q ∪ (P × [0, mx�] × Q) and the set of initial
states is {p0} × {0} × Q 0. A state q ∈ Q is used by M when simulating a computation step of M2, and a state (p, i, q) is
used by M when simulating the computation of M1 that generates the i-th child of the current node of M2 (keeping the
state q of M2 in memory). Initially, M simulates M1 in order to generate the root of its output tree. The rules of M are
defined as follows.

First we define the rules that simulate M1. Let ρ : 〈p, σ , j〉 → ζ be a rule in R1. If ζ = 〈p′, α〉 and α is a move
instruction, then M has the rules 〈(p, i, q), σ , j, b〉 → 〈(p′, i, q), α〉 for every i ∈ [0, mx�], q ∈ Q , and b ⊆ C i with #(b) ≤ 1.
If ρ is an output rule with ζ = δ(〈p1, stay〉, . . . , 〈pm, stay〉), then M has the rules 〈(p, i, q), σ , j, b〉 → 〈q, drop(ρ,i)〉 for every
i, q, b as above. Thus, M simulates M1 until M1 generates an output node, drops the corresponding pebble, and continues
simulating M2.

Second we define the rules that simulate M2. Let 〈q, δ, i〉 → ζ be a rule in R2 and let ρ : 〈p, σ , j〉 → δ(〈p1, stay〉, . . . ,
〈pm, stay〉) be an output rule in R1 (with the same δ). Then M has the rule 〈q, σ , j, {(ρ, i)}〉 → ζ ′ where ζ ′ is defined as
follows. If ζ = 〈q′, down�〉, then ζ ′ = 〈(p�, �, q′), stay〉. If ζ = 〈q′, up〉, then ζ ′ = 〈q′, lift(ρ,i); to-top〉. Otherwise, ζ ′ = ζ . Thus,
M simulates every output rule or stay rule of M2 without changing its current node and current pebble stack, because the
current node of M2 stays the same. To simulate a down�-instruction of M2, M starts simulating M1 in state p� with the
child number � of the next node of M2. Finally, M simulates an up-instruction of M2 by lifting its topmost pebble and
walking to the new topmost pebble, where it continues the simulation of M2. �

Taking Theorem 17 and Lemma 4 together, we obtain that dTT◦dTT ⊆ I-dPTT ⊆ I-PTT ⊆ TT◦TT. It is open whether or not
the first and last inclusions are proper. A way to express I-dPTT and I-PTT in terms of tree-walking tree transducers (without
pebbles) would be to allow those transducers to have infinite input and output trees. Let us denote by dTT∞ the class of
transductions realized by deterministic tt’s that have finite input trees but can output infinite trees. As a particular example,
the tt N in the proof of Lemma 4 can be turned into such a deterministic tt N∞ by removing all rules 〈 f , σ , j〉 → ⊥. This
N∞ preprocesses every input tree t into a unique “tree of trees” t∞ consisting of top level t and infinitely many levels of
copies t̂u of t . Moreover, let us denote by ∞TT the class of transductions realized by tt’s that output finite trees but can
walk on infinite input trees, and similarly for ∞dTT. It should be clear that the tt M′ in the proof of Lemma 4 can also be
viewed as working on input tree t∞ rather than a nondeterministically generated t′ (and thus never aborts its simulation
of M). It should also be clear that the proof of Theorem 17 still works when M1 produces an infinite output tree as input
61

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
tree for M2.18 Taking these results together, we obtain that I-dPTT = dTT∞ ◦ ∞dTT and I-PTT = dTT∞ ◦ ∞TT. The formal
definitions are left to the reader. Other characterizations of I-dPTT will be shown in Section 15 (Theorem 53), where we
also show that I-dPTT ⊆ dTT3 (Corollary 54).

Bottom-up tree transducers. The classical top-down and bottom-up tree transducers are compared to the v-ptt at the end
of [41, Section 3.1]. Obviously, tt’s generalize top-down tree transducers. In fact, the latter correspond to tt’s that do not
use the move instructions up and stay. Moreover, the classical top-down tree transducers with regular look-ahead can be
simulated by tt’s with mso head tests, and hence by i-ptt’s. In general, bottom-up tree transducers cannot be simulated by
v-ptt’s, because otherwise every regular tree language could be accepted by a v-pta (see below for the details), which is
false as proved in [8]. We will show that every bottom-up tree transducer can be simulated by an i-ptt. This will not be
used in the following sections.

A bottom-up tree transducer is a tuple M = (, �, P , F , R) where 	 and � are ranked alphabets, P is a finite set of
states with a subset F of final states, and R is a finite set of rules of the form σ(p1(x1), . . . , pm(xm)) → p(ζ) such that
m ∈ N , σ ∈ 	(m) , p1, . . . , pm, p ∈ P and ζ ∈ T�({x1, . . . , xm}). For p ∈ P , the sets τp ⊆ T	 × T� are defined inductively as
follows: the pair (σ (t1, . . . , tm), s) is in τp if there is a rule as above and there are pairs (ti, si) ∈ τpi for all i ∈ [1, m] such
that s = ζ [s1, . . . , sm], which is the result of substituting si for every occurrence of xi in ζ . The transduction τM realized
by M is the union of all τp with p ∈ F . The transducer M is deterministic if it does not have two rules with the same
left-hand side. For more information see, e.g., [29, Chapter IV].

For every regular tree language L there is a deterministic bottom-up finite-state tree automaton A = (, P , F , δ) (see the
proof of Lemma 10) that recognizes L and hence there is a deterministic bottom-up tree transducer M that realizes the
transduction τL = {(t, 1) | t ∈ L} ∪ {(t, 0) | t /∈ L}. In fact, M = (, {0, 1}, P , F , R) where 0 and 1 have rank 0 and R is the set
of all rules σ(p1(x1), . . . , pm(xm)) → p(i) such that δ(σ , p1, . . . , pm) = p and i = 1 if p ∈ F , i = 0 otherwise. A v-ptt that
computes τL can be turned into a v-pta that accepts L by removing every output rule 〈q, σ , j, b〉 → 0 and changing every
output rule 〈q, σ , j, b〉 → 1 into 〈q, σ , j, b〉 → 〈qfin, stay〉 where qfin is the final state.

Let B (dB) denote the class of transductions realized by (deterministic) bottom-up tree transducers.

Theorem 18. B ⊆ I-PTT and dB ⊆ I-dPTT.

Proof. Let M = (, �, P , F , R) be a bottom-up tree transducer. Intuitively, for a given input tree t , the transducer M visits
each node u of t exactly once. It arrives at the children of u in certain states p1, . . . , pm with certain output trees s1, . . . , sm ,
and applies a rule σ(p1(x1), . . . , pm(xm)) → p(ζ) where σ is the label of u. Thus, it arrives at u in state p with output
ζ [s1, . . . , sm].

We construct an i-ptt M′ with mso head tests such that τM′ = τM (see Lemma 12). The transducer M′ uses the rules
of M as pebble colours. The behaviour of M′ on a given input tree t is divided into two phases. In the first phase M′
walks through t and (nondeterministically) drops one pebble c on each node u of t , in post-order. The input symbol σ in
the left-hand side of rule c must be the label of u. Intuitively, c is the rule σ(p1(x1), . . . , pm(xm)) → p(ζ) applied by M
at u during a possible computation. When M drops c on u it uses mso head tests to check that M has a computation on t
that arrives at the i-th child ui of u in state pi , for every i ∈ [1, m]. This can be done because the state behaviour of M
on t is that of a bottom-up finite-state tree automaton. Thus, the tree language L p = {t ∈ T	 | ∃ s : (t, s) ∈ τp} is regular for
every p ∈ P and hence the site Ti = {(t, u) | t|ui ∈ Lpi } is also regular, as can easily be seen. Note that if M is deterministic,
then this first phase of M′ is deterministic too, because M arrives at each node in a unique state (during a successful
computation). In the second, deterministic phase M′ moves top-down through t , checks that the states in the guessed rules
are consistent, and computes the corresponding output. First M′ checks for the pebble c = σ(p1(x1), . . . , pm(xm)) → p(ζ)

at the root u, that the state p is in F . If so, it starts a process that is the same for every node u of t . It lifts pebble c and
goes into state [c, ζ], in which it will output the �-labeled nodes of ζ , without leaving u. In state q = [c, δ(ζ1, . . . , ζn)], it
uses the output rules 〈q, σ , j, ∅〉 → δ(〈[c, ζ1], stay〉, . . . , 〈[c, ζn], stay〉). When M′ is in a state [c, xi], it calls a subroutine Si .
Subroutine Si walks through the subtrees t|um, . . . , t|u(i+1) of t , depth-first right-to-left, lifts the pebbles at all the nodes of
those trees in reverse post-order (which is possible because the pebbles were dropped in post-order), and returns control
to M′ , which continues by moving in state c to child ui where it observes the pebble at ui (again, because of the post-
order dropping). Then M checks that the state in the right-hand side of that pebble is pi , and repeats the above process
for node ui instead of u. It should be clear that in this way M′ simulates the computations of M, and so τM′ = τM . Note
that the bottom-up transducer M can disregard computed output, because in a rule as above it may be that xi does not
occur in ζ . In such a case M′ clearly does not compute that output either, in the second phase, whereas it has checked in
the first phase that M indeed has a computation that arrives in state pi at the i-th child. Note also that if xi occurs twice
in ζ , then M′ simulates in the second phase twice the same computation of M on the i-th subtree (which was guessed in
the first phase). �
18 To see that L(M1) is regular, construct an ordinary nondeterministic tt N by adding to M1 all rules 〈q, σ , j〉 → ⊥ such that M1 has no rule with

left-hand side 〈q, σ , j〉, and all rules 〈q, σ , j〉 → � such that M1 has a rule with that left-hand side (where ⊥ and � are new output symbols of rank 0).
Then L(M1) is the complement of τ−1

N (R) where R is the set of output trees of N with an occurrence of ⊥. Now use Proposition 6(1).
62

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
8. Look-ahead tests

The results on look-ahead in this section are only needed in the next section (and in a minor way in Section 11). They
also hold for the pta as navigational device, computing a trip.

We say that a family F of pta’s (or ptt’s) can perform look-ahead tests if an automaton (or transducer) A in F can test
whether or not a ptt B (not necessarily in F) has a successful computation when started in the current situation of A (i.e.,
position of the head and stack of pebbles). We require that 	A = 	B , CA

v ⊆ CB
v , CA

i ⊆ CB
i , and kA ≤ kB (where 	A is

the input alphabet of A, and similarly for the other notation). Since we are only interested in the existence of a successful
computation, and not in its output tree, we are actually using alternating pta’s as look-ahead device (cf. Section 3). In
particular, we also allow a pta to be used as look-ahead B, viewing it as a ptt as in the proof of Theorem 11.

In the formal definition of a pta or ptt with look-ahead tests (cf. the formal definition of mso head tests before Lemma 12),
the rules are of the form 〈q, σ , j, b, B〉 → ζ or 〈q, σ , j, b, ¬ B〉 → ζ which are relevant to a given configuration 〈q, h, π〉 of A
on tree t if the transducer B does or does not have a successful computation on t that starts in the situation 〈h, π〉, i.e., if
there do or do not exist p0 ∈ Q B

0 and s ∈ T�B such that 〈p0, h, π〉 ⇒∗
t,B s (where �B is the output alphabet of B), or in the

case of a pta B, if there do or do not exist p0 ∈ Q B
0 , p f ∈ FB , and 〈u, π〉 ∈ SitB(t) such that 〈p0, roott , ε〉 ⇒∗

t,B 〈p f , u, π〉
(where FB is the set of final states of B).

Theorem 19. For each k ≥ 0, the vki-pta and vki-dpta can perform look-ahead tests. The same holds for the vki-ptt and vki-dptt.

Proof. Let A be a vki-pta that performs a look-ahead test by calling some vmi-ptt B (with k ≤ m). We wish to construct
a trip-equivalent vki-pta A′ that does not perform such look-ahead tests. By Lemma 1 we may construct A′ as a pta with
stack tests, i.e., a pta that can test whether its pebble stack is empty and if so, what the colour of the topmost pebble is.

As usual, A′ simulates A. Suppose that A uses the look-ahead test B in situation 〈h, π〉. When no pebbles are dropped,
i.e., π = ε, the test whether B, started in that situation, has a successful computation, is an mso head test. Indeed, the site
T = {(t, h) | ∃ p0 ∈ Q B

0 , s ∈ T�B : 〈p0, h, ε〉 ⇒∗
t,B s} is regular, as mark(T) is the domain of the vmi-ptt B′ that starts in the

root, looks for the marked node h, and then simulates B. Domains are regular by Corollary 9, and A′ can perform mso head
tests by Lemma 12.

In general, one may imagine that A′ implements the look-ahead test by simulating B. However, when A′ is ready
with the simulation of B, that started with the stack π of A, A′ must be able to recover π to continue the simulation
of A. Note that B can inspect π , thereby possibly destroying part of π and adding something else. For this reason the
computations of B starting at the position of the topmost pebble of π will be precomputed. With each pebble dropped
by A, the automaton A′ stores the set S of states p of B for which B has a successful computation when started in state p
at the position u of the topmost stack element (and with the current stack of A). Now a successful computation of B can be
safely simulated, consisting of a part where the pebbles of B are on top of the stack π inherited from A, possibly followed
by a precomputed part where B inspects π , starting with a visit to u. We discuss how these state sets are determined,
and how they are used (by A′) to perform the look-ahead test. Rather then simulating B, A′ will use mso tests on the
observable configuration, which is possible by Theorem 16. The colour sets of A′ are C ′

v = Cv × 2Q B
and C ′

i = C i × 2Q B
.

If A drops the first pebble c (i.e., π = (h, c)), then A′ drops the pebble (c, S) where it determines for every state p of B
whether or not p ∈ S using an mso head test: construct B′ as above except that it now drops c at the marked node h before
simulating B in state p. Thus, this time, the domain of B′ is mark(T) with T = {(t, h) | ∃ s ∈ T�B : 〈p, h, c〉 ⇒∗

t,B s}.
Suppose now that A uses the look-ahead test B when it is in situation 〈h, π〉 with π �= ε, and suppose that the topmost

pebble of π has colour d and that the set of visible pebble colours that occur in π is Cv(π) = {c1, . . . , c�} ⊆ Cv, with
� ∈ [0, k]. Then the colour of the topmost pebble of the stack π ′ of A′ is (d, S) for some set S of states of B, and the set
of visible pebble colours that occur in π ′ is Cv(π

′) = {(c1, S1), . . . , (c�, S�)} for some S1, . . . , S� . Since A′ can perform stack
tests, it can determine (d, S). Moreover, it should be clear that A′ can determine Cv(π

′), and hence Cv(π), by an mso test
on the visible configuration. With this topmost colour d, this state information S , and this set Cv(π) of visible pebbles, the
look-ahead test can be performed by A′ as an mso test on the observable configuration, as follows. Consider the observable
configuration tree obs(t, π ′) with the current node h marked, see Theorem 16. We want to show that there is a regular
site T over 	 × 2C ′

such that (obs(t, π ′), h) ∈ T if and only if there exist p0 ∈ Q B
0 and s ∈ T�B such that 〈p0, h, π〉 ⇒∗

t,B s.
Indeed, mark(T) is the domain of a vm′ i-ptt B′ , with m′ = m − �. It first searches for the position u of the topmost pebble,
which is the unique node of obs(t, π ′) of which the label contains the colour (d, S). It drops the special invisible pebble �
on u, and then proceeds to the marked node h, starts simulating B and halts successfully when it observes pebble � at
position u with B in a state of S , or when it never has observed � and B halts successfully (meaning that pebbles are
still on top of � when visiting u). Note that B′ can simulate B, which walks on t with pebbles rather than on obs(t, π ′),
because the colours in the labels of the nodes of obs(t, π ′) contain the observable pebbles on t in the stack π . Also, B′ does
not apply rules of B that contain a dropci

-instruction with ci ∈ Cv(π). The domain mark(T) of B′ is regular and A′ can
perform the mso test T on its observable configuration.

The same reasoning shows that the state set for the next pebble c dropped by A can be computed by mso tests on the
observable configuration: again B′ first drops the pebble c on h before starting the simulation of B in any state p.
63

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Finally it should be clear that if A uses the look-ahead tests B1, . . . , Bn , then state information for every Bi should be
stored in the pebbles, i.e., they are of the form (c, S1, . . . , Sn) where Si is a set of states of Bi . �

A natural question is now whether Theorem 19 also holds for pta’s and ptt’s that are allowed to perform stack tests,
mso head tests, and mso tests on the visible and observable configuration. The answer is yes.

Let us first consider the case of stack tests. Roughly speaking, if A uses look-ahead tests B1, . . . , Bn , then we just apply
the construction of Lemma 1 to both A and all Bi , i ∈ [1, n], and then apply Theorem 19 to the resulting equivalent
(ordinary) pta A′ that calls the (ordinary) ptt’s B′

1, . . . , B′
n . It should be noted that even if A does not use stack tests but

some Bi does, the construction of Lemma 1 must be applied to A too, because the stack that Bi inherits from A must
contain the necessary additional information concerning the colours of previously dropped pebbles. Vice versa, if A (or
another B j) uses stack tests but Bi does not, then Bi can just ignore the additional information in the stack of A, but it is
also correct to apply the construction of Lemma 1 to Bi . However, not only the additional information in the stack should
be passed from A′ to B′

1, . . . , B′
n , but also the additional information in the finite state of A′ . Thus, to be more precise, if

A is in state q and uses the look-ahead test Bi , then whenever A′ is in state (q, γ), it should use the look-ahead test B′
i(γ)

that is obtained from B′
i by changing its set Q Bi

0 × {ε} of initial states into Q Bi
0 × {γ }.

For the case of mso head tests and mso tests on the visible configuration the proof is easier. The constructions of
Lemmas 12 and 13 can be applied to A and B1, . . . , Bn independently, depending on whether they use such tests or not.
The reason is that these tests are implemented by subroutines for which the pebble stack need not be changed. Finally, for
the case of mso tests on the observable configuration the construction of Theorem 16 is again applied simultaneously to all
of A and B1, . . . , Bn , with beads that take care of all the regular sites T that are used by both A and B1, . . . , Bn as tests.
That ensures that the beads of A′ also contain the information needed by B′

1, . . . , B′
n . Note that in this case (as opposed to

the case of stack tests above) A′ does not carry any additional information in its finite state and thus, whenever A uses Bi
as look-ahead test, A′ can use B′

i as look-ahead test.
A similar natural question is whether Theorem 19 also holds for pta’s and ptt’s that use look-ahead, in particular whether

we can allow the look-ahead transducer to use another transducer as look-ahead test. The answer is again yes, with a similar
solution. In fact it can be shown that the vki-pta (and vki-ptt) even can perform iterated look-ahead tests, that is, they can
use look-ahead tests that use look-ahead tests that use . . . look-ahead tests.

Formally, we define for n ≥ 0 the notion of a pta or ptt A of (look-ahead) depth n, by induction on n. Simultaneously we
define the finite sets test(A) and test∗(A) of ptt’s, where test(A) contains the look-ahead tests of A, and test∗(A) contains
its iterated look-ahead tests plus A itself. For n = 0, a pta or ptt A of depth 0 is just a pta or ptt (without look-ahead tests).
Moreover, test(A) =∅ and test∗(A) = {A}. For n ≥ 0, a pta or ptt A of depth n + 1 uses as look-ahead tests arbitrary ptt’s
of lower depth, i.e., it has rules 〈q, σ , j, b, B〉 → ζ or 〈q, σ , j, b, ¬ B〉 → ζ where B is a ptt of depth m ≤ n. Furthermore,
test(A) is the set of all ptt’s of depth m ≤ n that A uses as look-ahead tests, and test∗(A) = {A} ∪ ⋃

B∈test(A) test∗(B).
A pta or ptt with iterated look-ahead tests is one of depth n, for some n ∈N . Note that a pta (or ptt) of depth 1 is the same
as a pta (or ptt) with look-ahead tests. The definition of the semantics of a pta or ptt with iterated look-ahead tests is by
induction on the depth n, and is entirely analogous to the one for the case n = 1 as given in the beginning of this section.

Theorem 20. For each k ≥ 0, the vki-pta and vki-dpta can perform iterated look-ahead tests. The same holds for the vki-ptt and
vki-dptt.

Proof. We will show that for every vki-ptt C of depth n ≥ 1 we can construct an equivalent vki-ptt C′ of depth n − 1. The
result then follows by induction. Since the construction generalizes the one of Theorem 19 (which is the case n = 1), we
will need all ptt’s in test∗(C′) to use stack tests and mso tests on the observable configuration. Thus, for the induction to
work, we first have to prove that every v�i-ptt of depth m ≥ 1 can perform such tests. For the case m = 1 we have already
argued this after Theorem 19, and the general case can be proved in a similar way. Let D be a v�i-ptt of depth m such that
all A ∈ test∗(D) perform stack tests. We just apply the construction of Lemma 1 simultaneously to every ptt A ∈ test∗(D),
resulting in the ptt A′ . Moreover, for all A, B ∈ test∗(D), if A is in state q and uses look-ahead test B, then whenever A′ is
in state (q, γ), it uses look-ahead test B′(γ). Obviously, every B′(γ) is of the same depth as B, and hence the resulting
v�i-ptt D′ is of the same depth m as D. For the mso tests the argument is completely analogous to the argument for m = 1
after Theorem 19, applying the appropriate constructions simultaneously to all ptt A ∈ test∗(D).

Now let C be a vki-ptt of depth n ≥ 1 and let us construct an equivalent vki-ptt C′ of smaller depth. The argument is
similar to those above. Let P0 be the set of all B ∈ test∗(C) of depth 0, i.e., all ptt without look-ahead tests, and let P1
contain all A ∈ test∗(C) of depth ≥ 1. We now apply the construction of Theorem 19 simultaneously to every ptt A ∈ P1,
resulting in a ptt A′ that stores state information of every B ∈ P0 in the pebbles. If A1 ∈ P1 uses look-ahead test A2 ∈ P1,
then A′

1 uses look-ahead test A′
2. Note that if A ∈ P1 uses look-ahead test B ∈ P0, then A′ uses an mso test instead. Thus,

clearly, the depth of every A′ is one less than the depth of A, and so the depth of the resulting vki-ptt C′ is n − 1. Finally,
we remove the stack tests and mso tests from C′ and its iterated look-ahead tests as explained above for D. �

Although this result does not seem practically useful, it will become important when we propose the query language
Pebble XPath in the next section, as an extension of Regular XPath. Intuitively, Pebble XPath expressions are similar to i-pta’s
64

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
with iterated look-ahead tests. We note that ta’s with iterated look-ahead tests are used in [53] to prove that Regular XPath
is not mso complete.

9. Document navigation

We define Pebble XPath, an extension of Regular XPath [39] with pebbles. Due to its potential application to navigation in
XML documents, it works on (nonempty) forests rather than trees. We prove that the trips defined by the path expressions
of Pebble XPath are exactly the mso definable trips on forests.

Pebble XPath has path expressions (denoted α, β) and node expressions (denoted ϕ, ψ). These expressions concern
forests over an (unranked) alphabet 	 of node labels, or tags, that can be chosen arbitrarily. Since we are mainly inter-
ested in path expressions, we view the node expressions as auxiliary. A path expression describes a walk through a given
nonempty forest f over 	 during which invisible coloured pebbles can be dropped on and lifted from the nodes of f , in a
nested (stack-like) manner. Such a walk steps through f from node to node following both the vertical and horizontal edges
in either direction. The context in which a path expression is evaluated (i.e., the situation at the start of the walk) is a pair
〈u, π〉 consisting of a node u of f and a stack π of pebbles that lie on the nodes of f . Formally, a context, or situation, on
a forest f is an element of the set Sit(f) = N(f) × (N(f) × C)∗ , where N(f) is the set of nodes of f and C is the finite set
of colours of the pebbles (that can be chosen arbitrarily). The walk ends in another context. Thus, the semantics of a path
expression is a binary relation on Sit(f). Similarly, the semantics of a node expression is a subset of Sit(f), i.e., a test on a
given context. Note that the notion of a context on a forest is entirely similar to that of a situation on a ranked tree for an
i-pta with (invisible) colour set C .

For the syntax of Pebble XPath, we start with the basic path expressions, with c ∈ C :

α0 ::= child | parent | right | left | dropc | liftc

The first four expressions operate on the context node only (in the usual way, moving to a child, the parent, the next sibling,
and the previous sibling, respectively), whereas the last two also operate on the pebble stack (dropping/lifting a pebble of
colour c on/from the context node u, which is modeled by pushing/popping the pair (u, c) on/off the stack). The syntax of
path expressions is

α ::= α0 | ?ϕ | α ∪ β | α/β | α∗

where β is an alias of α. The three last expressions show the usual regular operations on binary relations: union, composi-
tion, and transitive-reflexive closure. The expression ?ϕ denotes the identity relation on the set of contexts defined by the
node expression ϕ , i.e., it filters the current context by requiring that ϕ is true.

We now turn to the node expressions and start with the basic ones, with σ ∈ 	:

ϕ0 ::= haslabelσ | isleaf | isroot | isfirst | islast | haspebblec

The first five expressions test whether the context node has label σ , whether it is a leaf, a root, the first among its siblings,
or the last among its siblings. The last expression (which is the only one that also uses the pebble stack) tests whether
the topmost pebble, i.e., the most recently dropped pebble, lies on the context node and has colour c. The syntax of node
expressions is

ϕ ::= ϕ0 | 〈α〉 | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where ψ is an alias of ϕ . The last three expressions show the usual boolean operations. The expression 〈α〉 is like a
predicate [α] in XPath 1.0, which filters the context by requiring the existence of at least one successful α-walk starting
from this context. In terms of tree-walking automata it is a look-ahead test. We will also consider the language Pebble CAT,
which is obtained from Pebble XPath by dropping the filter tests ϕ ::= 〈α〉. The expressions of Pebble CAT are caterpillar
expressions extended with pebbles.

The formal semantics of Pebble XPath expressions is given in Tables 3 and 4. For every nonempty forest f over 	, the
semantics �α� f ⊆ Sit(f) × Sit(f) and �ϕ� f ⊆ Sit(f) of path and node expressions are defined, where u, u′ vary over N(f),
π, π ′ vary over (N(f) × C)∗ , and p varies over N(f) × C . Note that �parent� f = �child�−1

f , �left� f = �right�−1
f , and

�liftc� f = �dropc�
−1
f . Note also that the set �〈α〉� f is the domain of the binary relation �α� f .

The filtering XPath expression α[β] of XPath 1.0 can here be defined as α[β] = α/?〈β〉. Also, the node expression
loop(α) from [30,52] can be defined as loop(α) = 〈dropc/α/liftc〉 where c is a colour not occurring in α. Then
�loop(α)� f = {〈u, π〉 | (〈u, π〉, 〈u, π〉) ∈ �α� f } = {〈u, π〉 | (〈u, ε〉, 〈u, ε〉) ∈ �α� f }, because α cannot inspect the stack π and
it must return to u in order to lift pebble c.

Two path expressions α and β are equivalent, denoted by α ≡ β , if �α� f = �β� f for every nonempty forest f over 	,
and similarly for node expressions. Note that ?(ϕ ∧ ψ) ≡ ?ϕ/?ψ and ?(ϕ ∨ ψ) ≡ ?ϕ ∪ ?ψ . Hence, using De Morgan’s laws,
the syntax for node expressions can be replaced by ϕ ::= ϕ0 | ¬ϕ0 | 〈α〉 | ¬〈α〉 for Pebble XPath, and ϕ ::= ϕ0 | ¬ϕ0 for
Pebble CAT. Thus, keeping only the basic node expressions, we can always assume that the syntax for path expressions is
65

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Table 3
Semantics of Pebble XPath path expressions.

�child� f = {(〈u,π 〉, 〈u′,π 〉) | u′ is a child of u}
�parent� f = {(〈u,π 〉, 〈u′,π 〉) | u′ is the parent of u}
�right� f = {(〈u,π 〉, 〈u′,π 〉) | u′ is the next sibling of u}
�left� f = {(〈u,π 〉, 〈u′,π 〉) | u′ is the previous sibling of u}
�dropc� f = {(〈u,π 〉, 〈u,π p〉) | p = (u, c)}
�liftc� f = {(〈u,π p〉, 〈u,π 〉) | p = (u, c)}
�?ϕ� f = {(〈u,π 〉, 〈u,π 〉) | 〈u,π 〉 ∈ �ϕ� f }
�α ∪ β� f = �α� f ∪ �β� f

�α/β� f = �α� f ◦ �β� f

�α∗� f = �α�∗
f

Table 4
Semantics of Pebble XPath node expressions.

�haslabelσ � f = {〈u,π 〉 | u has label σ }
�isleaf� f = {〈u,π 〉 | u is a leaf}
�isroot� f = {〈u,π 〉 | u is a root}
�isfirst� f = {〈u,π 〉 | u is a first sibling}
�islast� f = {〈u,π 〉 | u is a last sibling}
�haspebblec� f = {〈u,π p〉 | p = (u, c)}
�〈α〉� f = {〈u,π 〉 | ∃〈u′,π ′〉 : (〈u,π 〉, 〈u′,π ′〉) ∈ �α� f }
�¬ϕ� f = Sit(f) \ �ϕ� f

�ϕ ∧ ψ� f = �ϕ� f ∩ �ψ� f

�ϕ ∨ ψ� f = �ϕ� f ∪ �ψ� f

α ::= α0 | ?ϕ0 | ?¬ϕ0 | ?〈β〉 | ?¬〈β〉 | α ∪ β | α/β | α∗

for Pebble XPath, and hence

α ::= α0 | ?ϕ0 | ?¬ϕ0 | α ∪ β | α/β | α∗

for Pebble CAT. In that case we will say that we assume the syntax to be in normal form.
Note also that all basic node expressions except haslabelσ are redundant, because isleaf ≡ ¬〈child〉 (a node

is a leaf if and only if it has no children), isroot ≡ ¬〈parent〉, isfirst ≡ ¬〈left〉, islast ≡ ¬〈right〉, and
haspebblec ≡ 〈liftc〉. However, these basic node expressions were kept in the syntax, because we also wish to con-
sider the subset Pebble CAT in which there are no filter tests 〈α〉. Note finally that when dropc , liftc , and haspebblec
are removed from Pebble XPath, the resulting formalism is exactly Regular XPath [39] (and in the semantics the stack can,
of course, be disregarded).

The purpose of Pebble XPath is the same as that of XPath: to define trips, i.e., binary patterns. Recall from Section 2 that
a trip T over an unranked alphabet 	 is a set T ⊆ {(f , u, v) | f ∈ F	, u, v ∈ N(f)} where F	 is the set of forests over 	.
Note that f is always a nonempty forest. For a path expression α (based on 	 and some C) we say that α defines the trip
T (α) = {(f , u, v) | ∃ π ∈ (N(f) × C)∗ : (〈u, ε〉, 〈v, π〉) ∈ �α� f }. We now define a trip T over 	 to be definable in Pebble XPath
if there exists a Pebble XPath path expression α such that T = T (α). And similarly for Pebble CAT. The next theorem states
that Pebble XPath and Pebble CAT have the same expressive power as mso logic on forests.

Theorem 21. A trip is definable in Pebble XPath if and only if it is definable in Pebble CAT if and only if it is mso definable.

As such our expressions have the desirable property of being a Core (and even Regular) XPath extension that is complete
for mso definable binary patterns. Other such extensions were considered in [30] (TMNF caterpillar expressions) and [52]
(μRegular XPath). Pebble CAT is similar to PCAT of [30] which has the same expressive power as the v-pta (and thus less
than mso by [8]). In PCAT the nesting of pebbles is defined syntactically rather than semantically.

The proof of Theorem 21 is given in the remainder of this section. It should be clear that Pebble CAT is closely related to
the i-pta. In fact, we will show later that their relationship can be viewed as the classical equivalence of regular expressions
and finite automata. The remainder of the proof is then directly based on the fact that the i-pta has the same expressive
power as mso logic for defining trips on trees (Theorem 15), and on the fact that the i-pta can perform iterated look-ahead
tests (Theorem 20). One technical problem is that these theorems are formulated for ranked trees rather than unranked
forests. Thus we start by adapting Pebble XPath to ranked trees and showing that it suffices to prove Theorem 21 for ranked
trees instead of forests.
66

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Table 5
Basic path expressions α0 for a ranked tree t .

�down1�t = {(〈u,π 〉, 〈u′,π 〉) | u′ is the first child of u}
�down2�t = {(〈u,π 〉, 〈u′,π 〉) | u′ is the second child of u}
�up�t = {(〈u,π 〉, 〈u′,π 〉) | u′ is the parent of u}
�dropc�t = {(〈u,π 〉, 〈u,π p〉) | p = (u, c)}
�liftc�t = {(〈u,π p〉, 〈u,π 〉) | p = (u, c)}

Table 6
Basic node expressions ϕ0 for a ranked tree t .

�haslabelσ �t = {〈u,π 〉 | u has label σ }
�ischild0�t = {〈u,π 〉 | u is the root}
�ischild1�t = {〈u,π 〉 | u is a first child}
�ischild2�t = {〈u,π 〉 | u is a second child}
�haspebblec�t = {〈u,π p〉 | p = (u, c)}

Pebble XPath on ranked trees. Since ranked trees are a special case of unranked forests, we need not change Pebble XPath
for its use on ranked trees. However, for its comparison to the i-pta it is more convenient to change its basic path expres-
sions α0 and basic node expressions ϕ0 as follows:

α0 ::= down1 | down2 | up | dropc | liftc

ϕ0 ::= haslabelσ | ischild0 | ischild1 | ischild2 | haspebblec

The semantics of these basic expressions for a tree t over 	 is given in Tables 5 and 6. Since we will only be interested
in ranked trees that encode forests, we assume that 	 is a ranked alphabet and that the rank of each element of 	 is
at most 2. Note that up has the same semantics as parent, and that the semantics of dropc , liftc , haslabelσ , and
haspebblec is unchanged. The remaining expressions of Pebble XPath, and their semantics (for t instead of f), are the
same as for forests, cf. the last four lines of Tables 3 and 4.

We first show that for every path expression α on forests there is a path expression α′ that computes the same trip as α
on the binary encoding of the forests as ranked trees. We use the encoding enc′ defined in Section 2, which encodes forests
over the alphabet 	 as ranked trees over the associated ranked alphabet 	′ . Note that for every forest f , enc′(f) has the
same nodes as f . For a trip T on forests, we define the encoded trip enc′(T) on ranked trees by enc′(T) = {(enc′(f), u, v) |
(f , u, v) ∈ T }.

Lemma 22. For every Pebble XPath path expression α on forests over 	, a Pebble XPath path expression α′ on ranked trees over 	′ can
be constructed in polynomial time such that T (α′) = enc′(T (α)). If α is a Pebble CAT expression, then so is α′.

Proof. The proof is an elementary coding exercise. Let us start with Pebble XPath. We will, in fact, define α′ such
that �α′�enc′(f) = �α� f for every f ∈ F	 , which implies the result. It clearly suffices to do this for basic path expres-
sions α0, and similarly for basic node expressions ϕ0. As observed before, all basic node expressions except haslabelσ

are redundant, so it suffices to define haslabel′
σ ≡ haslabelσ 11 ∨ haslabelσ 10 ∨ haslabelσ 01 ∨ haslabelσ 00 .

We now turn to the basic path expressions. We will use the auxiliary basic path expressions child1 and parent1
with the semantics �child1� f = {(〈u, π〉, 〈u′, π〉) | u′ is the first child of u} and �parent1� f = �child1�

−1
f . Since clearly

child≡ child1/right∗ and parent≡ left∗/parent1, it suffices to define child′
1 and parent′

1 instead of child′
and parent′ , as follows: child′

1 ≡ ?ϕ1/down1 where ϕ1 is the disjunction of haslabelσ 11 and haslabelσ 10 for all
σ ∈ 	, and parent′

1 ≡ ?ischild1/up/?ϕ1. Then we define right′ ≡ down2 ∪ ?ϕ2/down1 where ϕ2 is the disjunc-
tion of all haslabelσ 01 for σ ∈ 	. Since �left� f is the inverse of �right� f , we define left′ ≡ ?ischild2/up ∪
?ischild1/up/?ϕ2. Finally, drop′

c ≡ dropc and lift′
c ≡ liftc .

To prove the result for Pebble CAT, we also have to consider the other basic node expressions ϕ0. Obviously, we define
haspebble′

c ≡ haspebblec . We define isleaf′ to be the disjunction of haslabelσ 01 and haslabelσ 00 for all σ ∈ 	,
and similarly, islast′ to be the disjunction of haslabelσ 10 and haslabelσ 00 for all σ ∈ 	. It remains to consider
isfirst and isroot. Since we may assume the syntax of α to be in normal form, it suffices to define (?ϕ0)

′ and (?¬ϕ0)
′ .

We define (?isfirst)′ ≡ ?ischild0 ∪ ischild1/up/child′
1 and (?¬isfirst)′ ≡ up/right′ where child′

1 and
right′ are defined above. For isroot, we first note that ?isroot≡ dropc/left

∗/?isroot/?isfirst/right∗/liftc
where c is any element of C . Intuitively, we walk from the current node to the left until we arrive at the first
root, and then walk back. Thus, since the first root of a forest f is encoded as the root of enc′(f), we de-
fine (?isroot)′ ≡ dropc/(left

′)∗/?ischild0/(right′)∗/liftc . Finally, we define (?¬isroot)′ by (?¬isroot)′ ≡
dropc/parent

′/child′/liftc . �
Next we prove the reverse direction of Lemma 22, for Pebble CAT.
67

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Lemma 23. For every Pebble CAT path expression α on ranked trees over 	′ there is a Pebble CAT path expression α′ on forests over 	
such that enc′(T (α′)) = T (α).

Proof. This is also an elementary coding exercise. We assume the syntax of α to be in normal form, whereas for α′ we
keep the full syntax. As in the previous lemma, we will define α′ such that �α′� f = �α�enc′(f) . It suffices to do this for
path expressions α0, ?ϕ0, and ?¬ϕ0. We start with α0 and we define down′

1 ≡ child/?isfirst∪ ?isleaf/right and
down′

2 ≡ ?¬isleaf/right. Moreover, up′ ≡ ?isfirst/parent ∪ left. Finally, drop′
c ≡ dropc and lift′

c ≡ liftc .
We now turn to the basic node expressions. For ϕ0 ≡ haslabelσ 10 we define (?ϕ0)

′ ≡ ?ϕ′
0 and (?¬ϕ0)

′ ≡ ?¬ϕ′
0, where

ϕ′
0 ≡ haslabelσ ∧ ¬isleaf ∧ islast, and similarly for haslabelσ 11 , haslabelσ 01 , and haslabelσ 00 . We do this

also for ϕ0 ≡ ischild0 with ϕ′
0 ≡ isroot∧isfirst, and for ϕ0 ≡ haspebblec with ϕ′

0 ≡ haspebblec . It remains to
consider ischild1 and ischild2. We define (?ischild2)

′ ≡ left/?¬isleaf/right and hence (?¬ischild2)
′ ≡

?isfirst ∪ left/?isleaf/right. For ischild1 the definitions of (?ischild1)
′ and (?¬ischild1)

′ now follow
from the fact that ?ischild1 ≡ ?¬ischild0/?¬ischild2 and ?¬ischild1 ≡ ?ischild0 ∪ ?ischild2. �

Lemmas 22 and 23 together show that if the first equivalence of Theorem 21 holds for ranked trees, then it also holds
for forests. To show this also for the second equivalence, we need the next elementary lemma.

Lemma 24. For every trip T on forests, T is mso definable if and only if enc′(T) is mso definable.

Proof. (Only if) Since f and enc′(f) have the same nodes, for every forest f over 	, it suffices to show that the atomic
formulas labσ (x), down(x, y), and next(x, y) for forests can be expressed by an mso formula for the ranked trees that
encode the forests. Clearly, labσ (x) can be expressed by the disjunction of all labσ k� (x) for k, � ∈ {0, 1}, as in the proof of
Lemma 22. For down(x, y) we show that the trip T = {(enc′(f), u, v) | f |= down(u, v)} is mso definable. This follows from
Proposition 14 because T = T (B) for the ta B that has the rules (for all k, � ∈ {0, 1}, j ∈ {0, 1, 2}, and σ ∈):

〈p0,σ
1�, j〉 → 〈p,down1〉,

〈p,σ 11, j〉 → 〈p,down2〉,
〈p,σ 01, j〉 → 〈p,down1〉,
〈p,σ k�, j〉 → 〈p∞, stay〉,

where p0 is the initial and p∞ the final state of B. Thus, there is a formula ϕ(x, y) such that enc′(f) |= ϕ(u, v) if and only
if f |= down(u, v), for every forest f , which means that ϕ(x, y) expresses down(x, y) on the encoding of f .19 The formula
next(x, y) can be treated in the same way, where B now has the rules 〈p0, σ 11, j〉 → 〈p∞, down2〉 and 〈p0, σ 01, j〉 →
〈p∞, down1〉, and hence T (B) = {(enc′(f), u, v) | f |= next(u, v)}.

(If) For the same reason as above, it suffices to show that the atomic formulas downi(x, y) and labσ k� (x) for ranked trees
over 	′ can be expressed by an mso formula for the forests they encode. For this we consider the path expressions down′

i
and haslabel′

σ 10 in the proof of Lemma 23, and we define

ϕ1(x, y) ≡ (down(x, y) ∧ first(y)) ∨ (leaf(x) ∧ next(x, y)),

ϕ2(x, y) ≡ ¬ leaf(x) ∧ next(x, y),

ϕ10(x) ≡ labσ (x) ∧ ¬ leaf(x) ∧ last(x),

and similarly for the other ϕk�(x, y). Then enc′(f) |= downi(u, v) if and only if f |= ϕi(u, v), and enc′(f) |= labσ k� (u) if and
only if f |= ϕk�(u). �

From now on, when we refer to Pebble XPath or Pebble CAT we always mean their version on ranked trees.

Directive I-PTA’s. For the purpose of the proof of Theorem 21 on ranked trees, we formulate the i-pta in an alternative way
and, for lack of a better name, call it the directive i-pta. For an alphabet 	 (of which every element has rank at most 2) and
a finite set C of colours, we define a directive over 	 and C to be a path expression τ with the syntax τ ::= α0 | ?ϕ0 | ?¬ ϕ0
for the same 	 and C (where α0 and ϕ0 are as in Tables 5 and 6). The finite set of directives over 	 and C is denoted
D	,C .

A directive i-pta is a tuple A = (, Q , Q 0, F , C, R), where 	, Q , Q 0, F , and C are as for an ordinary i-pta (with C = C i),
and R is a finite set of rules of the form 〈q, τ , q′〉 where q, q′ ∈ Q and τ ∈ D	,C . Thus, syntactically, A can be viewed as
a finite automaton of which each state transition is labeled by a directive, i.e., either by a basic path expression of Pebble

19 For the reader familiar with mso logic we note that it is also easy to write down the formula ϕ(x, y) using the equivalences in the proof of Lemma 22
and the fact that the transitive-reflexive closure of an mso definable relation is mso definable.
68

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
XPath, or by a basic node expression of Pebble XPath, or its negation, where the node expressions are turned into path
expressions by the ?-operator. Intuitively, ?ϕ0 and ?¬ ϕ0 represent a basic test on the current situation, whereas α0 is a
basic instruction to be executed on the current situation. Just as for an ordinary i-pta, a situation on a tree t ∈ T	 is a pair
〈u, π〉 ∈ Sit(t) and a configuration is a triple 〈q, u, π〉 with q ∈ Q and 〈u, π〉 ∈ Sit(t). We write 〈q, u, π〉 ⇒t,A 〈q′, u′, π ′〉
if there is a rule 〈q, τ , q′〉 such that (〈u, π〉, 〈u′, π ′〉) ∈ �τ �t , where �τ �t is the semantics of path expression τ on t (cf.
Tables 5 and 6 for α0 and ϕ0, and Table 3 for the ?-operator). To indicate the directive τ that is executed by A in this
computation step we also write 〈q, u, π〉 ⇒τ

t,A 〈q′, u′, π ′〉. Moreover, we define the semantics �A�t of A on tree t as �A�t =
{(〈u, π〉, 〈u′, π ′〉) ∈ Sit(t) × Sit(t) | ∃ q0 ∈ Q 0, q∞ ∈ F : 〈q0, u, π〉 ⇒∗

t,A 〈q∞, u′, π ′〉}. Finally, the trip computed by A on T	 is
T (A) = {(t, u, v) | ∃ π ∈ (N(t) × C)∗ : (〈u, ε〉, 〈v, π〉) ∈ �A�t}.

For the sake of the proofs below we also define �A�t for an ordinary i-pta A on a tree t , in entirely the same way as
above for a directive i-pta.

A directive i-pta A with look-ahead tests is defined similarly to the ordinary case in Section 8 (restricted to automata),
by additionally allowing rules of the form 〈q, ?〈B〉, q′〉 and 〈q, ?¬ 〈B〉, q′〉 where B is another directive i-pta. The above
semantics stays the same, with (as expected)

�?〈B〉�t = {(〈u,π〉, 〈u,π〉) | ∃〈u′,π ′〉 : (〈u,π〉, 〈u′,π ′〉) ∈ �B�t}
and similarly for �?¬ 〈B〉�t (with ¬ ∃). A directive i-pta with iterated look-ahead tests is defined as in Section 8. We will use
i-pta

la as an abbreviation of ‘i-pta with iterated look-ahead tests’.
We now show that the directive i-pta has the same expressive power as the i-pta (and similarly with iterated look-

ahead tests). Hence Theorems 15 and 20 also hold for the directive i-pta, i.e., it computes the mso definable trips, and it
can perform iterated look-ahead tests. In what follows, we only consider i-pta’s of which every input symbol has at most
rank 2.

Lemma 25. For every directive i-pta
la A there is an i-pta

la A′ such that T (A′) = T (A).

Proof. Let A = (, Q , Q 0, F , C, R) be a directive i-pta. We will, in fact, define the i-pta A′ such that �A′�t = �A�t for every
t ∈ T	 , which implies the result.

We let A′ = (, Q , Q 0, F , C, ∅, C i, R ′, 0) where C i = C and R ′ is defined as follows. If 〈q, α0, q′〉 is a rule of A, where
α0 is a basic path expression, then A′ has all rules 〈q, σ , j, b〉 → 〈q′, α0〉. We now turn to the basic node expressions.
A rule 〈q, ?haslabelσ , q′〉 is simulated by all rules 〈q, σ , j, b〉 → 〈q′, stay〉, and a rule 〈q, ?¬ haslabelσ , q′〉 by all rules
〈q, τ , j, b〉 → 〈q′, stay〉 with τ ∈ 	 \ {σ }. A rule 〈q, ?ischild j, q′〉 is simulated by all rules 〈q, σ , j, b〉 → 〈q′, stay〉, and a
rule 〈q, ?¬ ischild j, q′〉 by the two rules 〈q, σ , j′, b〉 → 〈q′, stay〉 with j′ ∈ {0, 1, 2} \ { j}. A rule 〈q, ?haspebblec, q′〉 is
simulated by all rules 〈q, σ , j, {c}〉 → 〈q′, stay〉, and a rule 〈q, ?¬ haspebblec, q′〉 by all rules 〈q, σ , j, ∅〉 → 〈q′, stay〉 and
all rules 〈q, σ , j, {c′}〉 → 〈q′, stay〉 with c′ ∈ C \ {c}.

Finally we consider look-ahead. If 〈q, ?〈B〉, q′〉 is a rule of A, and B′ is an i-pta
la such that �B′�t = �B�t for every t ∈ T	 ,

then A′ has all the rules 〈q, σ , j, b, B′〉 → 〈q′, stay〉 that use B′ as a look-ahead test. Similarly, the rule 〈q, ?¬ 〈B〉, q′〉 is
simulated by all the rules 〈q, σ , j, b, ¬ B′〉 → 〈q′, stay〉. �
Lemma 26. For every i-pta A there is a directive i-pta A′ such that T (A′) = T (A).

Proof. Let A = (, Q , Q 0, F , C, ∅, C i, R, 0) be an i-pta with C i = C . To simplify the proof we extend the syntax of the
directive i-pta by allowing rules 〈q, τ , q′〉 with τ ::= α0 | ?ϕ0 | ?¬ ϕ0 | τ/τ ′ , where τ ′ is an alias of τ . This clearly does not
extend their power, because a rule 〈q, τ/τ ′, q′〉 can be replaced by the two rules 〈q, τ , p〉 and 〈p, τ ′, q′〉 where p is a new
state. We now construct A′ = (, Q , Q 0, F , C, R ′) where R ′ is defined as follows. If A has a rule 〈q, σ , j, b〉 → 〈q′, α〉, then
A′ has the rule 〈q, τ , q′〉 such that τ = τσ /τ j/τb/α if α �= stay, and τ = τσ /τ j/τb if α = stay, where τσ = ?haslabelσ ,
τ j = ?ischild j , τ{c} = ?haspebblec , and τ∅ = ?¬ haspebblec1

/ · · ·/?¬ haspebblecn
, if C = {c1, . . . , cn}. �

As observed before, a directive i-pta A can be viewed as a finite automaton of which each state transition is labeled
by a directive. Thus, viewing the set D	,C as an alphabet, A accepts a string language Lstr(A) ⊆ D∗

	,C . We now show the
(rather obvious) fact that the semantics �A�t of A (for every tree t over) depends only on the language Lstr(A), cf. [12,
Theorem 3.11] and [5, Lemma 3]. We do this (as in [12, Definition 2.7] and [5, Section 4]) by associating a semantics �L�t

with every language L ⊆ D∗
	,C . Intuitively, a string w = τ1 · · ·τn of directives can be viewed as the path expression τ1/ · · ·/τn

and a language L = {w1, w2, . . . } of such strings can be viewed as the (possibly infinite) path expression w1 ∪ w2 ∪· · · . Thus,
for a tree t over 	 we formally define �ε�t to be the identity on Sit(t), �τ1 · · ·τn�t = �τ1�t ◦ · · · ◦ �τn�t , and �L�t = ⋃

w∈L�w�t .
The next lemma is a special case of [12, Theorem 3.11]. Its proof is entirely similar to the one of [5, Lemma 3].

Lemma 27. �A�t = �Lstr(A)�t .
69

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Proof. A string w of directives induces a state transition relation RA(w) ⊆ Q × Q as follows. For τ ∈ D	,C , RA(τ) =
{(q, q′) | 〈q, τ , q′〉 ∈ R}. For the empty string, RA(ε) is the identity on Q , and RA(τ1 · · ·τn) = RA(τ1) ◦ · · · ◦ RA(τn). Then
Lstr(A) = {w ∈ D∗

	,C | RA(w) ∩ (Q 0 × F) �=∅}.
It is straightforward to show by induction that, for all configurations 〈q, u, π〉 and 〈q′, u′, π ′〉 and for every w = τ1 · · ·τn

over D	,C , there is a computation

〈q1, u1,π1〉 ⇒τ1
t,A 〈q2, u2,π2〉 ⇒τ2

t,A · · · ⇒τn
t,A 〈qn+1, un+1,πn+1〉

with 〈q1, u1, π1〉 = 〈q, u, π〉 and 〈qn+1, un+1, πn+1〉 = 〈q′, u′, π ′〉 if and only if (〈u, π〉, 〈u′, π ′〉) ∈ �w�t and (q, q′) ∈ RA(w).
From this equivalence it follows that �A�t consists of all (〈u, π〉, 〈u′, π ′〉) such that

∃q0 ∈ Q 0,q∞ ∈ F , w ∈ D∗
	,C : (〈u,π〉, 〈u′,π ′〉) ∈ �w�t , (q,q′) ∈ RA(w)

i.e., such that ∃ w ∈ Lstr(A) : (〈u, π〉, 〈u′, π ′〉) ∈ �w�t , which means that it equals �Lstr(A)�t . �
Proof of Theorem 21. We assume the syntax for path expressions α of Pebble XPath and Pebble CAT to be in
normal form. We also add α ::= ∅ to the syntax, with �∅�t = ∅ for every tree t . That is possible because, e.g.,
�?ischild0/?¬ischild0�t =∅.

We first show that Pebble CAT has the same power as mso. Let us recall that the set D	,C of directives τ of the directive
i-pta was defined by the syntax τ ::= α0 | ?ϕ0 | ?¬ϕ0. Thus, the path expressions of Pebble CAT are, in fact, exactly the
usual regular expressions over the “alphabet” D	,C . Accordingly, we define for such a path expression α the string language
Lstr(α) ⊆ D∗

	,C in the obvious way, interpreting the operators ∪, /, and ∗ as union, concatenation, and Kleene star of string
languages, respectively. The next lemma is the analogue of Lemma 27, with a straightforward proof.

Lemma 28. �α�t = �Lstr(α)�t .

Proof. It is easy to see, for string languages L1, L2 ⊆ D∗
	,C , that �L1 ∪ L2�t = �L1�t ∪ �L2�t , �L1L2�t = �L1�t ◦ �L2�t , and

�L∗
1�t = �L1�

∗
t , cf. [12, Lemma 2.9]. Then the proof is by induction on the structure of α. �

By Kleene’s classical theorem, a string language can be accepted by a finite automaton if and only if it can be defined by
a regular expression. Thus, by Lemmas 27 and 28, a trip is definable in Pebble CAT if and only if it can be computed by a
directive i-pta, and hence, by Theorem 15 (for k = 0) and Lemmas 25 and 26, if and only if it is mso definable.

It remains to show that if a trip is definable in Pebble XPath, then it can be computed by a directive i-pta. We will
prove below that for every Pebble XPath path expression α there is a directive i-pta

la A, i.e., a directive i-pta with iterated
look-ahead tests, such that �A�t = �α�t for every t . This implies that α and A define the same trip, and then we obtain
from Theorem 20 (and Lemmas 25 and 26) a directive i-pta (without look-ahead) computing that same trip.

Let nα be the nesting depth of subexpressions of α of the form 〈β〉. The proof is by induction on nα , and A will be of
look-ahead depth nα . If nα = 0, i.e., there are no such subexpressions at all, then α is a Pebble CAT expression, and we are
done by the first part of the proof. Now suppose that the result holds for nesting depth n, and let nα = n + 1. For every
subexpression 〈β〉 of α that is not nested within another such subexpression, let Aβ be a directive i-pta

la of look-ahead
depth n (or less) such that �Aβ�t = �β�t for all t . We now define the extended “alphabet” Dn

	,C to consist of all path
expressions τ with the syntax τ ::= α0 | ?ϕ0 | ?¬ϕ0 | ?〈β〉 | ?¬〈β〉 where 〈β〉 ranges over the above subexpressions of α.
Then α can be viewed as a regular expression over the alphabet Dn

	,C , and it should be clear that Lemma 28 is also valid
in this case. Also, using Dn

	,C instead of D	,C in the rules of the directive i-pta, and identifying each “symbol” ?〈β〉 with
the “symbol” ?〈Aβ 〉 (and similarly for the negated tests), we obtain a subclass of the directive i-pta

la of look-ahead depth
n + 1, because the semantics of the path expression ?〈β〉 is exactly the same as the meaning of the look-ahead test ?〈Aβ 〉.
Again, it should be clear that Lemma 27 is also valid for these directive i-pta’s, which are finite automata over Dn

	,C . Hence,
by the same Kleene argument as in the first part of the proof, there is a directive i-pta

la A of look-ahead depth n + 1 such
that �A�t = �α�t for every tree t .

This ends the proof of Theorem 21, both for ranked trees and (by Lemmas 22, 23, and 24) for unranked forests.

Two remarks. (1) Although the MSO definable trips are, of course, closed under complement and intersection, we do not
know whether the XPath 2.0 operations intersect and except can be added to the syntax of path expressions of
Pebble XPath (α ::= α ∩ β | α \ β). That is because it is not clear whether for every i-pta A there is an i-pta B such that
�B�t = Sit(t) − �A�t for every tree t .

(2) The language Pebble XPath meets the requirements as listed in [30]. It is simple, defined in an algebraic language
using simple operators: in particular we believe that pebbles form a user friendly concept. It is understandable, as its expres-
sive power can be characterized in terms of automata. It is useful in the sense that the query evaluation problem ‘given path
expression α and two nodes u, v in forest f , is (f , u, v) ∈ T (α)?’ is tractable. At least, the latter property holds for Pebble
CAT, as α can be transformed into an i-pta in polynomial time, and the problem ‘(f , u, v) ∈ T (α)?’ can then be translated
70

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
into the emptiness problem for push-down automata. For Pebble XPath the query evaluation problem is tractable for every
fixed path expression α. This is explained in more detail in the next two paragraphs.

Query evaluation. For a directive i-pta A = (, Q , Q 0, C, R), the binary node relation T computed by A on an input tree t
can be evaluated in polynomial time as follows. It is straightforward to construct from A and t an ordinary pushdown
automaton P with state set Q × N(t) and pushdown alphabet N(t) × C in such a way that P (with the empty string as
input) has the same computation steps as A on t . Note that the configurations of P are exactly the configurations 〈q, u, π〉
of A on t . Dropping and lifting a pebble corresponds to pushing and popping a pushdown symbol. Moving around in t
corresponds to a change of state. To decide whether (t, u, v) ∈ T , with u, v ∈ N(t), decide whether P has a computation
from configuration 〈q0, u, ε〉 (for some q0 ∈ Q 0) to some final configuration 〈q, v, π〉. Clearly, P can be constructed in
polynomial time from A and t , and the existence of such a computation can be verified in polynomial time.

By Lemma 22, path expressions on forests can be translated into path expressions on ranked trees in polynomial time.
Since for a Pebble CAT path expression on ranked trees the corresponding directive i-pta can be constructed in polynomial
time, using Kleene’s construction, Pebble CAT path expressions can be evaluated in polynomial time. This does not seem to
hold for Pebble XPath, as the construction in the proof of Theorem 19 (which implements a look-ahead test by calling an
i-pta B) is at least 2-fold exponential (because determining the domain of the related i-pta B′ takes 2-fold exponential time
by Theorem 8). However, the data complexity of the problem is of course polynomial, i.e., for a fixed path expression α we
obtain a fixed directive i-pta A for which the binary node relation can be evaluated in polynomial time.

10. Pattern matching

One of the basic tree transformations in the context of XML is pattern matching. The transducer must find all sequences
of nodes satisfying a certain description and generate the subtrees rooted at these nodes, for each match. More precisely,
we consider queries of the form

for X where ϕ return r

in which X is a finite set of node variables, ϕ is an mso formula with its free variables in X , and r is a tree of which the
leaves may be labeled with the variables in X . In what follows we assume that X and r are fixed. Let X = {x1, . . . , xn},
where x1, . . . , xn is an arbitrary order of the elements of X . The transducer must find all sequences of nodes u1, . . . , un of
the input tree t that match the pattern defined by ϕ(x1, . . . , xn), i.e., such that t |= ϕ(u1, . . . , un), and for each match it must
generate the output tree r in which each occurrence of the variable xi is replaced by the subtree of t with root ui . Usually
the variables in X are indeed specified in a specific order λ = (x1, . . . , xn), and it is required that the transducer finds (and
generates) the matches in the lexicographic document order induced by λ. We will, however, also consider the case where
this requirement is dropped, and the most efficient order λ can be selected.

For convenience we assume that r is of the form μ(x1, . . . , xn) for some symbol μ of rank n, and so the output for each
match is μ(t|u1 , . . . , t|un) where t|u is the subtree of t with root u. For convenience we also assume that the input tree t is
ranked. Moreover, we assume that the output alphabet is also ranked and contains the binary symbol @ that allows us to
list the various output trees μ(t|u1 , . . . , t|un), and the nullary symbol e to indicate the end of the list of output trees (similar
to the binary tag <result> and the nullary tag <endofresults> of Example 2). In Section 11 we will consider pattern
matching in forests.

We now describe a total deterministic ptt A that executes the above query. In order to find all n-tuples of nodes
matching the n-ary pattern defined by the mso formula ϕ(x1, . . . , xn), and generate the corresponding output, the ptt A
systematically enumerates all n-tuples of nodes of the input tree t . To do this, A uses visible pebbles c1, . . . , cn on the
stack, representing the variables x1, . . . , xn , respectively.20 It drops them in this order and moves each of them through the
input tree t in document order (i.e., in pre-order), in a nested fashion. Inductively speaking, A moves pebble c1 in pre-
order through t (alternately dropping and lifting c1), and for each position u1 of c1 it uses pebbles c2, . . . , cn to enumerate
all possible (n − 1)-tuples u2, . . . , un of nodes of t . For each enumerated n-tuple u1, . . . , un , with pebble ci at position ui ,
A performs the test ϕ , using an mso test on the visible configuration (Lemma 13), and, in case of success, spawns a process
that outputs the corresponding n-tuple of subtrees.

More precisely, if the ranked input alphabet is 	, then ϕ is an mso formula over 	, and A has the ranked output
alphabet � = 	 ∪ {μ, @, e} where μ has rank n, and @ and e have rank 2 and 0 respectively. For input tree t , the output
tree s is of the form s = @(r1, @(r2, . . . @(rk, e) · · ·)) where each ri corresponds to a match, i.e., there is a sequence of
nodes u1, . . . , un of t such that t |= ϕ(u1, . . . , un) and ri = μ(t|u1 , . . . , t|un). Moreover, the sequence r1, . . . , rk corresponds
to the sequence of all matches, in lexicographic document order. As explained above, the visible colour set of the ptt A is
Cv = {c1, . . . , cn}, and A generates s by enumerating all sequences u1, . . . , un of nodes of t using pebbles c1, . . . , cn . To find
out whether this sequence is a match, A performs the mso test ψ(x) on the visible configuration, defined by

20 It is not necessary that all pebbles are visible, as we will discuss below, but it simplifies the description of A.
71

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
ψ(x) ≡ ∀x1, . . . , xn((pebc1
(x1) ∧ · · · ∧ pebcn

(xn)) → ϕ′(x1, . . . , xn))

where pebc(x) is the disjunction of all lab(σ ,b)(x) such that c ∈ b, and where ϕ′ is obtained from ϕ by changing every atomic
subformula labσ (y) into the disjunction of all lab(σ ,b)(y). Note that ψ(x) is an mso formula over 	 × 2C , where C is the
colour set of A. Note also that the variable x (for the head position) does not, and need not, occur in ψ(x). If the sequence
u1, . . . , un is not a match, then A continues the enumeration of n-tuples. If the sequence is a match, then A outputs the
symbol @ and branches into two subprocesses (as in the 5-th rule of Example 2). In the second (main) branch it continues
the enumeration of n-tuples. In the first branch it outputs the symbol μ and branches into n subprocesses, where the i-th
process searches for visible pebble ci and then outputs t|ui . Note that, in this first branch, A could easily output an arbitrary
tree r in which every occurrence of the variable xi is replaced by t|ui . This ends the description of A.

As the complexity of typechecking the transducer A depends critically on the number of visible pebbles used (see
Theorem 8), we wish to minimize that number and use as few visible pebbles as possible for matching. It should be clear
that, instead of using n visible pebbles, A can also use n − 2 visible pebbles c1, . . . , cn−2, one invisible pebble cn−1 on top
(which is therefore always observable), and the head instead of the last pebble cn . Then A can perform the mso test χ(x)
on the observable configuration, defined by χ(x) ≡

∀x1, . . . , xn−1((pebc1
(x1) ∧ · · · ∧ pebcn−1

(xn−1)) → ϕ′(x1, . . . , xn−1, x))

where xn is renamed into x in ϕ′ . Thus, from Theorem 16 we obtain the following result on the matching of arbitrary mso

definable patterns.

Theorem 29. For n ≥ 2, every mso definable n-ary pattern can be matched by a total deterministic vn−2i-ptt. Moreover, and in
particular, every mso definable unary or binary pattern can be matched by a total deterministic i-ptt.

To further reduce the number of visible pebbles, we consider the more specific case of queries of the form

for X where β(ϕ1, . . . ,ϕm) return r

in which β(ϕ1, . . . , ϕm) is a boolean combination (using ∧, ∨, ¬) of the mso formulas ϕ1, . . . , ϕm , m ≥ 2, and each ϕ� ,
� ∈ [1, m], has its free variables in X . We will make use of the fact that not all variables in X need actually occur in each
formula ϕ� . As discussed in the Introduction, the for · · · where construct in XQuery often induces patterns ϕ1 ∧ · · · ∧ ϕm

such that each ϕ� contains just two free variables, cf. [32].
Consider an arbitrary query as displayed above. Let Gϕ = (Vϕ, Eϕ) be the undirected graph induced by the pattern

ϕ ≡ β(ϕ1, . . . , ϕm), by which we mean that the set Vϕ of vertices of Gϕ consists of the free variables of ϕ , i.e., Vϕ =X , and
that the set Eϕ of edges of Gϕ consists of the unordered pairs {x, y} (with x, y ∈ Vϕ , x �= y) for which there exists � ∈ [1, m]
such that both x and y occur (free) in ϕ� . Note that Gϕ does not depend on any order of the variables in X . Note also that
for every finite undirected graph G there exists ϕ ≡ ϕ1 ∧ · · · ∧ ϕm such that G is isomorphic to Gϕ .

Pattern matching ϕ , and executing the above query, can be done by a total deterministic ptt A as follows, similarly
to the general ptt A above (as discussed before Theorem 29). Again, let λ = (x1, . . . , xn) be an arbitrary order of the
variables in X . Pebbles with distinct colours c1, . . . , cn−1 are used to represent x1, . . . , xn−1, dropping them in that order.
For every j ∈ [1, n], when pebbles c1, . . . , c j−1 are dropped on the tree and the head is at a candidate position u j for the
variable x j , all mso tests ϕ� are performed of which the free variables are in {x1, . . . , x j} (and that have not been tested
before). Thus, when A has enumerated a sequence u1, . . . , un , it can compute the boolean value of ϕ(u1, . . . , un). For each
match u1, . . . , un the tree r is generated, such that for every occurrence of the variable xi in r the subtree rooted at ui is
generated, by a separate process; that is straightforward, even when ci is invisible: lift pebbles cn−1, . . . , ci+1 one by one
(in that order), and then access ci and output t|ui . Note that, as before, the matches are generated in the lexicographic
document order induced by the order λ.

It remains to determine which are the visible and invisible pebbles, keeping in mind that we wish to use as many
invisible pebbles as possible for matching. To do the mso tests at position u j all pebbles ci for which {xi, x j} ∈ Eϕ and
i < j should be observable. Hence all such pebbles under the topmost pebble c j−1 must be visible. These are the pebbles
corresponding to the set

vis(λ) = {xi | there exists {xi, x j} ∈ Eϕ such that i + 1 < j}.
Thus, for A we define Cv = {ci | xi ∈ vis(λ)} and C i = {ci | xi /∈ vis(λ)}. Note that cn−1 ∈ C i .

In the case where the order λ = (x1, . . . , xn) of the variables is irrelevant, we may want to determine an optimal order.
A finite undirected graph G = (V , E) will be called a union of paths if it is acyclic and has only vertices of degree at most 2.
Intuitively this means that each connected component of G is a path. Thus, clearly, there is an order v1, . . . , v p of the
vertices of G such that for all i, j ∈ [1, p] with i < j, if {vi, v j} ∈ E then i + 1 = j (repeatedly pick a vertex of degree 0 or 1,
and remove it from the graph together with all its incident edges). We will call this an invisible order of the vertices of G .
Note that a graph is a union of paths if and only if it has an invisible order. Note also that every subgraph of G is also a
union of paths.
72

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Fig. 5. Visible sets of different sizes.

Fig. 6. Three visible sets of minimal size.

For an arbitrary finite undirected graph G = (V , E), let us now say that a set W ⊆ V of vertices of G is a visible set of G
if the subgraph of G induced by V \ W , denoted by G[V \ W], is a union of paths. By the last sentence of the previous
paragraph, every superset of a visible set is also a visible set.

Lemma 30. A set of variables W ⊆ Vϕ is a visible set of Gϕ if and only if there is an order λ of Vϕ such that vis(λ) ⊆ W .

Proof. (If) It is easy to verify that every vis(λ) is a visible set of Gϕ . In fact, for all i < j, if xi, x j /∈ vis(λ) and {xi, x j} ∈ Eϕ ,
then i + 1 = j.

(Only if) Define the order λ on Vϕ as follows. First list the vertices of W in any order. Then list the remaining vertices
according to an invisible order of the vertices of Gϕ [Vϕ \ W]. Obviously vis(λ) ⊆ W . �
Theorem 31. Pattern ϕ ≡ β(ϕ1, . . . , ϕm) can be matched by a total deterministic vki-ptt where k = #(W) for a visible set W of Gϕ .
In particular, if Gϕ is a union of paths, then ϕ can be matched by a total deterministic i-ptt.

Proof. By Lemma 30 there is an order λ of Vϕ such that vis(λ) ⊆ W . Hence at most #(W) visible pebbles suffice. If Gϕ is
a union of paths, then W = ∅ is a visible set. �

Lemma 30 shows that finding an order λ for which vis(λ) is of minimal size, is the same as finding a visible set W
of minimal size. Unfortunately, this is an NP-complete problem. More precisely, the problem whether for a given graph
G = (V , E) and a given number k there is a set of vertices V ′ ⊆ V with #(V ′) ≥ k such that G[V ′] is a union of paths, is
NP-complete (see Problem GT21 of [28]).

We now give some examples of visible sets of a graph G . It suffices to take as visible vertices those of degree ≥ 3 in G
(plus one vertex in each connected component that is a cycle). But often one can choose a smaller set.

Example 32. If G is a cycle or a star, then it has a visible set W with #(W) = 1 (for a cycle any singleton is a visible set,
and for a star the visible set W consists of the centre vertex).

In Figs. 5 and 6 we show graphs with the vertices of a visible set W encircled. For the graph G in Fig. 5, the upper left W
consists of all vertices of degree 3. It is not minimal, in the sense that it has a proper subset that is also a visible set, as
shown at the upper right. This one is minimal, because dropping one of the vertices from W produces a vertex of degree 3
in the complement. Another minimal visible set (of the same size) is shown at the lower left: dropping the leftmost vertex
of W produces a cycle, and dropping one of the other vertices produces two vertices of degree 3. Finally, a visible set of
size 3 is shown at the lower right. It is of minimal size, i.e., #(W) ≥ 3 for every visible set W of G . In fact, removing a
vertex of degree 2 from G leaves a graph with two disjoint cycles that both must be broken, whereas removing a vertex of
degree 3 from G either leaves a graph with two disjoint cycles or a graph with a cycle and a vertex of degree 3 of which
the neighbourhood is disjoint with that cycle. Thus, any pattern ϕ such that Gϕ is isomorphic to G can be matched with
three visible pebbles.

Visible sets of minimal size need not be unique. For the graph in Fig. 6, three different visible sets of minimal size are
shown. �
73

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
If we allow matches to occur more than once in the output, then Theorem 31 is not optimal (still assuming that the
order λ is irrelevant). Using the boolean laws, the mso formula ϕ ≡ β(ϕ1, . . . , ϕm) can be written as a disjunction ϕ ≡
ψ1 ∨ · · · ∨ ψk where each ψi is a conjunction of some of the formulas ϕ1, . . . , ϕm or their negations. Now the ptt A can
execute the queries ‘for X where ψi return r’ consecutively for i = 1, . . . , k. Obviously, Gψi is a subgraph of Gϕ for
every i ∈ [1, k]. Hence every visible set of Gϕ is also a visible set of Gψi , and so the minimal size of the visible sets of
Gψi is at most the minimal size of the visible sets of Gϕ . Thus, pattern matching formulas ψ1, . . . , ψk consecutively needs
at most as many visible pebbles as pattern matching ϕ , but it may need less. As a simple example, let ϕ ≡ ϕ1(x, y) ∧
(ϕ2(y, z) ∨ϕ3(x, z)). Then Gϕ is a triangle, which needs one visible pebble. But ϕ ≡ ψ1 ∨ ψ2 where ψ1 ≡ ϕ1(x, y) ∧ ϕ2(y, z)
and ψ2 ≡ ϕ1(x, y) ∧ ϕ3(x, z). Both Gψ1 and Gψ2 are (unions of) paths, which do not need visible pebbles. Thus, ϕ can be
matched by an i-ptt. However, all matches for which ϕ1 ∧ ϕ2 ∧ ϕ3 holds occur twice in the output.

We finally discuss another way to reduce the number of visible pebbles. Suppose that, for some i ∈ [1, m], the formula ϕi
has exactly two free variables x, y ∈ X . Thus, the edge {x, y} is in Eϕ . Suppose moreover that the trip defined by ϕi(x, y)

is functional. Suppose finally that W is a visible set of Gϕ with x, y ∈ W . Then all other edges of Gϕ incident with y can
be redirected to x, and y can be dropped from W . To be precise, every formula ϕ j that contains the free variable y can be
changed into the formula ∀y(ϕi(x, y) → ϕ j) that contains the free variable x instead of y. The resulting query is obviously
equivalent to the given one.

11. Pebble forest transducers

The ptt transforms ranked trees, whereas XML documents are unranked forests. However, it is not difficult to use, or
slightly adapt, the ptt for the transformation of forests. The most obvious, and well-known way to do this, is to encode the
forests as binary trees. Let enc′ be the class of all encodings enc′ (one encoding for each input alphabet), and let dec be
the class of all decodings dec (one decoding for each output alphabet �). Then we can view the class enc′ ◦ Vk I-PTT ◦ dec
as the class of forest transductions realized by vki-ptt’s. For the input forest f this is a natural definition, because it is quite
easy to visualize a ptt walking on enc′(f) as actually walking on f itself. For the output forest g this is also a natural defi-
nition, as it is, in fact, easy to transform a ptt that outputs enc(g) into a (slightly adapted type of) ptt that directly outputs
g itself: change every output rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, 〈q2, stay〉) into 〈q, σ , j, b〉 → δ(〈q1, stay〉)〈q2, stay〉, and every
output rule 〈q, σ , j, b〉 → e into 〈q, σ , j, b〉 → ε. The definition is also natural with respect to typechecking, because a forest
language L is regular if and only if the tree language enc(L) is regular, and similarly for enc′(L). Since the transformation of
the involved grammars can obviously be done in polynomial time, Theorem 8 in Section 5 also holds for vki-ptt as forest
transducers.

We observe here that the class enc′ ◦Vk I-PTT◦dec does not depend on the chosen encodings and decodings, i.e., enc′ can
be replaced by the class enc of all encodings enc, and dec by the class dec′ of all decodings dec′ . In fact, a ptt that walks
on enc′(f) can easily be simulated by one that walks on enc(f): the original label σ kl can be determined by inspecting the
children of the node with label σ . Vice versa, a ptt that walks on enc(f) can be simulated by one that walks on enc′(f):
a node with label, e.g., σ 01 represents the original node and its first child with label e; the difference between these nodes
can be stored in the finite state and in the pebble colours of the simulating ptt. Moreover, a ptt that outputs enc′(g)

can easily be simulated by one that outputs enc(g): change, e.g., the rule 〈q, σ , j, b〉 → δ01(〈q′, stay〉) into the two rules
〈q, σ , j, b〉 → δ(〈p, stay〉, 〈q′, stay〉) and 〈p, σ , j, b〉 → e where p is a new state. Vice versa, a ptt A that outputs enc(g) can
be simulated by a ptt A that outputs enc′(g), but that requires look-ahead (Theorem 19), as follows. If A has an output
rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, 〈q2, stay〉), then A′ has the rule 〈q, σ , j, b, B01〉 → δ01(〈q2, stay〉) where B01 is a look-ahead
test that finds out whether A can generate e when started in state q1 in the current situation. To be precise, B01 is obtained
from A by changing its set of initial states into {q1} and removing all output rules that do not output e. And of course,
A′ has similar rules for the other symbols δi j .

So far so good, in particular for the input forest f . There is, however, another natural possibility for the output forest g ,
as introduced and investigated in [47] for macro tree transducers. It is quite natural to allow a ptt that directly outputs g ,
as discussed above, to not only have output rules with right-hand sides δ(〈q1, stay〉)〈q2, stay〉 and ε, but also right-hand
sides 〈q1, stay〉〈q2, stay〉 and δ(〈q′, stay〉) that realize the concatenation of forests and the formation of a tree out of a forest.

Accordingly we define a tree-walking forest transducer with nested pebbles (abbreviated pft) to be the same as a ptt M,
except that its output alphabet is unranked, and its output rules are of the form 〈q, σ , b, j〉 → ζ with ζ = δ(〈q′, stay〉)
introducing a new node with label δ and generating a forest from state q′ , or ζ = 〈q1, stay〉 〈q2, stay〉 concatenating two
forests, or ζ = ε generating the empty forest. Note that a right-hand side δ(〈q1, stay〉)〈q2, stay〉 is also allowed, as it can
easily be simulated in two steps.

Formally, an output form of the pft M on an input tree t is defined to be a forest in F�(Con(t)). Let s be an output
form and let v be a leaf of s with label 〈q, u, π〉 ∈ Con(t). If the rule 〈q, σ , b, j〉 → ζ is relevant to 〈q, u, π〉 then we write
s ⇒t,M s′ where s′ is obtained from s as follows. If the rule is not an output rule, then the label of v is changed in the same
way as for the pta and ptt. If ζ = δ(〈q′, stay〉) then node v is replaced by the subtree δ(〈q′, u, π〉). If ζ = 〈q1, stay〉 〈q2, stay〉
then node v is replaced by the two-node forest 〈q1, u, π〉〈q2, u, π〉. And if ζ = ε then the node v is removed from s. The
transduction realized by M consists of all (t, s) ∈ T	 × F� such that 〈q0, roott〉 ⇒∗

t,M s for some q0 ∈ Q 0. Thus, we have
defined the pft as a transformer of ranked trees into unranked forests. The corresponding classes of transductions are
denoted by Vk I-PFT. For forest transformations one can of course consider the classes enc′ ◦ Vk I-PFT.
74

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Lemma 33. For every k ≥ 0,

(1) VkI-PTT ◦ dec ⊆ VkI-PFT and (2) VkI-PFT ◦ enc ⊆ VkI-PTT ◦ I-dPTT

and similarly for the deterministic case.

Proof. Inclusion (1) is obvious from the discussion above: change every rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, 〈q2, stay〉) into
〈q, σ , j, b〉 → δ(〈q1, stay〉)〈q2, stay〉, and every rule 〈q, σ , j, b〉 → e into 〈q, σ , j, b〉 → ε.

The proof of inclusion (2) is similar to the proof in [47] that every macro forest transducer can be simulated by two
macro tree transducers. Let M be a vki-pft with (unranked) output alphabet �. Let �1 be the ranked alphabet � ∪
{@(2), e(0)}, where every element of � has rank 1. We now obtain the vki-ptt M′ from M by changing every output
rule 〈q, σ , b, j〉 → 〈q1, stay〉 〈q2, stay〉 into 〈q, σ , b, j〉 → @(〈q1, stay〉, 〈q2, stay〉) and every output rule 〈q, σ , b, j〉 → ε into
〈q, σ , b, j〉 → e. Let ‘flat’ be the mapping from T�1 to F� defined by flat(@(t1, t2) = flat(t1)flat(t2), flat(δ(t)) = δ(flat(t)) and
flat(e) = ε. Then obviously τM = τM′ ◦ flat. Thus, it remains to show that the mapping flat ◦ enc is in I-dPTT. We will prove
this after Theorem 37. It is, in fact, not hard to see that flat ◦ enc is even in dTT. �
Typechecking. The inverse type inference problem and the typechecking problem are defined for pft’s as in Section 5,
except that Gout is a regular forest grammar rather than a regular tree grammar. It follows from Lemma 33(2), together
with Lemma 4, Theorem 5, and Propositions 6 and 7 that these problems can be solved for vki-pft’s in (k + 4)-fold and
(k + 5)-fold exponential time. However, it is shown in [14, Section 7] that they can be solved for vk-pft’s in the same
time as for vk-ptt’s, i.e., in (k + 1)-fold and (k + 2)-fold exponential time, respectively. This is due to the fact (shown
in [14, Lemma 4]) that inverse type inference for the mapping flat ◦ enc can be solved in polynomial time, cf. the proof
of Lemma 33. For exactly the same reason a similar result holds for vki-pft’s. In other words, Theorem 8 also holds for
vki-pft’s.

Theorem 34. For fixed k ≥ 0, the inverse type inference problem and the typechecking problem are solvable for vki-pft’s in (k +2)-fold
and (k + 3)-fold exponential time, respectively.

MSO tests. It should be clear that Theorem 16 also holds for the pft, as mso tests only concern the input tree.

Pattern matching. Pattern matching for forests can be defined in exactly the same way as we did for trees in Section 10.
Since, obviously, Lemma 24 also holds for arbitrary n-ary patterns instead of trips, we may however assume that the input
forest f over 	 of the query

for X where ϕ return r

is encoded as a binary tree t = enc′(f) over 	′ for which we execute the query

for X where ϕ′ return r

where ϕ′ is the encoding of the formula ϕ according to Lemma 24. Consequently, we can use a pft to execute this query
and produce for each match of ϕ′(x1, . . . , xn) the required output r. We may now assume that r is a forest rather than a
tree, and we may for simplicity assume that r is of the form μ(x1 · · · xn) for some output symbol μ. Thus, the output for
each match ϕ′(u1, . . . , un) is μ(f |u1 · · · f |un), and the output forest is of the form s = r1r2 · · · rke where r1, . . . , rk are the
outputs corresponding to all the matches. Note that e is another output symbol, and so � = 	 ∪ {μ, e}. It should be clear
how the total deterministic ptt A in Section 10 can be changed into a total deterministic pft that executes this query.
The only small problem is that A outputs the encoded subtrees t|ui rather than the required subtrees f |ui . However, a pft

can easily transform an encoded forest enc′(f |u) into the forest f |u , using rules 〈q, σ 11, j, b〉 → σ(〈q, down1〉)〈q, down2〉,
〈q, σ 01, j, b〉 → σ 〈q, down1〉, 〈q, σ 10, j, b〉 → σ(〈q, down1〉), and 〈q, σ 00, j, b〉 → σ .

From this it should be clear that Theorems 29 and 31 also hold for forest pattern matching and pft.

Expressive power. As in [47], the pft is more powerful than the ptt. In particular, the i-pft is more powerful than the i-ptt

that generates encoded forests, i.e., I-PTT ◦ dec is a proper subclass of I-PFT. In fact, it is well known (cf. [20, Lemma 7]
and [26, Lemma 5.40]), and easy to see, that the height of the output tree of a functional tt M (which means that τM
is a function) is linearly bounded by the size of the input tree: otherwise M would be in a loop and would generate
infinitely many output trees for that input tree. Since I-PTT ⊆ TT ◦ TT by Lemma 4, this implies that for a functional
i-ptt the height of the output tree is exponentially bounded by the size of the input tree. However, the following total
deterministic i-pft M2exp outputs, for an input tree of size n, a forest of length double exponential in n. Since the height
of the encoded output forest is at least the length of that forest, this transformation cannot be realized by an i-ptt that
generates encoded forests. The transducer M2exp is similar to the i-ptt Msib of Example 2, assuming that there are large
cities only. Thus, using its pebbles, it enumerates 2n itineraries (where n is the number of intermediate cities). However, after
75

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
marking an itinerary, it does not output the itinerary, but instead branches into two identical subprocesses that continue the
enumeration. After the last itinerary, M2exp is branched into a forest of 22n

copies of itself, each of which finally outputs
one symbol. Imitating Msib, the i-pft M2exp first walks to the leaf:

〈qstart,σ1, j,∅〉 → 〈qstart,down1〉
〈qstart,σ0,1,∅〉 → 〈q1,up〉

Then, in state q1, it marks as many cities as possible:

〈q1,σ1,1,∅〉 → 〈q1,dropc;up〉
〈q1,σ1,0,∅〉 → 〈qnext,down1〉〈qnext,down1〉

In state qnext it continues the search for itineraries by unmarking the most recently marked city; when arriving at the leaf
it outputs e:

〈qnext,σ1,1,∅〉 → 〈qnext,down1〉
〈qnext,σ1,1, {c}〉 → 〈q1, liftc;up〉
〈qnext,σ0,1,∅〉 → e

This ends the description of the i-pft M2exp.

12. Document transformation

In this section we compare the i-ptt and i-pft to the document transformation languages dtl and tl, which transform
(unranked) forests. We prove that dtl can be simulated by the i-ptt, and that tl has the same expressive power as the i-pft.

The Document Transformation Language dtl was introduced and studied in [38]. A program in the dtl framework is a
tuple P = (, �, Q , Q 0, R) where 	 and � are unranked alphabets, Q is a finite set of states, Q 0 ⊆ Q is the set of initial
states, and R is a finite set of template rules of the form 〈q, ϕ(x)〉 → f , where f is a forest over �, the leaves of which
can additionally be labeled by a selector of the form 〈q′, ψ(x, y)〉; q and q′ are states in Q , and ϕ and ψ are mso formulas
over 	, with one and two free variables respectively. Such a rule can be applied in state q at an input node x that matches ϕ ,
i.e., satisfies ϕ(x). Then program P outputs forest f , where each selector 〈q′, ψ(x, y)〉 is recursively computed as the result
of a sequence of copies of P , started in state q′ at each of the nodes y that satisfy ψ(x, y), the nodes taken in pre-order
(i.e., document order). Thus, P “jumps” from node x to each node y, according to the trip defined by the mso formula ψ .

Formally, a configuration of P on input forest t is a pair 〈p, u〉 where u is a node of t and p is either a state or a selector
of P . An output form of P on t is a forest in F�(Con(t)), where Con(t) is the set of configurations of P on t . As usual, the
computation steps of P on t are formalized as a binary relation ⇒t,P on F�(Con(t)). Let s be an output form and let v
be a leaf of s with label 〈q, u〉 ∈ Con(t), where q is a state of P . Moreover, let 〈q, ϕ(x)〉 → f be a template rule of P such
that t |= ϕ(u). Let θu(f) be the forest obtained from f by changing every selector 〈q′, ψ(x, y)〉 into 〈〈q′, ψ(x, y)〉, u〉. Then
we write s ⇒t,P s′ where s′ is obtained from s by replacing the node v by the forest θu(f). Now let s be an output form
and let v be a leaf of s with label 〈〈q′, ψ(x, y)〉, u〉. Then we write s ⇒t,P s′ where s′ is obtained from s by replacing the
node v by the forest 〈q′, u′

1〉 · · · 〈q′, u′
�〉 where u′

1, . . . , u
′
� is the sequence of all nodes u′ of t , in document order, such that

t |= ψ(u, u′). The transduction τP realized by P is defined by τP = {(t, s) ∈ F	 × F� | ∃ q0 ∈ Q 0 : 〈q0, roott〉 ⇒∗
t,P s}.

The dtl program P is deterministic if for every two rules 〈q, ϕ(x)〉 → f and 〈q, ϕ′(x)〉 → f ′ with the same state q, the
tests ϕ(x) and ϕ′(x) are exclusive, meaning that the sites they define are disjoint.

We observe here that in [38] the selectors have a more complicated form, which we will discuss after the next lemma.
We have defined the dtl program such that the input t is an unranked forest, and thus it can in particular be a ranked

tree. It should be clear from Lemma 24 (which also holds for sites instead of trips) that we may in fact restrict ourselves
to ranked trees and assume that input forests are encoded as binary trees. Thus, from now on we assume that in the above
definition 	 is a ranked alphabet and t ∈ T	 is a ranked input tree. This allows us to compare dtl programs with pft’s.

Let DTL denote the transductions realized by dtl programs and dDTL those realized by deterministic dtl programs, from
ranked trees to unranked forests. Thus, the class of forest transductions realized by dtl programs is equal to enc′ ◦ DTL, and
similarly for the deterministic case.

Lemma 35. DTL ⊆ I-PFT and dDTL ⊆ I-dPFT.

Proof. Let P = (, �, Q , Q 0, R) be a dtl program. We construct an equivalent i-pft M with mso tests, cf. Theorem 16. It
has the same alphabets 	 and � as P . Since M stepwise simulates P , its set of states consists of the states and selectors
of P , plus the states that it needs to execute the subroutines discussed below. It has the same initial states Q 0 as P .
Moreover, it uses invisible pebbles of a single colour �, and never lifts its pebbles.
76

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
For an input tree t , the transducer M simulates a template rule 〈q, ϕ(x)〉 → f in state q at node u of t by first using
an mso head test to check whether t |= ϕ(u). With a positive test result, it calls a subroutine S that outputs the �-labeled
nodes of the right-hand side f . The subroutine S is started by M in state [f]. If its state is of the form [sf ′], for a tree s
and a forest f ′ , it uses a rule 〈[sf ′], σ , j, b〉 → 〈[s], stay〉 〈[f ′], stay〉, branching the computation. If the state is of the form
[δ(f ′)], the rule is 〈[δ(f ′)], σ , j, b〉 → δ(〈[f ′], stay〉), and if it is of the form [ε], the rule is 〈[ε], σ , j, b〉 → ε. If the state is of
the form [〈q′, ψ(x, y)〉], for a selector 〈q′, ψ(x, y)〉, the subroutine S returns control to (this copy of) M in state 〈q′, ψ(x, y)〉.
In that state, M first drops a pebble � on the current node u and then calls a subroutine Sq′,ψ that finds all nodes u′ in
the input tree t for which ψ(u, u′) holds. The subroutine does this by performing a depth-first traversal of t , starting at the
root, checking in each node u′ whether t |= ψ(u, u′) using an mso test on the observable configuration. If true, then Sq′,ψ
branches into two concatenated processes. The left branch returns control to M in state q′ , and the right branch continues
the depth-first search. When the search ends, Sq′,ψ outputs ε. Thus, Sq′,ψ transforms the configuration 〈〈q′, ψ(x, y)〉, u, π〉
of M into the forest of configurations 〈q′, u′

1, π〉 · · · 〈q′, u′
�, π〉, where u′

1, . . . , u
′
� are all such nodes u′ , in document order.

With this definition of M, it should be clear that τM = τP . �
The selectors in [38] are more general than those defined above. They can be of the form 〈q′

1, ψ1(x, y), . . . , q′
m, ψm(x, y)〉,

such that the mso formulas ψ1(x, y), . . . , ψm(x, y) are mutually exclusive, i.e., the trips they define are mutually disjoint. Let
ψ(x, y) be the disjunction of all ψi(x, y), i ∈ [1, m]. The execution of the above selector at node u of the input tree results in
the forest 〈q′

i1
, u′

1〉 · · · 〈q′
i�
, u′

�〉 where u′
1, . . . , u

′
� is the sequence of all nodes u′ of t in document order such that t |= ψ(u, u′),

and for every j ∈ [1, �], i j is the unique number in [1, m] such that t |= ψi j (u, u′
j). It should be clear that Lemma 35 is still

valid with these more general selectors. To execute the above selector, the i-pft M calls subroutine Sq′
1,ψ1,...,q′

m,ψm
which

in each node u′ tests each of the formulas ψi(u, u′); if ψi(u, u′) is true, then the subroutine branches in two, in the first
branch returning control to M in state qi .

To compare DTL to I-PTT rather than I-PFT we also consider dtl programs that transform ranked trees. A dtl program
P = (, �, Q , Q 0, R) is ranked if 	 and � are both ranked alphabets, and every rule 〈q, ϕ(x)〉 → f satisfies the following
two restrictions:

(R1) f is a ranked tree in T�(S) where S is the set of selectors, and
(R2) for every selector 〈q′, ψ(x, y)〉 that occurs in f , every input tree t ∈ T	 , and every node u ∈ N(t), if t |= ϕ(u) then

there is a unique node v ∈ N(t) such that t |= ψ(u, v).

In other words, the trip T (ψ(x, y)) is functional and, for fixed input tree t ∈ T	 , it is defined for every node of t that satisfies
ϕ(x). Thus, execution of the selector 〈q′, ψ(x, y)〉 results in a “jump” from node x to exactly one node y. This clearly implies
that all reachable output forms of P are ranked trees in T�(Con(t)). Thus τP ⊆ T	 × T� is a ranked tree transformation.
The class of transductions realized by ranked tl programs will be denoted by DTLr , and by dDTLr in the deterministic case.

Corollary 36. DTLr ⊆ I-PTT and dDTLr ⊆ I-dPTT.

Proof. The proof is the same as the one of Lemma 35, except for the subroutines S and Sq′,ψ . The states of S are now of the
form [s] where s is a subtree of a right-hand side of a rule. Instead of the rules for states [sf ′], [δ(f ′)], and [ε], subroutine S
has rules 〈[δ(s1, . . . , sm)], σ , j, b〉 → δ(〈[s1], stay〉, . . . , 〈[sm], stay〉) for every δ of rank m and all trees s1, . . . , sm (restricted
to subtrees of right-hand sides). When subroutine Sq′,ψ finds a node u′ such that t |= ψ(u, u′) (and it always finds one by
restriction (R2)), it returns control to M and does not continue the depth-first search. �

It can, in fact, be shown that when output forests are encoded as binary trees, DTL is included in I-PTT. Thus, instead
of I-PFT we consider the class I-PTT ◦ dec (which equals the class I-PTT ◦ dec′), cf. Section 11. The next theorem will not be
used in what follows (except in the paragraph directly after the theorem).

Theorem 37. DTL ⊆ I-PTT ◦ dec and dDTL ⊆ I-dPTT ◦ dec.

Proof. Let P = (, �, Q , Q 0, R) be a dtl program. The main difficulty in outputting the binary encoding enc(f) of a for-
est f as opposed to the construction in the proof of Lemma 35 is that here the first symbol δ of f has to be determined
before any other output can be generated. We reconsider that construction, and here essentially make a depth-first se-
quential search over nodes in the computation tree (implemented using a stack of pebbled nodes) instead of the recursive
approach. In that way an i-ptt M can simulate the leftmost computations of the dtl program P .

As unranked forests with selectors can be generated by the recursive definition f ::= δ(f) f ′ | 〈q, ψ〉 f | ε, where f ′ is an
alias of f , dtl rules are of the form 〈q, ϕ(x)〉 → f , where f is δ(f1) f2, 〈q, ψ〉 f ′ , or ε. The set of states of the transducer M
to be constructed consists of the states of P and all states [f] where f is a subforest of a right-hand side of a rule of P ,
plus the states of the subroutines S ′

q′,ψ and S ′′
q′,ψ discussed below. The state [f] is used to generate the binary encoding of

the subforest f , similarly to its use by the subroutine S in the proof of Lemma 35. The initial states of M are those of P .
77

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
The pebble colours used by M are 〈q, ψ, f 〉 where 〈q, ψ〉 f occurs in the right-hand side of a rule of P , and the special
colour ⊥. The state and pebble stack of M store a part of the output form of P that still has to be evaluated. The output
alphabet of M is � ∪ {e} where each δ ∈ � has rank 2 and e has rank 0.

The transducer M starts by dropping ⊥ on the root. To simulate, in state q, a rule 〈q, ϕ(x)〉 → f of P , it uses an mso

head test to check whether ϕ holds for the current node, and goes into state [f]. We consider the above three cases for [f].
In state [〈q′, ψ〉 f ′], pebble 〈q′, ψ, f ′〉 is dropped on the current node u. As in the proof of Lemma 35, M then calls a

subroutine S ′
q′,ψ which, this time, finds the first node u′ (in document order) for which ψ(u, u′) holds, where it returns

control to M in state q′ . If S ′
q′,ψ does not find such a matching node u′ , then it moves to the topmost pebble 〈q′, ψ, f ′〉,

lifts it, and returns control to M in state [f ′].
In state [f] = [δ(f1) f2], the root δ of the first tree of the forest is explicitly given, and this is captured by the i-ptt output

rule 〈[f], σ , j, b〉 → δ(〈[f1], drop⊥〉, 〈[f2], stay〉). The symbol ⊥ is pushed, and never popped afterwards, making the stack
of pebbles effectively empty: the first copy of the transducer evaluates f1 as left child of δ. The second copy inherits the
stack and evaluates f2 as right child of δ, together with all postponed duties as stored in the stack of pebbles. This will
generate the siblings of δ in the original forest.

In state [ε], the transducer M determines the colour of the topmost pebble, using an mso test on the observable config-
uration. If it is ⊥, it outputs e for the empty forest. Otherwise it calls subroutine S ′′

q′,ψ to continue the search corresponding
to the topmost pebble 〈q′, ψ, f ′〉. That subroutine finds the first node u′ after the current node u (in document order) for
which ψ(v, u′) holds, where v is the position of the topmost pebble. Similar to S ′

q′,ψ , if a matching node is found it returns
control to M in state q′ , and otherwise it lifts the topmost pebble and returns control to M in state [f ′].

This ends the description of M. To understand its correctness, we show how the output forms of M represent output
forms of P . We disregard the output forms of M that contain states of the subroutines S ′

q′,ψ and S ′′
q′,ψ , and view the execu-

tion of such a subroutine as one big computation step of M that (deterministically) changes one configuration into another.
The mapping ‘rep’ from such restricted output forms of M to output forms of P is defined as follows. The �-labeled part
of the output form of M is decoded, i.e., rep(e) = ε and rep(δ(s1, s2)) = δ(rep(s1)) rep(s2). It remains to define ‘rep’ for
the configurations on an input tree t that occur in the restricted output forms of M, i.e., for every configuration 〈p, u, π〉
where p is a state q of P or a state [f]. We will write rep(p, u, π) instead of rep(〈p, u, π〉). The definition is by induc-
tion on the structure of π , of which the topmost pebble is of the form (v, ⊥) or (v, 〈q′, ψ, f ′〉). For a state [f], we define
rep([f], u, π(v, ⊥)) = θu(f) and

rep([f], u,π(v, 〈q′,ψ, f ′〉)) = θu(f)〈q′, u′
1〉 · · · 〈q′, u′

�〉 rep([f ′], v,π)

where u′
1, . . . , u

′
� are all nodes u′ after u (in document order) such that t |= ψ(v, u′). Note that rep([f], u, π) =

θu(f) rep([ε], u, π) because θu(ε) = ε, and hence

rep([f1 f2], u,π) = θu(f1) rep([f2], u,π).

For a state q of P we define rep(q, u, π) = 〈q, u〉 rep([ε], u, π).
It is now straightforward to prove, for every initial state q0 of P , every input tree t , and every output form s of P , that

〈q0, roott〉 ⇒∗
t,P s if and only if there exists a restricted output form s′ of M such that 〈q0, roott , (roott , ⊥)〉 ⇒∗

t,M s′ and
rep(s′) = s. The proof of the if-direction of this equivalence is by induction on the length of the computation, and consists
of four cases, depending on the state of the configuration of M that is rewritten, as discussed above, viz., q, [〈q′, ψ〉 f ′],
[δ(f1) f2], or [ε]. From the last two cases it follows that for every restricted output form s′ of M there exists a restricted
output form s′′ of M such that s′ ⇒∗

t,M s′′ , rep(s′′) = rep(s′), and the states of M that occur in s′′ are either states q of P
or states of the form [〈q′, ψ〉 f ′]. In the only-if-direction we only consider leftmost computations of P , i.e., computations in
which always the first configuration of the output form (in pre-order) is rewritten. If rep(s′) = rep(s′′) = s, with s′′ as above,
then the first configuration of M in s′′ corresponds to the first configuration of P in s, and the proof is similar to the first
two cases of the proof of the if-direction. The details are left to the reader. Since rep(s′) = dec(s′) for every output tree s′
of M, the above equivalence implies that τM ◦ dec = τP . �

We are now able to finish the proof of Lemma 33(2). Consider the mapping flat : T�1 → F� defined in that proof.
It can be realized by the one-state deterministic dtl program with rules 〈q, lab@(x)〉 → 〈q, down1(x, y)〉〈q, down2(x, y)〉,
〈q, labδ(x)〉 → δ(〈q, down1(x, y)〉) for every δ ∈ �, and 〈q, labe(x)〉 → ε. Hence, by Theorem 37, it is in I-dPTT ◦ dec, which
means that the mapping flat ◦ enc is in I-dPTT.

In [37] the language dtl was extended to the Transformation Language tl where the states have parameters that hold
unevaluated forests, similar to macro tree transducers with outside-in parameter evaluation [22]. In a tl program P =
(, �, Q , Q 0, R), the set of states Q is a ranked alphabet such that the initial states in Q 0 have rank 0. The rules of tl

program P are of the form 〈q, ϕ(x)〉(z1, . . . , zn) → f , where n = rankQ (q) and z1, . . . , zn are the formal parameters of q,
taken from a fixed infinite parameter set Z = {z1, z2, . . . }. The right-hand side f of the rule is a forest of which the nodes
can be labeled by a symbol from �, by a selector 〈q′, ψ(x, y)〉, or by a formal parameter zi with i ∈ [1, n]. A node labeled by
〈q′, ψ(x, y)〉 must have rank(q′) children, and a node labeled by parameter zi must be a leaf. Thus, in such a forest (called an
78

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
action in [37]), selectors can be nested. We could as well allow in tl the more general selectors discussed after Lemma 35,
but we restrict ourselves to the usual selectors for simplicity (and because they are the selectors in [37]). Determinism of
program P is defined as for dtl.

An output form of P on input forest t is a forest of which the nodes can be labeled either by a symbol from �,
or by a configuration 〈q, u〉 or 〈〈q, ψ(x, y)〉, u〉 of P in which case the node must have rank(q) children. A node of an
output form, or of a right-hand side of a rule, is said to be outermost if all its proper ancestors are labeled by a symbol
from �. The computation steps of P are formalized as a binary relation on output forms, as follows (similar to the dtl

case). Let s be an output form, and let v be an outermost node of s with label 〈q, u〉, where q is a state of P . Moreover, let
〈q, ϕ(x)〉(z1, . . . , zn) → f be a rule of P such that t |= ϕ(u). Let θu(f) be defined as in the dtl case. Then we write s ⇒t,P s′
where s′ is obtained from s by replacing the subtree s|v with root v by the forest θu(f) in which every parameter zi is
replaced by the subtree s|vi , for i ∈ [1, rank(q)]. Intuitively, the subtree s|vi rooted at the i-th child vi of v is the i-th actual
parameter of (this occurrence of) the state q. Now let s be an output form and let v be an outermost node of s with label
〈〈q′, ψ(x, y)〉, u〉 and rank(q′) = m. Then we write s ⇒t,P s′ where s′ is obtained from s by replacing the subtree s|v with
root v by the forest 〈q′, u′

1〉(s|v1, . . . , s|vm) · · · 〈q′, u′
�〉(s|v1, . . . , s|vm) where u′

1, . . . , u
′
� is the sequence of all nodes u′ of t , in

document order, such that t |= ψ(u, u′). Intuitively, the actual parameters of (this occurrence of) the selector 〈q′, ψ(x, y)〉
are passed to each new occurrence of the state q′ . As in the dtl case, the transduction realized by P is defined by τP =
{(t, s) ∈ F	 × F� | ∃ q0 ∈ Q 0 : 〈q0, roott〉 ⇒∗

t,P s}.
In [37] the denotational semantics of a tl program is given as a least fixed point. It is straightforward to show that the

semantics in [37] is equivalent to the above operational semantics.21 Also, in [37] the syntactic formulation of tl is such
that in the right-hand side of a rule the states can have forests as parameters rather than trees. Such a forest parameter
s1 · · · sm , where each si is a tree, can be expressed in our syntactic formulation of tl as the tree 〈@m, x = y〉(s1, . . . , sm),
where @m is a special state of rank m that has the unique rule 〈@m, x = x〉(z1, . . . , zm) → z1 · · · zm .

Example 38. The transformation from Example 2 can be computed by a deterministic tl program Psib with the following
rules, where the variables i, σi , c, and λi range over the same values as in Example 2, with c = 1 or i = 1 in rule ρ4.

ρ1 : 〈qstart, root(x)〉 → 〈qstart, leaf(y)〉
ρ2 : 〈qstart,¬root(x) ∧ labσ0(x)〉 → 〈q1,up(x, y)〉(σ0, e)

ρ3 : 〈q0,¬root(x) ∧ labλ0(x)〉(z1, z2) → 〈q0,up(x, y)〉(z1, z2)

ρ4 : 〈qc,¬root(x) ∧ labλi (x)〉(z1, z2) → 〈qi,up(x, y)〉(λi(z1), 〈qc,up(x, y)〉(z1, z2))

ρ5 : 〈qc, root(x) ∧ labσ1(x)〉(z1, z2) → r(σ1(z1), z2)

Intuitively, z1 represents an itinerary from some city to Vladivostok, and z2 represents a list of itineraries from Moscow to
Vladivostok (viz. all itineraries that do not have z1 as postfix), where we only consider itineraries that do not visit a small
city twice in a row.

The selectors in the right-hand sides of the rules all define functional trips, and hence select just one node. Rule ρ1
jumps from the root to the leaf, and rules ρ2, ρ3, ρ4 just move to the parent.

To show the correctness of Psib, let u be a node of an input tree t , such that u is not the leaf of t . Moreover, let ζ1 be
an output tree that is an itinerary from the child of u to the leaf, of which the first stop is large (c = 1) or small (c = 0),
and let ζ2 be an arbitrary output form. Then 〈qc, u〉(ζ1, ζ2) generates the output form r(s1(ζ1), r(s2(ζ1), . . . r(sn(ζ1), ζ2) · · ·))
where s1, . . . , sn are all possible itineraries from the root to u such that every si(ζ1) is an itinerary from root to leaf. This
can be proved by induction on the number of nodes between the root and u. The base of the induction is by rule ρ5, which
generates the root label σ1, and the induction step is by rules ρ3 and ρ4. In rule ρ3 a small city is skipped. In rule ρ4, the
outermost selector 〈qi, up(x, y)〉 generates all itineraries si from the root to x that include x (or rather, its label λi), whereas
the innermost selector 〈qc, up(x, y)〉 generates all those that do not include x. Taking c = 1, u equal to the parent of the
leaf, and σ0 to the label of the leaf, shows that 〈q1, u〉(σ0, e) generates all required itineraries. That implies the correctness
of Psib by rule ρ2.

An XSLT 1.0 program with exactly the same structure as Psib is given in Section 13. �
As in the case of DTL, we will assume that in the above definition of tl program, the input alphabet 	 is ranked and

the input forest t is a ranked tree in T	 . Also, ranked tl programs are defined as for dtl programs. In particular, for every
rule 〈q, ϕ(x)〉(z1, . . . , zn) → f , the right-hand side f is a ranked tree in T�(S ∪ Zn) where S is the set of selectors and
Zn = {z1, . . . , zn}. The program Psib of Example 38 is ranked.

Let TL denote the class of transductions realized by tl programs and dTL the class of those realized by deterministic tl

programs, from ranked trees to unranked forests. Moreover, TLr and dTLr denote the classes of transductions realized by
ranked programs, from ranked trees to ranked trees.

21 It is similar to the “alternative” fixed point characterization of the OI context-free tree languages mentioned after [21, Definition 5.19].
79

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
In what follows we will prove that TL = I-PFT, and similarly for the deterministic case and for the ranked case (The-
orem 46). Note that this also implies that tl programs and i-pft’s realize the same forest transductions, i.e., enc′ ◦ TL =
enc′ ◦ I-PFT. These equalities are variants of the well-known fact that macro grammars are equivalent to indexed grammars
[24], see also [23, Theorem 5.24].

Lemma 39. TL ⊆ I-PFT and dTL ⊆ I-dPFT. Moreover, TLr ⊆ I-PTT and dTLr ⊆ I-dPTT.

Proof. The construction extends the one in the proof of Lemma 35. The main idea is to use pebbles to store the actual
parameters. Thus, the pebble colours are of the form ([s1], . . . , [sm]) where m ≥ 0 and s1, . . . , sm are subtrees of a right-
hand side of a rule (in particular, the subtrees rooted at the children of a node that is labeled by a selector).

As in the dtl case, for an input tree t , the transducer M simulates a rule 〈q, ϕ(x)〉(z1, . . . , zn) → f in state q at node u
of t by testing whether t |= ϕ(u) and, if successful, calling subroutine S . In this (nested) case, S outputs the outermost
�-labeled nodes of f , plus the outermost �-labeled nodes of the actual parameters that are the values of the formal
parameters zi that occur outermost in f . For the states [sf ′], [δ(f ′)], and [ε], the rules of S are as in the proof of Lemma 35
(and see the proof of Corollary 36 for the ranked case). If the state of S is of the form [〈q′, ψ(x, y)〉(s1, . . . , sm)], then it
drops a pebble ([s1], . . . , [sm]) on the current node u to represent the parameters, and returns control to (this copy of) M
in state 〈q′, ψ(x, y)〉. In that state, M calls subroutine Sq′,ψ , which works as in the dtl case. Note that M need not drop
a pebble �, as Sq′,ψ can use the pebble ([s1], . . . , [sm]) instead. Finally, if the state of S is of the form [zi] for some formal
parameter zi , this means that the corresponding actual parameter has to be evaluated. To do this, the subroutine S searches
for the topmost pebble, which has some colour ([s1], . . . , [sm]). Then S lifts that pebble and changes its state to [si], ready
to evaluate si .

It is easy to show, for every i ∈N , that whenever M is in state q or state 〈q, ψ(x, y)〉 with i ∈ [1, rank(q)], and whenever
S is in state [f] and zi occurs in f , then the topmost pebble with colour ([s1], . . . , [sm]) satisfies i ∈ [1, m]. Hence the last
sentence of the previous paragraph never fails.

To understand the correctness of M, we show how the output forms of M represent output forms of P , similar to the
correctness proof of Theorem 37. We restrict ourselves to output forms in which all the states of M are states of P or selec-
tors of P or states of the subroutine S , i.e., we disregard the states of the subroutines Sq′,ψ and view the execution of such
a subroutine as one big step in the computation of M, changing a configuration 〈〈q′, ψ(x, y)〉, u, π〉 deterministically into a
forest 〈q′, u′

1, π〉 · · · 〈q′, u′
�, π〉 (which is just a one-node tree 〈q′, u′, π〉 in the ranked case). Thus, we define a mapping ‘rep’

from such restricted output forms of M to the output forms of P . The �-labeled part of the output form is not changed
by ‘rep’, i.e., rep(sf) = rep(s) rep(f), rep(ε) = ε, and rep(δ(f)) = δ(rep(f)) for δ ∈ �, where s is a tree and f a forest (or
rep(δ(s1, . . . , sm)) = δ(rep(s1), . . . , rep(sm)) in the ranked case). It remains to define ‘rep’ for the configurations of M that
occur in restricted output forms, i.e., for every configuration 〈p, u, π〉 where p is a state q of P , or a selector 〈q′, ψ(x, y)〉
of P , or a state [f] of S (where f is a subforest of a right-hand side of a rule of P). As before, we will write rep(p, u, π)

instead of rep(〈p, u, π〉). The definition is by induction on the structure of π , of which we consider the topmost pebble: let
π = π ′(v, ([s1], . . . , [sm])). If p = q or p = 〈q′, ψ(x, y)〉, then rep(p, u, π) = 〈p, u〉(rep([s1], v, π ′), . . . , rep([sm], v, π ′)). For
p = [f] we define rep([f], u, π) to be the forest θu(f) in which every parameter zi is replaced by rep([si], v, π ′). Finally,
for π = ε, we define rep(p, u, ε) = 〈p, u〉 in the first case, and rep([f], u, ε) = θu(f) in the second case. If we consider only
reachable output forms of M, then ‘rep’ is well defined (cf. the previous paragraph).

It is now straightforward to prove, for every initial state q0 of P , every input tree t , and every output form s of P , that
〈q0, roott〉 ⇒∗

t,P s if and only if there exists a restricted output form s′ of M such that 〈q0, roott , ε〉 ⇒∗
t,M s′ and rep(s′) = s.

In the proof one should use the rather obvious fact that for every restricted output form s′ of M there exists a restricted
output form s′′ of M such that s′ ⇒∗

t,M s′′ , rep(s′′) = rep(s′), and no states [f] of S occur in s′′ . The above equivalence
implies that τM = τP . �
Example 40. The i-ptt M corresponding to the (ranked) tl program Psib of Example 38, according to the proof of
Lemma 39, works in essentially the same way as the i-ptt Msib of Example 2. Rules ρ1 to ρ5 are translated into rules
for M that are similar to the first 5 rules of Msib. Rule ρ1 can be translated into the first rule of Msib, which im-
plements the jump to the leaf. Rule ρ2 can be translated into the rule 〈qstart, σ0, 1, ∅〉 → 〈q1, drop([σ0],[e]); up〉. Thus,
M drops the special pebble ([σ0], [e]) at the leaf, where Msib does not drop a pebble. Rule ρ3 can be translated
into the rule 〈q0, λ0, 1, ∅〉 → 〈q0, drop([z1],[z2]); up〉. Thus, M drops the “empty” pebble ([z1], [z2]) whenever Msib does
not drop a pebble. Rule ρ4 can be translated into the rule 〈qc, λi, 1, ∅〉 → 〈qi, dropc(λi)

; up〉, where c(λi) is the pebble
([λi(z1)], [〈qc, up(x, y)〉(z1, z2)]) which is dropped by M instead of the pebble c. Note that the pebble colours c(λi) and
([σ0], [e]) include the label (λi or σ0) of the node on which the pebble is dropped, which is of course superfluous infor-
mation. Finally, rule ρ5 can be translated into the rule 〈qc, σ1, 0, ∅〉 → r(〈[σ1(z1)], stay〉, 〈[z2], stay〉), which calls the states
[σ1(z1)] and [z2] of the subroutine S . In state [σ1(z1)], S outputs σ1 and goes into state [z1]. We note that at any moment
of time, when M is at node u of the input tree, all descendants of u, possibly including u itself, carry a pebble. Thus,
in state [zi], S moves down to the child of u, lifts pebble ([s1], [s2]) and goes into state [si]. It is now easy to see that
states [z1] and [z2] of M correspond to states qout and qnext of Msib, respectively. In state [z1], S moves down and outputs
the labels of all nodes that are marked by some pebble c(λi) or ([σ0], [e]), lifting those pebbles one by one. In state [z2],
80

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
S moves down to the first pebble c(λi), replaces that pebble by the “empty” pebble ([z1], [z2]), and returns control to M,
which then goes into state qc and moves up to the parent. When, in state [z2], S reaches the leaf with pebble ([σ0], [e]), it
lifts that pebble and outputs e. �

Lemma 39 and Theorem 34 (for k = 0) together provide an alternative proof of the main result of [37]: the inverse type
inference problem and the typechecking problem are solvable for tl programs. The proofs are, however, similar. In [37]
every tl program is decomposed into three macro tree transducers, whereas we have decomposed every i-ptt into two tt’s.
In general, decomposition into tt’s leads to more efficient typechecking than decomposition into macro tree transducers,
because (cf. Proposition 6) inverse type inference of a macro tree transducer takes double exponential time, unless the
number of parameters is bounded and the output type is fixed [47]. Let us define a tl

db program to be a tl program in
which the mso formulas ϕ(x) and ψ(x, y) in the template rules of the program are represented by deterministic bottom-up
finite-state tree automata that recognize the corresponding regular sites mark(T (ϕ)) and trips mark(T (ψ)).

Theorem 41. The inverse type inference problem and the typechecking problem are solvable for tl
db programs in 3-fold and 4-fold

exponential time, respectively.

Proof. By Theorem 34, these problems are solvable for i-pft’s in 2-fold and 3-fold exponential time. Let us now assume
that the regular sites and trips used in mso tests of i-pft’s are also represented by deterministic bottom-up finite-state
tree automata. Then it is easy to see that the construction in the proof of Lemma 39 takes polynomial time. However,
the mso tests that are used by the resulting i-pft have to be removed, and the construction in the proof of Theorem 16
takes exponential time, as can be checked in a straightforward way. That involves checking that the constructions in the
proofs of Lemmas 10, 12, and 13 take polynomial time, and so does the construction in the proof of Proposition 14 (for the
nonfunctional case), i.e., in the proof of [5, Theorem 8]. The exponential in the proof of Theorem 16 is due to the use of the
sets of states S of Bd in the colours of the beads. Hence, solving the above problems takes one more exponential for tl

db

programs than for i-pft. �
A tl program P = (, �, Q , Q 0, R) is a macro tree transducer, more precisely an oi macro tree transducer (see [22]), if it

is ranked, and for every rule 〈q, ϕ(x)〉(z1, . . . , zn) → f the following hold. First, ϕ(x) ≡ labσ (x) for some σ ∈ 	. Second, for
every selector 〈q′, ψ(x, y)〉 that occurs in f , we have ψ(x, y) ≡ downi(x, y) for some i ∈ [1, rank	(σ)]. It follows immedi-
ately from Lemma 39 that macro tree transducers can be simulated by i-ptt. Let MToi denote the class of tree transductions
realized by oi macro tree transducers, and dMToi the corresponding deterministic class.

Corollary 42. MToi ⊆ I-PTT and dMToi ⊆ I-dPTT.

The inclusions are proper because for every oi macro tree transduction the height of the output tree is exponentially
bounded by the height of the input tree [22, Theorem 3.24], whereas it is not difficult to construct a deterministic i-ptt M
with input alphabet {σ , e}, where rank(σ) = 2 and rank(e) = 0, such that the height of the output tree is exponential
in the size of the input tree. The transducer M is similar to the i-ptt Msib of Example 2, viewing the nodes of the
input tree as large cities that are ordered by document order; thus, the number of itineraries is indeed exponential in the
size of the input tree. Note that by [19, Corollary 7.2] and [22, Theorem 6.18], dMToi properly contains the class DMSOT
of deterministic mso definable tree transductions (see also [10, Section 8]). Note also that, since dB is properly contained in
dMToi by [22, Corollary 6.16], the second part of Corollary 42 strengthens the second part of Theorem 18. It is open whether
or not B is contained in MToi .

We now turn to the inclusion I-PFT ⊆ TL. To prove that, we need a normal form for i-pft’s. We say that a rule of an
i-pft is initial if the state in its left-hand side is an initial state. We define an i-pft M = (, �, Q , Q 0, C, ∅, C i, R, 0) with
C = C i to be in normal form if its rules satisfy the following five requirements:

(1) Initial states do not appear in the right-hand side of a rule.
(2) All initial rules are of the form 〈q0, σ , 0, ∅〉 → 〈q, dropc〉 for some q0 ∈ Q 0, σ ∈ 	, q ∈ Q \ Q 0, and c ∈ C . Intuitively,

M starts its computation by dropping a pebble on the root of the input tree.
(3) All non-initial rules have a left-hand side of the form 〈q, σ , j, {c}〉 with c ∈ C . Intuitively, M always observes the

topmost pebble, i.e., that pebble is always at the position of the head.
(4) All non-initial non-output rules have a right-hand side 〈q′, α〉 with q′ ∈ Q \ Q 0 and α = stay or α = μ; dropc or

α = liftc; μ where c ∈ C and μ ∈ {up, stay} ∪ {downi | i ∈ [1, mx]}. We will identify stay; dropc with dropc and liftc; stay
with liftc . Intuitively, to force that M always observes the topmost pebble, M always drops a pebble after moving, and
always moves after lifting a pebble. Note that, in a successful computation, M never lifts the pebble that it dropped with
an initial rule.

(5) There is a function δ from C to {up, stay} ∪ {downi | i ∈ [1, mx]} such that (i) if a rule of M has right-hand side
〈q′, liftc; μ〉, then μ = δ(c), and (ii) for every rule 〈q, σ , j, {d}〉 → 〈q′, μ; dropc〉 of M, if μ = up then δ(c) = down j , if
μ = stay then δ(c) = stay, and if μ = downi then δ(c) = up. Intuitively this means that M, after lifting a pebble, always
knows where to find the new topmost pebble.
81

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
This ends the definition of normal form. Obviously, it can also be defined for i-ptt’s and for i-pta’s. The i-pta in normal
form can be viewed as a reformulation of the two-way backtracking pushdown tree automaton of [51]. The i-ptt in normal
form can be viewed as a reformulation of the RT(P(S))-transducer of [13,23], where S is the storage type Tree-walk of [13].22

Lemma 43. For every i-pft M an equivalent i-pft M′ in normal form can be constructed. If M is deterministic, then so is M′. The
same holds for i-ptt.

Proof. The idea of the construction is a simplified version of the one in the proof of Theorem 16, where “beads” are used
to cover the shortest path between the head and the topmost pebble. Assuming that the i-pta A in that proof starts by
dropping a pebble on the root (which is never lifted), the constructed i-pta A′ satisfies the above requirements on the rules.
To show the details, we will repeat that construction, in a simplified form. Here, the only information a bead has to carry
is the position of the previous pebble or bead. Moreover, we do not have to drop a bead on the position of the topmost
pebble.

Let M be an i-pft with colour set C . We may obviously assume that M already satisfies the first two requirements
above. We construct M′ with the same states and initial states as M, and with the colour set C ∪ B where B = {up} ∪
{downi | [1, mx]}. The function δ of requirement (5) is defined by δ(d) = d for every d ∈ B , and δ(c) = stay for every c ∈ C .
The rules of M′ are obtained from those of M as follows. The initial rules of M are also rules of M′ .

If 〈q, σ , j, ∅〉 → 〈q′, up〉 is a rule of M, then M′ has the rules 〈q, σ , j, {up}〉 → 〈q′, liftup; up〉 and 〈q, σ , j, {downi}〉 →
〈q′, up; dropdown j

〉 for every i. Also, if 〈q, σ , j, {c}〉 → 〈q′, up〉 is a rule of M, then M′ has the rule 〈q, σ , j, {c}〉 →
〈q′, up; dropdown j

〉.
Similarly, if 〈q, σ , j, ∅〉 → 〈q′, downi〉 is a rule of M, then M′ has the rules 〈q, σ , j, {downi}〉 → 〈q′, liftdowni ; downi〉 and

〈q, σ , j, {μ}〉 → 〈q′, downi; dropup〉 for every μ ∈ {up} ∪ {downk | k �= i}. Also, if 〈q, σ , j, {c}〉 → 〈q′, downi〉 is a rule of M,
then M′ has the rule 〈q, σ , j, {c}〉 → 〈q′, downi; dropup〉.

The remaining rules of M (viz. rules with right-hand side 〈q′, stay〉, output rules, rules that lift, and non-initial rules
that drop) are treated as follows. If 〈q, σ , j, ∅〉 → ζ is such a rule of M, then M′ has the rules 〈q, σ , j, {μ}〉 → ζ for every
bead μ ∈ B . If 〈q, σ , j, {c}〉 → ζ is such a rule of M, then it is also a rule of M′ .

It should be clear that M′ is equivalent to M. Whenever M observes the topmost pebble c, so does M′ . Whenever
M does not observe c, M′ observes a bead that indicates the direction of the topmost pebble. Note that if M′ lifts pebble c
of M, the new topmost pebble/bead is always at the same position, because when c was dropped M′ was observing the
topmost pebble/bead. �

The tl program that we will construct to simulate a given i-pft M will use mso formulas ϕ(x) and ψ(x, y) that closely
resemble the tests and instructions in the left-hand and right-hand sides of the rules of M, respectively. Those tests and
instructions are “local” in the sense that they only concern the node x, its parent, and its children. Thus, we say that a
tl program P is local if in the left-hand side of a rule it only uses a formula ϕσ, j(x) for σ ∈ 	 and j ∈ [0, mx], where
ϕσ,0(x) ≡ labσ (x) ∧ root(x) and ϕσ, j(x) ≡ labσ (x) ∧ child j(x) for j �= 0, and in the right-hand side of that rule it only uses
the formulas up(x, y) (provided j �= 0), stay(x, y), and downi(x, y) for i ∈ [1, rank	(σ)].23 Thus, P also satisfies restriction
(R2) in the definition of a ranked tl program. Note that macro tree transducers, as defined before Corollary 42, are local
ranked tl programs. The classes of transductions realized by local tl programs will be decorated with a subscript �.

Lemma 44. I-PFT ⊆ TL� and I-dPFT ⊆ dTL� . Moreover, I-PTT ⊆ TL�r and I-dPTT ⊆ dTL�r .

Proof. Let M = (, �, Q , Q 0, C, ∅, C i, R, 0) with C = C i be an i-pft in normal form. We construct a tl program P that is
equivalent to M. The set of states of P is

Q 0 ∪ ((Q \ Q 0) × C) ∪ {q⊥}.
Each initial state has rank 0, each pair 〈q, c〉 has rank #(Q \ Q 0), and q⊥ has rank 0. The set of initial states of P is Q 0. The
rules of P are defined as follows, where we denote a state 〈q, c〉 as qc . Let Q \ Q 0 = {q1, . . . , qn} where we fix the order
q1, . . . , qn .

First, if 〈q0, σ , 0, ∅〉 → 〈q, dropc〉 is an initial rule of M, then P has the rule 〈q0, ϕσ,0(x)〉 → 〈qc, stay(x, y)〉(⊥, . . . , ⊥),
where ⊥ abbreviates 〈q⊥, stay(x, y)〉. There are no rules of P with q⊥ in the left-hand side.

Second, let 〈q, σ , j, {c}〉 → ζ be a (non-initial) rule of M that does not contain a drop- or lift-instruction. Thus,
ζ is of the form 〈p, stay〉, 〈p1, stay〉〈p2, stay〉, δ(〈p, stay〉), or ε, with p, p1, p2 ∈ Q and δ ∈ �.24 Then P has the rule
〈qc, ϕσ, j(x)〉(z1, . . . , zn) → ζ ′ , where ζ ′ is obtained from ζ by replacing every 〈p, stay〉 by 〈pc, stay(x, y)〉(z1, . . . , zn).

22 See also [20, Section 3.3] where the tt is related to the RT(S)-transducer for S = Tree-walk.
23 We recall that root(x) ≡ ¬ ∃z(down(z, x)), childi(x) ≡ ∃z(downi(z, x)), up(x, y) ≡ down(y, x), and stay(x, y) ≡ x = y.
24 In the case where M is an i-ptt, ζ is of the form 〈p, stay〉 or δ(〈p1, stay〉, . . . , 〈pm, stay〉).
82

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Third, let 〈q, σ , j, {d}〉 → 〈p, μ; dropc〉 be a rule of M. Note that for every μ ∈ {up, stay} ∪ {downi | i ∈ [1, mx]}, there is
an mso formula μ(x, y). Then P has the rule

〈qd,ϕσ , j(x)〉(z1, . . . , zn) → 〈pc,μ(x, y)〉(s1, . . . , sn)

where si = 〈qd
i , stay(x, y)〉(z1, . . . , zn) for every i ∈ [1, n]; thus, the rule is

〈qd,ϕσ , j(x)〉(z1, . . . , zn) → 〈pc,μ(x, y)〉(〈qd
1, stay(x, y)〉(z1, . . . , zn), . . . , 〈qd

n, stay(x, y)〉(z1, . . . , zn)).

Fourth and final, if 〈q, σ , j, {c}〉 → 〈qi, liftc; μ〉 is a rule of M, then P has the rule

〈qc,ϕσ , j(x)〉(z1, . . . , zn) → zi .

Intuitively, P is in state qc when M is in state q and the topmost pebble of M is c. The parameter zi of qc contains the
continuation of M’s computation just after pebble c is lifted and M goes into state qi . At the moment that M drops peb-
ble c, P does not know what the state qi of M will be after lifting c and thus prepares the continuation for every possible
state. The correct continuation is then chosen by P when it simulates M’s lifting of c. Note that due to requirement (5) of
the normal form, when M lifts a pebble, it returns to the same node where it decided to drop the pebble (at that node, or
at the parent or at one of the children of that node).

Formally, we define a mapping ‘rep’ from the output forms of M (except the initial one) to those restricted output
forms of P of which the outermost nodes are labeled by a symbol from � or by a configuration 〈q, u〉 where q is a state
of P (thus, they are not labeled by a configuration 〈p, u〉 where p is a selector of P). As in the proof of Lemma 39, the
�-labeled part of the output form is not changed. Thus, it remains to define ‘rep’ for the configurations of M that contain
non-initial states, which are of the form 〈q, u, π(u, c)〉 because the topmost pebble is always at the position of the head.
We define rep(q, u, π(u, c)) = 〈qc, u〉 rep′(π), where rep′ maps the pebble stacks of M to sequences of output forms of P ,
recursively as follows: rep′(ε) = (⊥, . . . , ⊥) and rep′(π(u, c)) = (s1, . . . , sn) where si = 〈〈qc

i , stay(x, y)〉, u〉 rep′(π) for every
i ∈ [1, n]. Note that ‘rep’ is injective.

It is now straightforward to prove, for every q ∈ Q \ Q 0, every c ∈ C , every input tree t , and every output form s of P
(restricted as described above), that 〈qc, roott〉(⊥, . . . , ⊥) ⇒∗

t,P s if and only if there exists an output form s′ of M such
that 〈q, roott , (roott , c)〉 ⇒∗

t,M s′ and rep(s′) = s. Since ‘rep’ is injective, s′ is in fact unique. Note that each computation
step of M is simulated by two (or three) computation steps of P , where the second (and third) step executes a selector to
satisfy the restriction on the output forms of P . Due to its special form, the execution of such a selector ψ(x, y) changes
the label 〈〈q′, ψ(x, y)〉, u〉 of a node of the output form into 〈q′, u′〉 where u′ is the unique node of the input tree for which
ψ(u, u′) holds.

Taking into account the initial rules of M, it should be clear that the above equivalence proves that τP = τM . �
Example 45. We illustrate Lemma 44 with the deterministic i-ptt Msib of Example 2. We first construct an i-ptt M′

sib
in normal form that is equivalent to Msib . We also allow tuples 〈q′, liftd; μ〉 in the output rules for any colour d, which
can easily be handled too. The transducer M′

sib has a new initial state qin, in which it drops pebble � on the root, which
also serves as the pebble ‘up’. The pebble ‘down1’ is denoted by ↓. The normal form function δ is defined by δ(�) = up,
δ(↓) = down1, and δ(c) = stay for c ∈ {0, 1}. There are new states q0 and q1 in which M′

sib moves up, drops pebble ↓, and
goes into the corresponding unbarred state. Thus the rules for them are

ρc,d : 〈qc,σ ,1, {d}〉 → 〈qc,up;drop↓〉
with σ ∈ 	 and d ∈ {�, ↓, 0, 1}. The other rules (with c = 1 or i = 0 in rule ρ4 as usual) are

ρ0 : 〈qin,σ1,0,∅〉 → 〈qstart,drop�〉
ρ1 : 〈qstart,σ1, j, {�}〉 → 〈qstart,down1;drop�〉
ρ2 : 〈qstart,σ0,1, {�}〉 → 〈q1, stay〉
ρ3 : 〈q0, λ0,1, {↓}〉 → 〈q0, stay〉
ρ4 : 〈qc, λi,1, {↓}〉 → 〈qi,dropc〉
ρ5 : 〈qc,σ1,0, {↓}〉 → r(〈qout, stay〉, 〈qnext, lift↓;down1〉)
ρ6 : 〈qout,σ1,0, {↓}〉 → σ1(〈qout, lift↓;down1〉)
ρ7 : 〈qout,σ1,1, {↓}〉 → 〈qout, lift↓;down1〉
ρ8 : 〈qout,σ1,1, {c}〉 → σ1(〈qout, liftc〉)
ρ9 : 〈qout,σ0,1, {�}〉 → σ0
83

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
ρ10 : 〈qnext,σ1,1, {↓}〉 → 〈qnext, lift↓;down1〉
ρ11 : 〈qnext,σ1,1, {c}〉 → 〈qc, liftc〉
ρ12 : 〈qnext,σ0,1, {�}〉 → e

We now construct the deterministic tl program P corresponding to M′
sib. The states of M′

sib after lifting ↓ are qout and
qnext. Thus, the states of P that are active when the topmost pebble is ↓ only need two parameters z1, z2 corresponding
to qout and qnext. Similarly, the states of P that are active when the topmost pebble is c only need two parameters z1, z2
corresponding to qout and qc . The states of P that are active when the topmost pebble is � do not need parameters, because
� is never lifted. Program P has the states qin, q�

start, q
↓
c , qd

c , qd
out, and qd

next, where c ∈ {0, 1} and d ∈ {�, ↓, 0, 1}. Note that
the state q⊥ is superfluous. The initial state qin and all states with superscript � have rank 0, and the other states have
rank 2.

Program P has the following rule corresponding to rule rc,d of M′
sib, with d �= �:

ρc,d : 〈qd
c ,ϕσ ,1(x)〉(z1, z2) → 〈q↓

c ,up(x, y)〉(〈qd
out, stay(x, y)〉(z1, z2), 〈qd

next, stay(x, y)〉(z1, z2))

and for d = � the same rule without the parameters (z1, z2). The other rules of P are

ρ0 : 〈qin,ϕσ1,0(x)〉 → 〈q�
start, stay(x, y)〉

ρ1 : 〈q�
start,ϕσ1, j(x)〉 → 〈q�

start,down1(x, y)〉
ρ2 : 〈q�

start,ϕσ0,1(x)〉 → 〈q�
1 , stay(x, y)〉

ρ3 : 〈q↓
0 ,ϕλ0,1(x)〉(z1, z2) → 〈q↓

0 , stay(x, y)〉(z1, z2)

ρ4 : 〈q↓
c ,ϕλi ,1(x)〉(z1, z2) → 〈qc

i , stay(x, y)〉(〈q↓
out, stay(x, y)〉(z1, z2), 〈q↓

c , stay(x, y)〉(z1, z2))

ρ5 : 〈q↓
c ,ϕσ1,0(x)〉(z1, z2) → r(〈q↓

out, stay(x, y)〉(z1, z2), z2)

ρ6 : 〈q↓
out,ϕσ1,0(x)〉(z1, z2) → σ1(z1)

ρ7 : 〈q↓
out,ϕσ1,1(x)〉(z1, z2) → z1

ρ8 : 〈qc
out,ϕσ1,1(x)〉(z1, z2) → σ1(z1)

ρ9 : 〈q�
out,ϕσ0,1(x)〉 → σ0

ρ10 : 〈q↓
next,ϕσ1,1(x)〉(z1, z2) → z2

ρ11 : 〈qc
next,ϕσ1,1(x)〉(z1, z2) → z2

ρ12 : 〈q�
next,ϕσ0,1(x)〉 → e

Applying rule ρ6 to the right-hand side of rule ρ5, we obtain the rule

ρ ′
5 : 〈q↓

c ,ϕσ1,0(x)〉(z1, z2) → r(σ1(z1), z2)

which is in fact rule ρ5 of program Psib of Example 38, if we identify the states q↓
c and qc . Rules ρ0 and ρ1 of P correspond

to rule ρ1 of Psib in an obvious way (with q�
start and qstart identified). Since program P is deterministic, and its states

generate trees (rather than forests), we can also apply rules ρ7 − ρ12 to the right-hand side of rule ρc,d , and we obtain the
rules

ρ ′
c,↓ : 〈q↓

c ,ϕσ1,1(x)〉(z1, z2) → 〈q↓
c ,up(x, y)〉(z1, z2)

ρ ′
i,c : 〈qc

i ,ϕσ1,1(x)〉(z1, z2) → 〈q↓
i ,up(x, y)〉(σ1(z1), z2)

ρ ′
c,� : 〈q�

c ,ϕσ0,1(x)〉 → 〈q↓
c ,up(x, y)〉(σ0, e)

Applying ρ ′
1,� to the right-hand side of ρ2 we obtain

ρ ′
2 : 〈q�

start,ϕσ0,1(x)〉 → 〈q↓
1 ,up(x, y)〉(σ0, e)

which is rule ρ2 of Psib. Applying ρ ′
0,↓ to the right-hand side of ρ3 we obtain

ρ ′
3 : 〈q↓

0 ,ϕλ0,1(x)〉(z1, z2) → 〈q↓
0 ,up(x, y)〉(z1, z2)

which is rule ρ3 of Psib. Finally, applying rules ρ ′
i,c , ρ7, and ρ ′

c,↓ to the selectors in the right-hand side of rule ρ4, re-
spectively, we obtain the right-hand side 〈qi, up(x, y)〉(λi(z1), 〈qc, up(x, y)〉(z1, z2)) of rule ρ4 of Psib. Thus, program P is
essentially the same as program Psib of Example 38. �
84

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Lemmas 39 and 44 together prove that tl programs have the same expressive power as i-pft’s. Additionally, they prove
that for every tl program there is an equivalent local one.

Theorem 46. TL = TL� = I-PFT and dTL = dTL� = I-dPFT. Moreover, TLr = TL�r = I-PTT and dTLr = dTL�r = I-dPTT.

Since local tl programs satisfy restriction (R2) in the definition of a ranked tl program, the equation TL = TL� shows that
the pattern matching aspect that is involved in the execution of selectors, can be viewed as an extended feature. Moreover,
even the “jumps” in the execution of selectors, and the arbitrary mso head tests in the left-hand sides of rules, can be
viewed as extended features of TL� .

Note that for tl
db

� programs the construction in the proof of Lemma 39 can easily be simplified to one that takes
polynomial time and that results in an i-pft that does not use mso tests. That implies that the inverse type inference
problem for such programs is solvable in 2-fold exponential time, and hence typechecking can be done in 3-fold exponential
time (cf. Theorem 41).

The local ranked tl program is an obvious reformulation of the “macro tree-walking transducer” (2-mtt) of [37]. The
inclusion TLr ⊆ TL�r is a (slightly stronger) version of [37, Theorem 5]. Moreover, the local ranked tl program is the same
as the “0-pebble macro tree transducer” of [20, Section 5.1] and it is the CFT(S)-transducer of [23] for the storage type
S = Tree-walk, both of which generalize the macro attributed tree transducer of [26,35] which additionally satisfies a
noncircularity condition. It follows from Lemma 4 and Theorem 46 that TL�r ⊆ TT2, which was stated as an open problem
in [20, Section 8] (where TL�r and TT are denoted 0-PMTT and 0-PTT, respectively). In view of Lemma 43, the equality
TL�r = I-PTT is the same as the equality CFT(S) = RT(P(S)) of [23, Theorem 5.24] for S = Tree-walk, and similarly for the
deterministic case.

13. A TL program in XSLT

In Tables 1 and 2 we listed a possible input document and the resulting output document for the i-ptt Msib of Ex-
ample 2. In this section we present in Table 7 an XSLT 1.0 program with the same structure as the tl program Psib of
Example 38. In what follows we comment on the XSLT program and its relationship to Psib , abbreviated as P .

The first rule ρ1 of P corresponds to the first template of the XSLT program: this template initializes the algorithm by
matching the root of the input document, jumping to the leaf by selecting the final stop, and invoking named template
start on it.

The second rule ρ2 of P corresponds to template start: it moves up, using the apply-templates instruction
which selects the parent, and thus invokes the third template on that parent, which is the only template for nonroot
document elements. It invokes that template with the appropriate parameters: nextstoplarge is 1 because large= 1
for the final stop, stoplist is a list containing only the final stop, and additionalresults is the single element
<endofresults />.

The remaining rules of P correspond to the third template, which is applied to all nonfinal stops. That template takes a
partial stop list stoplist (from the current stop to the final stop) and generates all allowed ways to complete that stop
list using the stops between the current one and the initial one. Nested below the deepest element of the output, it includes
the result tree fragment passed in additionalresults. The third template has three parameters:

nextstoplarge: a boolean indicating whether or not the “next” stop (i.e., the stop at the front of stoplist) is a
large stop; it corresponds to states q1 and q0 in P , respectively,
stoplist: a partial list of stops (taken from the current stop to the final stop) for which this template will recursively
generate all (allowed) ways in which it can be completed; it corresponds to parameter z1 in P ,
additionalresults: results that are to be appended to the results that this template generates; it corresponds to
parameter z2 in P ,

where both stoplist and additionalresults are of type ‘result tree fragment’.
Corresponding to rule ρ5 of P , the third template, when invoked on the initial stop (for which initial= 1), has

computed a complete stop list (after adding this stop) and outputs it: it copies the initial stop and nests the remainder
of the stop list (i.e., the value of its parameter stoplist) in it; it also includes the additional results (i.e., the value of
parameter additionalresults).

Corresponding to rules ρ3 and ρ4 of P , the third template, when invoked on an intermediate stop (for which
not(initial= 1)), has not yet computed a complete stop list, and now calculates all allowed ways to complete it. Intu-
itively, it computes two result sets: one that does not add the current stop, and one that does. They are combined by passing
the first result set as “additional results” to the calculation of the second one. Thus, the third template starts by computing
the first result set, and, to abbreviate the remaining code, it assigns its value to a variable called results. In rules ρ3 and
ρ4 of P this result set corresponds to the selector 〈qc, up(x, y)〉(z1, z2), where c = 0 in ρ3. In the case that large = 0
and nextstoplarge = 0, we are not allowed to stop here because that would create two consecutive small stops. Thus
the template only outputs the results that it just stored in the variable (corresponding to rule ρ3 of P). In the case that
85

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Table 7
XSLT Program.
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="xml"/>

<xsl:template match="/">
<xsl:for-each select="//stop[@final=1]">

<xsl:call-template name="start" />
</xsl:for-each>

</xsl:template>

<xsl:template name="start">
<xsl:apply-templates select="parent::stop">

<xsl:with-param name="nextstoplarge" select="@large" />
<xsl:with-param name="stoplist">

<xsl:copy>
<xsl:copy-of select="attribute::*" />

</xsl:copy>
</xsl:with-param>
<xsl:with-param name="additionalresults">

<endofresults />
</xsl:with-param>

</xsl:apply-templates>
</xsl:template>

<xsl:template match="stop">
<xsl:param name="nextstoplarge" />
<xsl:param name="stoplist" />
<xsl:param name="additionalresults" />
<xsl:if test="@initial = 1">

<result>
<xsl:copy>

<xsl:copy-of select="attribute::*" />
<xsl:copy-of select="$stoplist" />

</xsl:copy>
<xsl:copy-of select="$additionalresults" />

</result>
</xsl:if>
<xsl:if test="not(@initial = 1)">

<xsl:variable name="results">
<xsl:apply-templates select="parent::stop">

<xsl:with-param name="nextstoplarge" select="$nextstoplarge" />
<xsl:with-param name="stoplist" select="$stoplist" />
<xsl:with-param name="additionalresults" select="$additionalresults" />

</xsl:apply-templates>
</xsl:variable>
<xsl:if test="@large = 1 or $nextstoplarge = 1">

<xsl:apply-templates select="parent::stop">
<xsl:with-param name="nextstoplarge" select="@large" />
<xsl:with-param name="stoplist">

<xsl:copy>
<xsl:copy-of select="attribute::*" />
<xsl:copy-of select="$stoplist" />

</xsl:copy>
</xsl:with-param>
<xsl:with-param name="additionalresults" select="$results" />

</xsl:apply-templates>
</xsl:if>
<xsl:if test="@large = 0 and $nextstoplarge = 0">

<xsl:copy-of select="$results" />
</xsl:if>

</xsl:if>
</xsl:template>

</xsl:stylesheet>

large = 1 or nextstoplarge = 1, the template calculates all possible ways to complete the stop list that contain this
stop, and includes as additional results those that are stored in the variable (corresponding to rule ρ4 of P).

14. Data complexity

In this section we show that the transduction of a deterministic ptt M can be realized in (1-fold) exponential time, in
the sense that there is an exponential time algorithm that, for every given input tree t , computes a regular tree grammar G
that generates the language {τM(t)}. If t is in the domain of M, then G can be viewed as a DAG (directed acyclic graph)
that defines the output tree τM(t), in the usual sense. Thus, producing the actual output tree would take 2-fold exponential
86

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
time. If t is not in the domain of M, then G generates the empty tree language (which can be decided in time linear in the
size of G).

Theorem 47. For every deterministic ptt M there is an exponential time algorithm that, for given input tree t, computes a regular tree
grammar G such that L(G) = {s | (t, s) ∈ τM}.

Proof. Let M = (, �, Q , {q0}, C, Cv, C i, R, k) be a deterministic vki-ptt. For an input tree t ∈ T	 in the domain of M, let
us consider the computation 〈q0, roott , ε〉 ⇒∗

t,M s, where s = τM(t), and let 〈q, u, π〉 be a configuration of M that occurs
in that computation. We claim that the length of π is at most N = |Q | · (|C | + 1)k+1 · nk+2, where n is the size of t .

To prove this claim we define, as an auxiliary tool, the nondeterministic vki-pta A that is obtained from M by changing
every output rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉) of M into the rules 〈q, σ , j, b〉 → 〈qi, stay〉 for all i ∈ [1, m].
Intuitively, whenever M branches, A nondeterministically follows one of those branches. Thus, all computations of A that
start with 〈q0, roott , ε〉 are finite. Obviously, 〈q, u, π〉 occurs in such a computation of A. Let π = (v1, c1) · · · (vm, cm) and
suppose that m > N . For every � ∈ [1, m] we define π� = (v1, c1) · · · (v�, c�). Then there exist configurations 〈q�, u�, π�〉,
� ∈ [1, m], such that 〈q0, roott , ε〉 ⇒∗

t,A 〈q1, u1, π1〉 and 〈q�, u�, π�〉 ⇒∗
t,A 〈q�+1, u�+1, π�+1〉 for every � ∈ [1, m − 1], and

such that, moreover, every configuration occurring in the computation 〈q�, u�, π�〉 ⇒∗
t,A 〈q�+1, u�+1, π�+1〉 has a pebble

stack with prefix π� . Due to the choice of m, there exist i, j ∈ [1, m] with i < j such that qi = q j , ui = u j , (vi, ci) = (v j, c j),
and for every v ∈ N(t) and c ∈ Cv: (v, c) occurs in πi if and only if (v, c) occurs in π j . This implies that the computation
〈qi, ui, πi〉 ⇒∗

t,A 〈q j, u j, π j〉 can be repeated arbitrarily many times, leading to an infinite computation of A, which is a
contradiction and proves the claim.

We now construct the regular tree grammar G . Its nonterminals are the configurations 〈q, u, π〉 of M on t
such that |π | ≤ N . Since N is polynomial in n, the number of nonterminals of G is exponential in n. The ini-
tial nonterminal of G is 〈q0, roott , ε〉. If 〈q, u, π〉 ⇒∗

t,M 〈q′, u′, π ′〉 ⇒t,M δ(〈q1, u′, π ′〉, . . . , 〈qm, u′, π ′〉), then 〈q, u, π〉 →
δ(〈q1, u′, π ′〉, . . . , 〈qm, u′, π ′〉) is a rule of G . To decide whether 〈q′, u′, π ′〉 ⇒t,M δ(〈q1, u′, π ′〉, . . . , 〈qm, u′, π ′〉) it suffices
to inspect the output rules of M. To decide whether 〈q, u, π〉 ⇒∗

t,M 〈q′, u′, π ′〉 we construct from M and t an ordinary
pushdown automaton P that simulates the non-output behaviour of M on t , as in the query evaluation paragraph at the
end of Section 9. Since, as opposed to that paragraph, M also has visible pebbles, P should keep track of those pebbles
in its finite state. Let � be the set of all mappings γ : Cv → N(t) ∪ {⊥} such that #({c ∈ Cv | γ (c) �= ⊥}) ≤ k. During P ’s
computation, the mapping γ in its finite state indicates for every visible pebble whether it occurs in the current stack and,
if so, on which node it is dropped. Thus, we define P to have state set Q × N(t) × � and pushdown alphabet N(t) × C .
A configuration 〈q, u, π〉 of M is simulated by the configuration P(〈q, u, π〉) = 〈p, π〉 of P such that p = (q, u, γ) where,
for every c ∈ Cv, if γ (c) ∈ N(t) then (γ (c), c) occurs in π , and if γ (c) = ⊥ then c does not occur in π . The transitions
of the automaton P are defined in such a way that P (with the empty string as input) has the same computation steps
as M (without its output rules), i.e., such that 〈q, u, π〉 ⇒t,M 〈q′, u′, π ′〉 if and only if P(〈q, u, π〉) ⇒P P(〈q′, u′, π ′〉),
where ⇒P is the computation step relation of P . For instance, let P be in state (q, u, γ) and let the top element of its
stack be (v, c). Let u have label σ and child number j, and let b consist of all c′ ∈ Cv with γ (c′) = u plus c if v = u. If
〈q, σ , j, b〉 → 〈q′, dropd〉 is a rule of M such that d ∈ Cv, γ (d) = ⊥, and #({c′ ∈ Cv | γ (c′) �= ⊥}) < k, then P pushes (u, d)

on its stack and goes into state (q′, u, γ ′) where γ ′(d) = u and γ ′(c′) = γ (c′) for all c′ �= d. If 〈q, σ , j, b〉 → 〈q′, liftc〉 is a rule
of M such that c ∈ C i and v = u, then P pops (v, c) from its stack and goes into state (q′, u, γ). The transitions of P are
defined similarly for the other non-output rules of M. It should be clear that P can be constructed in time polynomial in n.
Since it can be decided in polynomial time for configurations 〈p, π〉 and 〈p′, π ′〉 of P whether 〈p, π〉 ⇒∗

P 〈p′, π ′〉, it can
be decided whether 〈q, u, π〉 ⇒∗

t,M 〈q′, u′, π ′〉 in polynomial time. Hence the total time to construct G is exponential. �
Note that the first part of the above proof also shows that for every deterministic ptt the height of the output tree is

exponential in the size of the input tree.
A natural question is whether Theorem 47 also holds for forest transducers, i.e., for deterministic pft’s. That is indeed

the case (as the reader can easily verify), except that G is not a regular forest grammar, but a forest generating context-free
grammar. To be precise, G is a context-free grammar of which every rule is of the form X0 → δ(X1) or X0 → X1 X2 or
X → ε where δ is a symbol from an unranked alphabet. If L(G) = { f }, then G can still be viewed as a DAG that defines the
forest f . Thus, in this sense, by Theorem 46, deterministic tl programs can be executed in exponential time, in accordance
with the result of [33] that XSLT 1.0 programs can be executed in exponential time.

Another natural question is whether there exist interesting subclasses of ptt’s that can be realized in polynomial time.
Here we discuss one such subclass. We define a ptt to be bounded if there exists m ∈N such that output rules can only be
applied when the pebble stack contains at most m pebbles. Intuitively it means that the infinitely many invisible pebbles
are mainly used to check mso properties of the observable configuration. Formally it can either be required as a dynamic
property of the (successful) computations of the ptt or be incorporated statically in the semantics of the ptt. We now show
that bounded ptt’s can be realized in polynomial time, even in the nondeterministic case. This generalizes the result for
v-ptt’s [41, Proposition 3.8].
87

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Theorem 48. For every bounded ptt M there is a polynomial time algorithm that, for given input tree t, computes a regular tree
grammar G such that L(G) = {s | (t, s) ∈ τM}.

Proof. The construction of G is exactly the same as in the proof of Theorem 47, except that its nonterminals are now the
configurations 〈q, u, π〉 of M on t such that |π | ≤ m.25 The number of nonterminals of G is therefore polynomial in the
size of t , and since the pushdown automaton P can also be constructed (and tested) in polynomial time, the total time to
construct G is polynomial. �

Again, the same result holds for pft’s, taking G to be a forest generating context-free grammar. Note that for a nonde-
terministic pft M and an input tree t , the set {s | (t, s) ∈ τM} is not necessarily a regular forest language.

Also, the same result holds for bounded ptt’s that use mso tests on the observable configuration. That is not immediate,
because the construction in the proof of Theorem 16 does not preserve boundedness, due to the use of beads. However, it
is easy to adapt the construction of the pushdown automaton P in the proof of Theorem 47 to incorporate the mso tests
of the vki-ptt M. In fact, the observable configuration tree obs(t, π) can be constructed from t , from the mapping γ in
the state of P , and from the top element of its stack, and then obs(t, π) can be tested in linear time using a deterministic
bottom-up finite-state tree automaton. An example of bounded ptt’s (with mso tests) are the pattern matching ptt’s of
Section 10. In that section, every ptt that matches an n-ary pattern is bounded, with bound n or even n − 1. Hence, pattern
matching ptt’s can be evaluated in polynomial time. And the same is true for pattern matching pft’s, see Section 11.

15. Variations of decomposition

In this section we present a number of results the proofs of which are based on variations of the decomposition tech-
niques used in Section 4. In the first part of the section we consider deterministic ptt’s, and in the second part we consider
ptt’s with strong (visible) pebbles.

Deterministic PTT’s. As observed at the end of Section 4 it is open whether I-dPTT ⊆ dTT2. We first show that a subclass of
I-dPTT is included in dTT2 and then we show that I-dPTT ⊆ dTT3. Hence, every deterministic ptt can be decomposed into
deterministic tt’s.

Recall that dTTmso denotes the class of transductions that are realized by deterministic tt’s with mso head tests. By
Lemma 12 it is a subclass of I-dPTT. We will show that such transducers can be decomposed into two deterministic tt’s of
which the first never moves up. To do this we need a lemma with an alternative proof of the inclusion dTTmso ⊆ I-dPTT,
showing that the resulting i-ptt uses its pebbles in a restricted way. The i-ptt that is constructed in the proof of Lemma 12
does not satisfy that restriction.

For the definition of normal form of an i-ptt see the paragraphs before Lemma 43. We now define an i-ptt (or i-pta)
to be root-oriented if it satisfies requirements (1)−(3) of the normal form, and all non-initial non-output rules have a
right-hand side of one of the following five forms: 〈q′, downi; dropc〉, 〈q′, liftc; up〉, 〈q′, liftc; dropd〉, or 〈q′, stay〉, where
q′ ∈ Q \ Q 0, i ∈N and c,d ∈ C . Thus, except in an initial configuration, every pebble stack is of the form (u1, c1) · · · (un, cn)

where u1, . . . , un is the path from the root to the current node. The i-pta in the proof of Lemma 10 is root-oriented.
The next lemma follows from [10, Theorem 8.12], but we provide its proof for completeness sake. Let r I-dPTT denote the

class of transductions realized by root-oriented deterministic i-ptt’s.26

Lemma 49. dTTmso ⊆ r I-dPTT.

Proof. Let M be a deterministic tt that uses a regular site T as mso head test. For simplicity we will assume that M
tests T in every rule. Let A = (× {0, 1}, P , F , δ) be a deterministic bottom-up finite-state tree automaton that recognizes
mark(T). As usual we identify the symbols (σ , 0) and σ . For every tree t ∈ T	 and every node u ∈ N(t), we define the set
succt(u) of successful states of A at u to consist of all states p ∈ P such that A recognizes t when started at u in state p. To
be precise, succt(roott) = F and if u has label σ ∈ 	(m) and i ∈ [1, m], then succt(ui) is the set of all states p ∈ P such that
δ(σ , p1, . . . , pi−1, p, pi+1, . . . , pm) ∈ succt(u), where p j is the state in which A arrives at u j for every j ∈ [1, m] \ {i}.

We construct a root-oriented deterministic i-ptt M′ that stepwise simulates M and simultaneously keeps track of
succt(v) for all nodes v on the path from the root to the current node u, by storing that information in its pebble colours.
It uses the i-pta A′ of Lemma 10 (with A restricted to 	 × {0}) as a subroutine to compute the states in which A arrives
at the children of u. Using these states and succt(u), it can easily test whether (t, u) ∈ T . Moreover, when moving down to
a child ui of u it can use this information to compute succt(ui).

Formally, in addition to the pebble colours p1 · · · pm of A′ , the transducer M′ uses pebble colours (S, p1 · · · pm) where
S ⊆ P . As states it uses (apart from its initial state) the states of M and states of the form (q̃, q) where q̃ is a state of M

25 Additionally, G has an initial nonterminal S with rules S → 〈q0, roott , ε〉 for every initial state q0 of M.
26 In [10, Chapter 8] root-oriented i-ptt’s are called tree-walking pushdown transducers, and r I-dPTT is denoted P-DTWT. They are the rt(p(tr))-

transducers of [23], also called indexed tree transducers.
88

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
and q a state of A′; in fact, q is either the main state q◦ of A′ or it is q̄p for some p ∈ P . Initially, M′ drops pebble (F , ε)

on the root and goes into state (q̃0, q◦) where q̃0 is the initial state of M. This incorporates rule ρ1 of A′ . The other rules
of M′ that correspond to A′ are as follows. First, the rule ρ2 of A′ together with the corresponding rule for pebble colour
(S, p1 · · · pm), both for m < rank(σ):

〈(q̃,q◦),σ , j, {p1 · · · pm}〉 → 〈(q̃,q◦),downm+1;dropε〉
〈(q̃,q◦),σ , j, {(S, p1 · · · pm)}〉 → 〈(q̃,q◦),downm+1;dropε〉.

Second, the rule ρ3 of A′ , for m = rank(σ) and p = δ(σ , p1, . . . , pm):

〈(q̃,q◦),σ , j, {p1 · · · pm}〉 → 〈(q̃, q̄p), liftp1···pm ;up〉 if j �= 0.

Third, the rule r6 of A′ together with the corresponding rule for pebble colour (S, p1 · · · pm), both for m < rank(σ):

〈(q̃, q̄p),σ , j, {p1 · · · pm}〉 → 〈(q̃,q◦), liftp1···pm ;dropp1···pm p〉
〈(q̃, q̄p),σ , j, {(S, p1 · · · pm)}〉 → 〈(q̃,q◦), lift(S,p1···pm);drop(S,p1···pm p)〉.

The subroutine A′ is always called at a node u where M′ observes a pebble of the form (S, ε), and when A′ is finished
M′ is back at the same node u and observes the pebble (S, p1 · · · pm) where p1, . . . , pm are the states at which A arrives
at the children of u.

Finally we consider the simulation of a step of M, which either occurs when the subroutine A′ is finished (instead
of its rules ρ4 and ρ5), or just after the simulation of another step of M, in which it does not move down. Suppose
that M has a rule 〈q̃, σ , j, T 〉 → ζ and that δ((σ , 1), p1, . . . , pm) ∈ S , or suppose that it has a rule 〈q̃, σ , j, ¬T 〉 → ζ and
δ((σ , 1), p1, . . . , pm) /∈ S . Then M′ has the following two rules, for m = rank(σ):

〈(q̃,q◦),σ , j, {(S, p1 · · · pm)}〉 → ζ ′

〈q̃,σ , j, {(S, p1 · · · pm)}〉 → ζ ′

such that

(1) if ζ = 〈q̃′, up〉, then ζ ′ = 〈q̃′, lift(S,p1···pm); up〉,
(2) if ζ = 〈q̃′, downi〉, then ζ ′ = 〈(q̃′, q◦), downi; drop(S ′,ε)〉, where S ′ = {p ∈ P | δ(σ , p1, . . . , pi−1, p, pi+1, . . . , pm) ∈ S}, and
(3) ζ ′ = ζ otherwise.

This ends the formal description of M′ . In general, M uses regular sites T1, . . . , Tn as mso head tests, and correspondingly
M′ has pebble colours of the form (S1, . . . , Sn, p1 · · · pm) where Si is a set of states of an automaton Ai recognizing
mark(Ti). �

Let dTT↓ denote the class of transductions realized by deterministic tt’s that do not use the up-instruction. Such trans-
ducers are equivalent to classical deterministic top-down tree transducers. The next lemma is shown in [10, Theorem 8.15]
but we provide its proof again, to show the connection to Lemma 4.

Lemma 50. r I-dPTT ⊆ dTT↓ ◦ dTT.

Proof. Let M be a root-oriented deterministic i-ptt. Looking at the proof of Lemma 4, it should be clear that, for every input
tree t , the simulating transducer M′ only visits those nodes of t′ that correspond to a sequence of instructions of M that
starts with a drop-instruction and then consists alternatingly of a down-instruction and a drop-instruction. Consequently,
the “preprocessor” N can be adapted so as to generate just that part of t′ . The new N does not need the states f i any
more, but just has the initial state g and the state f . Its rules are

〈g,σ , j〉 → σ ′(⊥m, 〈 f , stay〉γ)

〈 f ,σ , j〉 → σ ′
0, j(〈g,down1〉, . . . , 〈g,downm〉,⊥γ ,⊥)

where m is the rank of σ and ⊥n abbreviates the sequence ⊥, . . . , ⊥ of length n. Note that the child number j is irrelevant.
With this new, total deterministic preprocessor N the proof of Lemma 4 is still valid. �

The following corollary was shown in [10, Theorem 8.22], but we repeat it here for completeness sake, cf. Corollary 42.

Corollary 51. r I-dPTT = dTT↓ ◦ dTT = dMToi .
89

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
Proof. The inclusion dTT↓ ◦ dTT ⊆ dMToi follows from the inclusions dTT ⊆ dMToi , shown in [20, Theorem 35 for n = 0:
Lemma 34 and Theorem 31], and dTT↓ ◦ dMToi ⊆ dMToi , shown in [22, Theorem 7.6(3)]. By Lemma 50 it now suffices to
show that dMToi ⊆ r I-dPTT (which strengthens the second inclusion of Corollary 42). There are two ways of proving this,
which are essentially the same. First, the proof of Lemma 39 can be adapted in a straightforward way.27 Second, the equality
r I-dPTT = dMToi is shown for total functions in [23, Theorem 5.16]. By [22, Theorem 6.18], every transduction τ ∈ dMToi

is of the form τ1 ◦ τ2 where τ1 is the identity on a regular tree language R and τ2 ∈ dMToi is a total function. Thus, τ2 is
in r I-dPTT. This implies that τ1 ◦ τ2 is in r I-dPTT: the i-ptt just starts by checking that the input tree is in R , using the
root-oriented i-ptt A′ in the proof of Lemma 10 as a subroutine. �

We now turn to the decomposition of an arbitrary deterministic i-ptt into deterministic tt’s.

Lemma 52. I-dPTT ⊆ tdTTmso ◦ dTT.

Proof. Let M = (, �, Q , {q0}, C, ∅, C i, R, 0) be a deterministic i-ptt with C = C i . We may assume that there is a mapping
χ : C → Q such that χ(c) = q′ for every rule 〈q, σ , j, b〉 → 〈q′, dropc〉 of M. If not, then we change C into C × Q and we
change every rule 〈q, σ , j, b〉 → 〈q′, dropc〉 into 〈q, σ , j, b〉 → 〈q′, drop(c,q′)〉 and every rule 〈q, σ , j, {c}〉 → 〈q′, liftc〉 into all
the rules 〈q, σ , j, {(c, p)}〉 → 〈q′, lift(c,p)〉. Moreover, we may assume that C = [1, γ] for some γ ∈N .

As in the proof of Lemma 50 we consider the proof of Lemma 4 and adapt the preprocessor N to the needs of M.
Every copy of the input tree that is generated by N corresponds to a unique potential pebble stack π of M. The simulating
deterministic tt M′ walks on that copy whenever M has pebble stack π . The idea is now to construct a variation N ′
of N that only generates those copies of the input tree t that correspond to reachable pebble stacks. A pebble stack π is
reachable (on t) if M has a reachable output form that contains a configuration 〈q, v, π〉 for some q ∈ Q and v ∈ N(t).
For a given t in the domain of M, the number of reachable stacks is finite because M is deterministic and thus has a
unique computation on t . Consequently N ′ can preprocess t deterministically. Then we can define a total deterministic
preprocessor N ′′ that starts by performing an mso head test whether or not the input tree is in the domain of M (which
is regular by Corollary 9). If it is, then N ′′ calls N ′ , and if it is not, then N ′′ outputs ⊥ and halts.

As an auxiliary tool, we define (as in the proof of Theorem 47) the nondeterministic i-pta A that is obtained from M
by changing every output rule 〈q, σ , j, b〉 → δ(〈q1, stay〉, . . . , 〈qm, stay〉) of M into the rules 〈q, σ , j, b〉 → 〈qi, stay〉 for
i ∈ [1, m]. Intuitively, whenever M branches, A nondeterministically follows one of those branches. Obviously a nonempty
pebble stack π with top element (u, c) is reachable if and only if 〈χ(c), u, π〉 is a reachable configuration of A (see
footnote 9). Note that 〈χ(c), u, π〉 is the configuration of M just after dropping pebble c at node u.

For pebble colour c, we consider the site Tc consisting of all pairs (t, u) such that one-pebble stack (u, c) is reachable,
i.e., such that A has a computation starting in the initial configuration and ending in the configuration 〈χ(c), u, (u, c)〉. It is
not difficult to see that Tc is a regular site. In fact, mark(Tc) is the domain of an i-pta B with stack tests that simulates A;
whenever it arrives at the marked node u in state χ(c) and it observes pebble c, then it may lift the pebble, check that its
stack is empty, and accept. Stack tests are allowed by Lemma 1, and the domain of B is regular by Corollary 9.

We now turn to reachable pebble stacks with more than one pebble, i.e., of the form π(u, c)(v, d). Assuming that we
already know that π(u, c) is reachable, we can find out whether π(u, c)(v, d) is reachable through a regular trip, as follows.
For pebble colours c and d, we consider the trip Tc,d consisting of all triples (t, u, v) such that A has a computation on t
starting in configuration 〈χ(c), u, (u, c)〉 and ending in configuration 〈χ(d), v, (u, c)(v, d)〉; moreover, in every intermediate
configuration the bottom element of the pebble stack must be (u, c). The trip Tc,d is regular because mark(T) is the domain
of an i-pta B′ with stack tests that first walks to the marked node u. Then B′ simulates A, starting in state χ(c), interpreting
the mark of u as pebble c (which cannot be lifted). Similar to B above, whenever B′ arrives at the marked node v in
state χ(d) and it observes pebble d, then it may lift the pebble, check that the stack is empty, and accept. Obviously, if
π(u, c) is reachable, then π(u, c)(v, d) is reachable if and only if (t, u, v) ∈ Tc,d . Let Bc,d be a (nondeterministic) ta with
mso head tests that computes Tc,d , as in Proposition 14.

The new preprocessor N ′ is a deterministic tt with mso head tests that works in the same way as N but only creates
the copies of the input tree t that correspond to reachable pebble stacks. Initially it uses the test Tc at node u to decide
whether it has to create a copy of t corresponding to pebble stack (u, c). If the test is positive, then, just as N , it creates a
copy of t by walking from u to every other node v of t , copying v to the output. Now recall that N walks from u to v along
the shortest (undirected) path in t . Thus, by Proposition 14, N ′ can simulate the behaviour of ta Bc,d from u to v , for every
pebble colour d (using a subset construction as in the proof of Theorem 16). Thus, arriving at v it can use the trip Tc,d to
decide whether it has to create a copy of t corresponding to pebble stack (u, c)(v, d). At the next level it simulates all Bd,d′
for every d′ ∈ C , etcetera.

More formally, N ′ has initial state g , and all other states are of the form (q, c, S1, . . . , Sγ) where q is a state of N , c ∈ C ,
and Sd is a set of states of Bc,d for every d ∈ C = [1, γ]. We will call them “extended” states in what follows. To describe the

27 The transducer M uses an additional pebble �, which it drops initially on the root and whenever it moves down (instead of calling subroutine Sq′,ψ).
When necessary it replaces � by a pebble ([s1], . . . , [sm]). When subroutine S is in state [zi] for some parameter zi , it lifts � and moves up where it finds
a pebble ([s1], . . . , [sm]).
90

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
rules of N ′ , we first recall the rules of the transducer N from the proof of Lemma 4. Apart from the rules 〈 f , σ , j〉 → ⊥,
N has the rules

ρg : 〈g,σ , j〉 → σ ′(〈g,down1〉, . . . , 〈g,downm〉, 〈 f , stay〉γ)

ρ f : 〈 f ,σ , j〉 → σ ′
0, j(〈g,down1〉, . . . , 〈g,downm〉, 〈 f , stay〉γ , ξ j)

ρ f i : 〈 f i,σ , j〉 → σ ′
i, j(〈g,down1〉, . . . , 〈g,downi−1〉,⊥,

〈g,downi+1〉, . . . , 〈g,downm〉, 〈 f , stay〉γ , ξ j)

where ξ j = 〈 f j, up〉 for j �= 0, and ξ0 = ⊥.
The rules of N ′ for state g are obtained from rule ρg by adding all possible combinations of the mso head tests Tc and

their negations to the left-hand side. In the right-hand side, the sequence 〈 f , stay〉γ should be replaced by the sequence
ζ1, . . . , ζγ where ζc = 〈(f , c, Ic,1, . . . , Ic,γ), stay〉 if Tc is true, Ic,d being the set of initial states of Bc,d , and ζc = ⊥ if Tc is
false.28 The rules of N ′ for an “extended” state (q, c, S1, . . . , Sγ) are obtained from rule ρq as follows. In the left-hand side
change q into (q, c, S1, . . . , Sγ). Moreover, add all mso head tests of Bc,d for every d ∈ C . In the right-hand side change
every occurrence of a state q′ �= f into the extended state (q′, c, S ′

1, . . . , S
′
γ) where the set S ′

d is obtained from the set Sd

by simulating Bc,d appropriately, moving down to the �-th child if q′ = g in 〈g, down�〉 and moving up if q′ = f j . Moreover,
the sequence 〈 f , stay〉γ should be replaced by ζ1, . . . , ζγ where ζd = 〈(f , d, Id,1, . . . , Id,γ), stay〉 if Sd contains a final state
of Bc,d , and ζd = ⊥ otherwise (where Id,d′ is defined similarly to Ic,d above).

It should be clear that N ′ produces an output for every input tree t on which M has finitely many reachable pebble
stacks. Thus, N ′ preprocesses t appropriately and the deterministic tt M′ in the proof of Lemma 4 can simulate M
on τN ′ (t). Hence τM′ (τN ′ (t)) = τM(t) for every t in the domain of M. �

It is easy to adapt the proof of Theorem 17 to the case where the first (deterministic) tt M1 uses mso head tests; those
tests can also be executed by the constructed i-ptt M, by Lemma 12. Moreover, that proof can also easily be adapted to the
case where the second transducer M2 is a root-oriented i-ptt. From this and Lemmas 49 and 52 we obtain the following
characterizations of I-dPTT as a corollary. We do not know whether similar characterizations hold for I-PTT.

Theorem 53. I-dPTT = dTTmso ◦ dTT = dTTmso ◦ dTTmso = dTTmso ◦ r I-dPTT.

Proof. Let us show for completeness sake that dTT ◦ r I-dPTT ⊆ I-dPTT. The proof of Theorem 17 can easily be generalized
to a root-oriented i-ptt M2, because the path from the root of s to the current node v of M2 is represented by the pebble
stack of the constructed transducer M, and so the pebbles of M2 can also be stored in the pebble stack of M. For each
node on that path, the stack contains a pebble with the rule of M1 that generates that node, with its child number, and
with the pebble that M2 drops on that node.

Formally, the pebble colours of M are now triples (ρ, i, c) where c is a pebble colour of M2, and the states of M are
the states of M2 and all 4-tuples (p, i, c, q) where c is again a pebble colour of M2. The initial state of M is now the one
of M2, and if M2 has an initial rule 〈q0, δ, 0, ∅〉 → 〈q, dropc〉, then M has the rule 〈q0, δ, 0, ∅〉 → 〈(p0, 0, c, q), stay〉. The
rules of M that simulate M1 are defined as in the proof of Theorem 17, replacing i by i, c everywhere for each c. The rules
of M that simulate the non-initial rules of M2 are defined as follows. Let 〈q, δ, i, {c}〉 → ζ be a non-initial rule of M2
and let ρ : 〈p, σ , j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) be an output rule of M1. Then M has the rule 〈q, σ , j, {(ρ, i, c)}〉 →
ζ ′ where ζ ′ is defined as follows. If ζ = 〈q′, down�; dropd〉, then ζ ′ = 〈(p�, �, d, q′), stay〉. If ζ = 〈q′, liftc; up〉, then ζ ′ =
〈q′, lift(ρ,i,c); to-top〉. If ζ = 〈q′, liftc; dropd〉, then ζ ′ = 〈q′, lift(ρ,i,c); drop(ρ,i,d)〉. In the remaining cases, ζ ′ = ζ . �

As another corollary we obtain from the three Lemmas 49, 50, and 52 that I-dPTT ⊆ dTT3. Moreover, I-dPTT ⊆ dMT2
oi

by
the second equality of Corollary 51. Together with Theorem 46, that implies that dTL�r ⊆ dMT2

oi
, which was stated as an

open problem in [20, Section 8] (where dTL�r and dMToi are denoted 0-DPMTT and DMTT, respectively).

Corollary 54. I-dPTT ⊆ dTT↓ ◦ dTT ◦ dTT ⊆ dMToi ◦ dMToi .

We are now able to prove the deterministic analogue of Theorem 5 for ptt’s with at least one visible pebble.

Theorem 55. For every k ≥ 1, Vk I-dPTT ⊆ dTTk+2 .

Proof. Since it follows from Lemma 3 and Corollary 54 that Vk I-dPTT ⊆ tdTTk−1 ◦ tdTT ◦ dTT↓ ◦ dTT ◦ dTT, it suffices to show
that tdTT ◦ dTT↓ ⊆ dTT. For the sake of the proof of Lemma 61, we will show more generally that for all deterministic

28 More precisely, Ic,d consists of all initial states of Bc,d , plus all states that Bc,d can reach from an initial state by applying a relevant rule with a
stay-instruction.
91

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
tt’s M1 and M2 such that M2 does not use the up-instruction, a deterministic tt M can be constructed such that
τM(t) = τM2 (τM1 (t)) for every input tree t in the domain of M1. This can be proved by a straightforward product
construction, which is an easy adaptation of the construction in the proof of Theorem 17. Since transducer M2 never moves
up, there is no need to backtrack on the computation of M1. Therefore, the constructed transducer M only considers the
topmost pebble. Since that pebble is always at the position of the head, its colour can as well be stored in the finite state
of M. Hence M can be turned into a tt rather than an i-ptt.

Formally, let M1 = (, �, P , {p0}, R1) and M2 = (�, �, Q , {q0}, R2). The deterministic tt M has input alphabet 	 and
output alphabet �. Its states are of the form (p, i, q) or (ρ, i, q), where p ∈ P , i ∈ [0, mx�], q ∈ Q , and ρ is an output
rule of M1, i.e., a rule of the form 〈p, σ , j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉). Its initial state is (p0, 0, q0). As in the proof
of Theorem 17, state (p, i, q) is used by M when simulating the computation of M1 that generates the i-th child of the
current node of M2 (keeping the state q of M2 in memory). A state (ρ, i, q) is used by M when simulating a computation
step of M2 on the node that M1 has generated with rule ρ . The rules of M are defined as follows.

First the rules that simulate M1. Let ρ : 〈p, σ , j〉 → ζ be a rule in R1. If ζ = 〈p′, α〉, where α is a move instruction, then
M has the rules 〈(p, i, q), σ , j〉 → 〈(p′, i, q), α〉 for every i ∈ [0, mx�] and q ∈ Q . If ρ is an output rule, then M has the
rules 〈(p, i, q), σ , j〉 → 〈(ρ, i, q), stay〉 for every i and q as above.

Second the rules that simulate M2. Let 〈q, δ, i〉 → ζ be a rule in R2 and let ρ : 〈p, σ , j〉 → δ(〈p1, stay〉, . . . , 〈pm, stay〉) be
an output rule in R1 (with the same δ). Then M has the rule 〈(ρ, i, q), σ , j〉 → ζ ′ where ζ ′ is obtained from ζ by changing
every 〈q′, stay〉 into 〈(ρ, i, q′), stay〉, and every 〈q′, down�〉 into 〈(p�, �, q′), stay〉. �

Since the topmost pebble of a v-ptt can be replaced by an invisible pebble, we obtain from Theorem 55 that Vk-dPTT ⊆
dTTk+1, which was proved in [20, Theorem 10].

Theorem 55 allows us to show that, in the deterministic case, k + 1 visible pebbles are more powerful than k visible
pebbles.

Theorem 56. For every k ≥ 0, Vk I-dPTT � Vk+1I-dPTT.

Proof. It follows from Theorem 55 and Corollary 54 (and the inclusion dTT ⊆ dMToi in Corollary 51) that Vk I-dPTT ⊆ dMTk+2
oi

for every k ≥ 0. But it is proved in [20, Theorem 41] that, for every k ≥ 1, Vk-dPTT is not included in dMTk
oi

. Hence, since
the topmost pebble of a v-ptt can be replaced by an invisible pebble, Vk I-dPTT is not included in dMTk+1

oi
. �

The above proof also shows that Theorem 55 is optimal, in the sense that, for every k ≥ 1, Vk I-dPTT is not included in
dTTk+1.

Another consequence of Theorem 55 is that, by the results of [36], all total deterministic vi-pft transformations for which
the size of the output document is linear in the size of the input document, can be programmed in TL. Let LSI be the class
of all total functions ϕ for which there exists a constant c ∈N such that |ϕ(t)| ≤ c · |t| for every input tree t .

Theorem 57. For every k ≥ 0,

VkI-dPTT ∩ LSI ⊆ I-dPTT = dTLr and VkI-dPFT ∩ LSI ⊆ I-dPFT = dTL.

Proof. It is shown in [36] that dMTk
oi

∩ LSI ⊆ dMToi for every k ≥ 1. By Theorem 55 and Corollary 51, Vk I-dPTT ⊆ dMTk+2
oi

.
And by Corollary 42 and Theorem 46, dMToi ⊆ I-dPTT = dTLr. This proves the first inclusion. To prove the second inclusion,
let ϕ ∈ Vk I-dPFT ∩ LSI. Obviously, ϕ ◦ enc is also in LSI, and ϕ ◦ enc ∈ Vk I-dPTT ◦ I-dPTT by Lemma 33(2). Hence ϕ ◦ enc ∈
dMTk+4

oi
⊆ I-dPTT, as above. In other words, ϕ ∈ I-dPTT ◦ dec. Consequently, by Lemma 33(1) and Theorem 46, ϕ ∈ I-dPFT =

dTL. �
In fact, Vk I-dPTT∩LSI is the class of total functions in the class DMSOT of deterministic mso definable tree transductions

discussed after Corollary 42, and similarly, Vk I-dPFT ∩ LSI is the class of total functions in the class of deterministic mso

definable tree-to-forest transductions (which equals DMSOT ◦ dec, because both dec and enc are mso definable).
For the reader familiar with results about attribute grammars (which are a well-known compiler construction tool) and

related formalisms, we now briefly discuss the relationship between those results and some of the above. As explained
in detail in [20, Section 3.2], the total deterministic tree-walking tree transducer, i.e., the tdtt, is essentially a notational
variant of the attributed tree transducer (at) of [25,26], except that the at is in addition required to be “noncircular”, which
means that no configuration can generate an output form in which that same configuration occurs. As observed at the
end of Section 12, the deterministic i-ptt has the same expressive power as the deterministic tl program that is local
and ranked, which corresponds to the macro attributed tree transducer (mat) of [26,35] in the same way, i.e., the mat is
the “noncircular” tdtl�r program. Since r I-dPTT = dMToi by Corollary 51, Lemma 49 (dTTmso ⊆ r I-dPTT) is closely related
to the well-known fact that at (with look-ahead) can be simulated by deterministic macro tree transducers. Lemma 50
(r I-dPTT ⊆ dTT↓ ◦ dTT) is related to the fact that every total deterministic macro tree transducer can be decomposed into
a deterministic top-down tree transducer followed by a YIELD mapping, which can be realized by an at. Theorem 53
92

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
(I-dPTT = dTTmso ◦dTT = dTTmso ◦ r I-dPTT) is closely related to the fact that every mat can be decomposed into two at’s, and
that the composition of an at and a total deterministic macro tree transducer can be simulated by a mat, as shown in [35,
Theorem 4.8] and its proof (see also [26, Corollary 7.30]). The inclusion tdTT ◦ dTT↓ ⊆ dTT in the proof of Theorem 55 is
closely related to the closure of at under right-composition with deterministic top-down tree transducers, as shown in [25,
Theorem 4.3] (see also [35, Lemma 4.11] and [26, Lemma 5.46]). We finally mention that the class DMSOT of deterministic
mso definable tree transductions is properly included in dTTmso (see [10, Theorems 8.6 and 8.7]), as shown for attribute
grammars (with look-ahead) in [6].

Strong pebbles. In the literature there are pebble automata with weak and strong pebbles. Weak pebbles (which are the
pebbles considered until now) can only be lifted when the reading head is at the position where they were dropped,
whereas strong pebbles can also be lifted from a distance, i.e., when the reading head is at any other position. So, strong
pebbles are more like dogs that can be whistled back, or like pointers that can be erased from memory. Formally, we define
a pebble colour c to be strong as follows. For a rule 〈q, σ , j, b〉 → 〈q′, liftc〉 we do not require any more that c ∈ b. If the
rule is relevant to configuration 〈q, u, π〉, then it is applicable whenever the topmost element of the pebble stack is (v, c)
for some node v (not necessarily equal to u). That top pebble is then popped from the stack, i.e., π = π ′(v, c) where π ′ is
the new stack. Strong pebbles were investigated, e.g., in [8,16,27,43,48].

It turns out that strong invisible pebbles are too strong, in the sense that they allow the recognition of nonregular tree
languages, cf. the paragraph after Theorem 11. For example, the nonregular language {an#bn | n ∈ N} can be accepted by
an i-pta with strong pebbles as follows. After checking that the input string w is in a∗#b∗ , the automaton drops a pebble
on # and walks to the left, dropping a pebble on every a. Next it walks to the end of w , and then walks to the left, lifting
a pebble (from a distance) for every b it passes. It accepts w if it arrives at # and observes a pebble on #.

Thus, we will only consider the pta and ptt with strong visible pebbles, abbreviated as v
+

i-pta and v
+

i-ptt (and similarly
for the classes of transductions they realize). Obviously, Vk I-PTT ⊆ V+

k I-PTT for every k ≥ 0. We do not know whether the
inclusion is proper.

Let us first show that the v
+

i-pta and v
+

i-ptt can perform stack tests.

Lemma 58. Let k ≥ 0. For every v
+
k i-pta with stack tests A an equivalent (ordinary) v

+
k i-pta A′ can be constructed in polynomial

time. The construction preserves determinism and the absence of invisible pebbles. The same holds for the corresponding ptt’s.

Proof. Let A = (, Q , Q 0, F , C, Cv, C i, R, k). We construct A′ in the same way as in the proof of Lemma 1, except that it
additionally keeps track of the visible pebbles in its own stack, in the order in which they were dropped, cf. the construction
of a counting pta after Lemma 1. Thus, its states are of the form (q, γ , ϕ) where q ∈ Q , γ ∈ C ∪ {ε}, and ϕ ∈ (C ′

v)
∗ =

(Cv × (C ∪ {ε}))∗ is a string without repetitions of length ≤ k. Its initial states are (q, ε, ε) with q ∈ Q 0.
The rules of A′ are defined as follows. Let 〈q, σ , j, b, γ 〉 → 〈q′, α〉 be a rule of A, let ϕ be a string over C ′

v as
above, and let b′ be (the graph of) a mapping from b to C ∪ {ε}. If α is a move instruction, then A′ has the rule
〈(q, γ , ϕ), σ , j, b′〉 → 〈(q′, γ , ϕ), α〉 (and similarly for an output rule of a ptt). If α = dropc , then A′ has the rule
〈(q, γ , ϕ), σ , j, b′〉 → 〈(q′, c, ϕ′), drop(c,γ)〉 where ϕ′ = ϕ if c ∈ C i and ϕ′ = ϕ(c, γ) otherwise (provided |ϕ| < k and (c, γ)

does not occur in ϕ). Now let α = liftc and γ = c. If c ∈ C i and (c, γ ′) ∈ b′ , then A′ has the rule 〈(q, γ , ϕ), σ , j, b′〉 →
〈(q′, γ ′, ϕ), lift(c,γ ′)〉. If c ∈ Cv, then A′ has the rule 〈(q, γ , ϕ(c, γ ′)), σ , j, b′〉 → 〈(q′, γ ′, ϕ), lift(c,γ ′)〉 for every γ ′ ∈ C ∪ {ε}
such that (c, γ ′) does not occur in ϕ (with |ϕ| < k). �

Using this lemma, we now show that every v
+

-ptt can be decomposed into tt’s, as already shown in [27] in a different
way.29

Lemma 59. For every k ≥ 1, V+
k -PTT ⊆ TT ◦ V+

k−1-PTT. For fixed k, the construction takes polynomial time.

Proof. Let M = (, �, Q , Q 0, C, Cv, C i, R, k) be a v
+
k -ptt with C i = ∅. The construction is similar to the one in the proof

of Lemma 3, except that we use the nondeterministic “multi-level” preprocessor N of the proof of Lemma 4, for which we
assume that Cv = [1, γ].

By Lemma 58 we may assume that the simulating transducer M′ can perform stack tests. As in the proof of Lemma 3,
M′ starts by simulating M on the top level of the preprocessed version t′ of the input tree t . When M drops the first
pebble c on node u, M′ enters the second level copy t̂u of t corresponding to c, but it also stores c in its finite state. When
M wants to lift pebble c and can actually do so because the pebble stack of M′ is empty, M′ removes c from its finite
state and continues simulating M on t̂u . Note that since c can be lifted from a distance, M′ cannot return to the top level
without loosing its current position. When M again drops a pebble d on some second-level node that corresponds to a
node v of t , M′ enters the third level copy t̂v corresponding to d, and stores d in its finite state. Thus, whenever M drops
a bottom pebble, M′ moves one level down in the “tree of trees” t′ .

29 In that paper the authors “think that those proofs cannot be generalized for the strong pebble case because the mapping EncPeb [· · ·] is strongly based
on weak pebble handling”, where ‘those proofs’ mainly refers to the proof of [20, Lemma 9] in which the preprocessor is called EncPeb, see Lemma 3.
93

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
It should be noted that we could as well have taken γ = 1 for N and let M′ enter the unique copy of t when it drops
a pebble c, because M′ keeps c in its finite state. However, the present construction simplifies the proof of Theorem 62.

Although the above description should be clear, let us give the formal details. As in the proof of Lemma 4, the output
alphabet � of N is the union of {⊥}, {σ ′ | σ ∈ 	}, and {σ ′

i, j | σ ∈ 	, i ∈ [0, rank	(σ)], j ∈ [0, mx]} where, for every σ ∈ 	

of rank m, σ ′ has rank m + γ and σ ′
i, j has rank m + γ + 1. As in the proof of Lemma 3, the v

+
k−1-ptt M′ has input

alphabet �, set of states Q ∪ (Q × Cv), and the same initial states and pebble colours as M. The rules of M′ are defined
as follows. Let 〈q, σ , j, b〉 → ζ be a rule of M with rank	(σ) = m.

First, we consider the behaviour of M′ in state q, where we assume that b = ∅. Then M′ has the rules 〈q, σ ′, j, ∅〉 → ζ1,
〈q, σ ′

0, j, j
′, ∅〉 → ζ2, and 〈q, σ ′

i, j, j
′, ∅〉 → ζ3,i for every i ∈ [1, m] and j′ ∈ [1, mx�], where ζ1 is obtained from ζ by changing

〈q′, dropc〉 into 〈(q′, c), downm+c〉 for every q′ ∈ Q and c ∈ Cv, ζ2 is obtained from ζ1 by changing up into downm+γ +1, and
ζ3,i is obtained from ζ2 by changing downi into up. Thus, whenever the pebble stack of M is empty, M′ simulates M on
a copy of the input tree t in t′ , until M drops a pebble c ∈ Cv. Then M′ steps to the next level, and stores c in its finite
state.

Second, we consider the behaviour of M′ in state (q, c), where c ∈ Cv. Rules of M′ that have σ ′
0, j in their left-hand

side are defined under the proviso that c ∈ b, and the other rules under the proviso that c /∈ b. If ζ = 〈q′, liftc〉, then M′ has
the rules 〈(q, c), σ ′, j, b, ε〉 → 〈q′, stay〉, 〈(q, c), σ ′

0, j, m + c, b \ {c}, ε〉 → 〈q′, stay〉, and 〈(q, c), σ ′
i, j, j

′, b, ε〉 → 〈q′, stay〉 for
every i ∈ [1, m] and j′ ∈ [1, mx�], where ε is the stack test that checks emptiness of the stack of M′ . Thus, when M lifts
pebble c (at the position of c or from a distance), M′ removes c from memory and knows that the pebble stack of M is
empty. Otherwise, M′ has the rules 〈(q, c), σ ′, j, b〉 → ζc,1, 〈(q, c), σ ′

0, j, m + c, b \ {c}〉 → ζc,2, and 〈(q, c), σ ′
i, j, j

′, b〉 → ζc,3,i

for every i ∈ [1, m] and j′ ∈ [1, mx�], where ζc,1 is obtained from ζ by changing every occurrence of a state q′ into (q′, c),
ζc,2 is obtained from ζc,1 by changing up into downm+γ +1, and ζc,3,i is obtained from ζc,2 by changing downi into up. Thus,
M′ simulates M on a copy of the input tree in t′ , assuming that c is present on the node with label σ ′

0, j and absent on
the other nodes, until c is lifted by M. �

The next result is an immediate consequence of Lemma 59. It was proved in [27, Theorem 6.5(5)], generalizing the same
result for weak pebbles in [20, Theorem 10] (cf. Theorem 55). It implies that Propositions 6(2) and 7(2) also hold for strong
pebbles. Thus, for ptt’s without invisible pebbles, the inverse type inference problem and the typechecking problem are
solvable for strong pebbles in the same time as for weak pebbles (cf. [27, Theorem 6.7 and 6.9]). Note that it also implies
that the domains of v

+
-ptt’s are regular (cf. Corollary 9), which was proved in [27, Corollary 6.8] and [44, Theorem 4.7].

Theorem 60. For every k ≥ 0, V+
k -PTT ⊆ TTk+1 . For fixed k, the construction takes polynomial time.

To prove a similar result for deterministic ptt’s with strong pebbles, we need the next small lemma.

Lemma 61. For every k ≥ 1, (tdTTmso)k ⊆ dTT↓ ◦ dTTk.

Proof. We will show by induction on k that for every τ ∈ (tdTTmso)k there exist τ0 ∈ dTT↓ and τ1, . . . , τk ∈ dTT such that
τ = τ0 ◦ τ1 ◦ · · · ◦ τk . Note that since τ is a total function, every output tree of τ0 ◦ τ1 ◦ · · · ◦ τi−1 is in the domain of τi ,
for every i ∈ [1, k]. For k = 1 the statement is immediate from the inclusion dTTmso ⊆ dTT↓ ◦ dTT, which follows from
Lemmas 49 and 50. Now consider τ ∈ (tdTTmso)k+1. By induction and the case k = 1, τ = τ0 ◦ τ1 ◦ · · · ◦ τk ◦ τ ′

0 ◦ τ ′
1 with

τ0, τ ′
0 ∈ dTT↓ and τ1, . . . , τk, τ ′

1 ∈ dTT. Since every output tree of τ0 ◦ τ1 ◦ · · · ◦ τk−1 is in the domain of τk , we can replace
τk ◦ τ ′

0 by any transduction τ ′ such that τ ′(t) = τ ′
0(τk(t)) for every t in the domain of τk . Since τk ∈ dTT and τ ′

0 ∈ dTT↓ , we
can take τ ′ ∈ dTT by the proof of Theorem 55. �

Theorem 60 was also shown in [20, Theorem 10] for weak pebbles in the deterministic case. Here we need one more
deterministic tt.

Theorem 62. For every k ≥ 1, V+
k -dPTT ⊆ dTT↓ ◦ dTTk+1 .

Proof. By Lemma 61 it suffices to show that V+
k -dPTT ⊆ tdTTmso ◦ V+

k−1-dPTT for every k ≥ 1. The proof of this inclusion is
obtained from the proof of Lemma 59 by changing the preprocessor N in a similar way as in the proof of Lemma 52.

For the given deterministic v
+
k -ptt M we assume that C i = ∅ and C = Cv = [1, γ]. As in the proof of Lemma 52, we

may assume that there is a mapping χ : C → Q that specifies the state of M after dropping a pebble (because we may
also assume that M keeps track in its finite state of the pebbles in its stack, in the order in which they were dropped, cf.
the proof of Lemma 58).

The new preprocessor N ′ is constructed in the same way as in the proof of Lemma 52, with a different definition of
the trips Tc,d . For c ∈ C , the site Tc is defined as in that proof, i.e., it consists of all pairs (t, u) such that the configuration
〈χ(c), u, (u, c)〉 is reachable by the automaton A associated with M, which now is a nondeterministic v

+
k -pta. The automa-

ton B recognizing mark(Tc) is a v
+

-pta with stack tests (see Lemma 58). When it arrives at the marked node u in state χ(c)
k

94

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
and observes c, it may check that c is the top pebble, lift it, check that the stack is now empty, and accept. For c, d ∈ C , the
trip Tc,d now consists of all triples (t, u, v) such that A has a computation on t starting in configuration 〈χ(c), u, (u, c)〉
and ending in configuration 〈χ(d), v, (v, d)〉, with at least one computation step. It should be clear that there is a v

+
k -pta

B′ with stack tests that recognizes mark(Tc,d): it starts by dropping c on marked node u in state χ(c), and then behaves
similarly to B (with respect to v and d).

For every input tree t in the domain of M, the preprocessor N ′ produces the appropriate output. In fact, if N ′ would
not produce output, then there would be an infinite sequence (u1, c1), (u2, c2), . . . such that (t, u1) ∈ Tc1 and (t, ui, ui+1) ∈
Tci ,ci+1 for every i ≥ 1. But that would imply the existence of an infinite computation of M on t that starts in the initial
configuration, contradicting the determinism of M. �

Next, we decompose arbitrary v
+

i-ptt’s. To do that we need two tt’s at each decomposition step rather than one.

Lemma 63. For every k ≥ 1, V+
k I-PTT ⊆ TT ◦ TT ◦ V+

k−1I-PTT. For fixed k, the construction takes polynomial time.

Proof. The proof of Lemma 59 is also valid for v
+

i-ptt, provided every reachable pebble stack of the given transducer has a
visible bottom pebble (for the definition of reachable pebble stack see the proof of Lemma 52). Thus, it suffices to construct
for every v

+
k i-ptt M a tt N and a v

+
k i-ptt M′ with that property, such that τN ◦ τM′ = τM .

Let M = (, �, Q , Q 0, C, Cv, C i, R, k). The construction is similar to the one in the proof of Lemma 4. In particular, we
assume that C i = [1, γ] and we use the same nondeterministic “multi-level” preprocessor N of that proof. The simulating
transducer M′ works in the same way as the one in the proof of Lemma 4 as long as the pebble stack of M consists of
invisible pebbles only. Thus, during that time the pebble stack of M′ is empty. As soon as M drops a visible pebble c,
M′ stays in the same copy of the input tree and also drops c. After that, M′ just simulates M on that copy until M lifts c.
Then M′ also lifts c and returns to the first mode until M again drops a visible pebble. Note that when M drops c, all
invisible pebbles on the input tree become unobservable until c is lifted.

Formally, the set of states of M′ is the union of Q (used in the first mode) and Q × Cv (used in the second mode).
The rules for the first mode are the same as in the proof of Lemma 4, with the empty set of pebble colours added to
each left-hand side. Now let 〈q, σ , j, b〉 → ζ be a rule of M and rank	(σ) = m. In what follows, i ranges over [1, m] and
j′ over [1, mx�], as usual. With the following rules M′ switches from the first to the second mode, where we assume
that ζ = 〈q′, dropc〉 with c ∈ Cv: if b = {d} with d ∈ C i , then it uses the rule 〈q, σ0, j, m + d, ∅〉 → 〈(q′, c), dropc〉, and if
b = ∅, then it uses the rules 〈q, σ ′, j, ∅〉 → 〈(q′, c), dropc〉 and 〈q, σi, j, j′, ∅〉 → 〈(q′, c), dropc〉. The rules for the second
mode are as follows, for every c ∈ Cv. We first assume that ζ does not contain the instruction liftc . Then M′ has the rules
〈(q, c), σ ′, j, b〉 → ζ1, 〈(q, c), σ0, j, j′, b〉 → ζ2, and 〈(q, c), σi, j, j′, b〉 → ζ3,i , where ζ1 is obtained from ζ by changing every
state q′ into (q′, c), ζ2 is obtained from ζ1 by changing up into downm+γ +1, and ζ3,i is obtained from ζ2 by changing
downi into up. Finally, if ζ = 〈q′, liftc〉, then M′ switches from the second to the first mode with the following rules:
〈(q, c), σ ′, j, b〉 → ζ , 〈(q, c), σ0, j, j′, b〉 → ζ , and 〈(q, c), σi, j, j′, b〉 → ζ . �

The next result is immediate from Lemmas 63 and 4. It implies, by Propositions 6(1) and 7(1), that the inverse type
inference problem and the typechecking problem are solvable for ptt’s with k strong visible pebbles, in (2k + 2)-fold and
(2k + 3)-fold exponential time, respectively. It also implies that the domains of v

+
i-ptt’s are regular, cf. Corollary 9.

Theorem 64. For every k ≥ 0, V+
k I-PTT ⊆ TT2k+2 . For fixed k, the construction takes polynomial time.

Applying the techniques in the proofs of Lemma 52 and Theorem 62 to the proof of Lemma 63, and using Lemmas 52
and 61, we obtain that every deterministic v

+
i-ptt can be decomposed into deterministic tt’s, cf. Theorem 55. The formal

proof is straightforward.

Theorem 65. For every k ≥ 0, V+
k I-dPTT ⊆ dTT↓ ◦ dTT2k+2 .

We do not know whether these results are optimal, i.e., whether the exponent 2k + 2 can be lowered.

16. Conclusion

We have shown in Theorem 5 that Vk I-PTT ⊆ TTk+2, but we do not know whether this is optimal, i.e., whether or not
Vk I-PTT ⊆ TTk+1. Since the results on typechecking in Section 5 are based on this decomposition, we also do not know
whether the time bound for typechecking vki-ptt’s, as stated in Theorem 8, is optimal. Using the results of [48], it can be
shown that the time bound for inverse type inference is optimal, cf. the discussion after [14, Corollary 1].

We have shown in Theorem 29 that all mso definable n-ary patterns can be matched by deterministic vn−2i-ptt’s, but we
do not know whether this is optimal, i.e., whether or not it can be done with less than n − 2 pebbles. In particular, we do
not know whether or not all mso definable ternary patterns can be matched by i-ptt’s (or, by tl programs), cf. Theorem 57.
95

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
In Section 10 we have suggested ways of reducing the number of visible pebbles in special cases. Given an mso formula ϕ ,
can one compute the minimal number of visible pebbles that is needed to match the pattern ϕ?

The language tl can be extended with visible pebbles, in an obvious way. The resulting “pebble tl programs” are closely
related to the pebble macro tree transducers that were introduced in [20]. What is the relationship between the k-pebble
macro tree transducer and the vki-ptt? Is there an analogon of Theorem 46? It is not clear whether the proof of Theorem 46
can be generalized to the addition of visible pebbles.

We have shown in Theorem 56 that Vk I-dPTT � Vk+1I-dPTT, i.e., that k + 1 visible pebbles are more powerful than k,
in the deterministic case. We do not know whether this holds for the nondeterministic transducers, i.e., whether or not
the inclusion Vk I-PTT ⊆ Vk+1I-PTT is proper. We also do not know whether every functional vki-ptt can be simulated by a
deterministic one, where a ptt M is functional if τM is a function. If so, then the inclusion would of course be proper.

Is it decidable for a given deterministic vk+1i-ptt M whether or not τM is in Vk I-dPTT? If so, then one could compute
the minimal number of visible pebbles needed to realize the transformation τM by a ptt. Obviously, that would answer the
above question for the pattern ϕ in the affirmative.

It is proved in [8] that the v
+
k -pta has the same expressive power as the vk-pta, i.e., that strong pebbles are not more

powerful than weak pebbles. We do not know whether or not the v
+
k -ptt is more powerful than the vk-ptt, and neither

whether or not the v
+
k i-ptt is more powerful than the vki-ptt.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web, Morgan Kaufmann, 2000.
[2] A.V. Aho, J.D. Ullman, Translations on a context-free grammar, Inf. Control 19 (1971) 439–475.
[3] M. Bartha, An algebraic definition of attributed transformations, Acta Cybern. 5 (1982) 409–421, preliminary version in: F. Gécseg (Ed.), Proc. FCT’81,

in: Lecture Notes in Computer Science, vol. 117, Springer-Verlag, 1981, pp. 51–60.
[4] G.J. Bex, S. Maneth, F. Neven, A formal model for an expressive fragment of XSLT, Inf. Syst. 27 (2002) 21–39.
[5] R. Bloem, J. Engelfriet, Monadic second order logic and node relations on graphs and trees, in: J. Mycielski, G. Rozenberg, A. Salomaa (Eds.), Structures

in Logic and Computer Science, in: Lecture Notes in Computer Science, vol. 1261, Springer-Verlag, 1997, pp. 144–161, a corrected version is available
at https://www.researchgate .net /publication /221350026.

[6] R. Bloem, J. Engelfriet, A comparison of tree transductions defined by monadic second order logic and by attribute grammars, J. Comput. Syst. Sci. 61
(2000) 1–50.

[7] M. Bojanczyk, Tree-walking automata, in: C. Martín-Vide, F. Otto, H. Fernau (Eds.), Proc. LATA’08, in: Lecture Notes in Computer Science, vol. 5196,
Springer-Verlag, 2008, pp. 1–2, full version available at https://www.mimuw.edu .pl /~bojan /upload /conflataBojanczyk08 .pdf.

[8] M. Bojanczyk, M. Samuelides, T. Schwentick, L. Segoufin, Expressive power of pebble automata, in: M. Bugliesi, B. Preneel, V. Sassone, I. Wegener (Eds.),
Proc. ICALP’06, in: Lecture Notes in Computer Science, vol. 4051, Springer-Verlag, 2006, pp. 157–168.

[9] A. Brüggemann-Klein, D. Wood, Caterpillars, context, tree automata and tree pattern matching, in: Proc. DLT’99, World Scientific, 1999, pp. 270–285.
[10] B. Courcelle, J. Engelfriet, Graph Structure and Monadic Second-Order Logic, Cambridge University Press, 2012.
[11] J. Doner, Tree acceptors and some of their applications, J. Comput. Syst. Sci. 4 (1970) 406–451.
[12] J. Engelfriet, Simple Program Schemes and Formal Languages, Lecture Notes in Computer Science, vol. 20, Springer-Verlag, 1974.
[13] J. Engelfriet, Context-free grammars with storage, Technical Report 86-11, University of Leiden, 1986, a slightly revised version is available at arXiv:

1408 .0683.
[14] J. Engelfriet, The time complexity of typechecking tree-walking tree transducers, Acta Inform. 46 (2009) 139–154.
[15] J. Engelfriet, H.J. Hoogeboom, Tree-walking pebble automata, in: J. Karhumäki, H. Maurer, G. Paun, G. Rozenberg (Eds.), Jewels Are Forever, Contributions

to Theoretical Computer Science in Honor of Arto Salomaa, Springer-Verlag, 1999, pp. 72–83.
[16] J. Engelfriet, H.J. Hoogeboom, Automata with nested pebbles capture first-order logic with transitive closure, Log. Methods Comput. Sci. 3 (2:3) (2007)

1–27.
[17] J. Engelfriet, H.J. Hoogeboom, J.-P. van Best, Trips on trees, Acta Cybern. 14 (1999) 51–64.
[18] J. Engelfriet, H.J. Hoogeboom, B. Samwel, XML transformation by tree-walking transducers with invisible pebbles, in: L. Libkin (Ed.), Proc. PODS’07, ACM

Press, 2007, pp. 63–72.
[19] J. Engelfriet, S. Maneth, Macro tree transducers, attribute grammars, and MSO definable tree translations, Inf. Comput. 154 (1999) 34–91.
[20] J. Engelfriet, S. Maneth, A comparison of pebble tree transducers with macro tree transducers, Acta Inform. 39 (2003) 613–698.
[21] J. Engelfriet, E.M. Schmidt, IO and OI, II, J. Comput. Syst. Sci. 16 (1978) 67–99.
[22] J. Engelfriet, H. Vogler, Macro tree transducers, J. Comput. Syst. Sci. 31 (1985) 71–146.
[23] J. Engelfriet, H. Vogler, Pushdown machines for the macro tree transducer, Theor. Comput. Sci. 42 (1986) 251–368, Theor. Comput. Sci. 48 (1986) 339

(Erratum).
[24] M.J. Fischer, Grammars with macro-like productions, Ph.D. Thesis, Harvard University, 1968.
[25] Z. Fülöp, On attributed tree transducers, Acta Cybern. 5 (1981) 261–279.
[26] Z. Fülöp, H. Vogler, Syntax-Directed Semantics – Formal Models Based on Tree Transducers, Springer-Verlag, 1998.
[27] Z. Fülöp, L. Muzamel, Pebble macro tree transducers with strong pebble handling, Fundam. Inform. 89 (2008) 1–51.
[28] M.R. Garey, D.S. Johnson, Computers and Intractability – a Guide to the Theory of NP-Completeness, W.H. Freeman, San Francisco, 1979.
[29] F. Gécseg, M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984, a re-edition is available at arXiv:1509 .06233.
[30] E. Goris, M. Marx, Looping caterpillars, in: Proc. LICS’05, IEEE, 2005, pp. 51–60.
[31] G. Gottlob, C. Koch, R. Pichler, Efficient algorithms for processing XPath queries, in: Proc. VLDB’02, Morgan Kaufmann, 2002, pp. 95–106.
[32] G. Gottlob, C. Koch, K.U. Schulz, Conjunctive queries over trees, in: Proc. PODS’04, ACM Press, 2004, pp. 189–200.
[33] W. Janssen, A. Korlyukov, J. Van den Bussche, On the tree-transformation power of XSLT, Acta Inform. 43 (2007) 371–393.
[34] D.E. Knuth, Fundamental Algorithms, Addison-Wesley, 1968.
96

http://refhub.elsevier.com/S0304-3975(20)30613-7/bibD52390E2E4FA862A82DC4284A3842DFDs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibF965C18C94F845C6EA5A4FF33DD2D9EFs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibDDC35F88FA71B6EF142AE61F35364653s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibDDC35F88FA71B6EF142AE61F35364653s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibC0B6F45F0CB4EE285A37D522CDA20EF2s1
https://www.researchgate.net/publication/221350026
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibE982E259EDD3983D9E62EF571B02831Cs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibE982E259EDD3983D9E62EF571B02831Cs1
https://www.mimuw.edu.pl/~bojan/upload/conflataBojanczyk08.pdf
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib2838FD5AE2504CAB16AEE67637297EAAs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib2838FD5AE2504CAB16AEE67637297EAAs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib24226BB6FDCFE705111F27B87CE5121Ds1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibB647EF18E5C4B35E4F1705EF096C3FA9s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib235D4C7E7E43B4E2BDB4401F639D53BEs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibE037D2757F093E47143BB522E827E56Ds1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib755383BE06D0D08F8A50DA9AC9A7CD03s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib755383BE06D0D08F8A50DA9AC9A7CD03s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibB1FEBF12EA2CA28779B2438E7D18BFB6s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib6D50D14931737F519037A6B8769811ACs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib6D50D14931737F519037A6B8769811ACs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibDEB9506C4C91AACBCF5AC5394F4111ACs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibDEB9506C4C91AACBCF5AC5394F4111ACs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib1FE410296B72E809BBAE877774ED4D1Fs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib4C4999AC17ADCEF1A5A75FAB71E5C857s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib4C4999AC17ADCEF1A5A75FAB71E5C857s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibC095169254C1FF597557FD1E41064174s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib8A9FF998001DCF452A223589112A8E06s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib9174CB1546A361F396195FC2B40BFA83s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib64EF149B4B0AFCC78585639E72D7B13As1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibC97C9BD4BE00AC7CB0DB028D967E84CDs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibC97C9BD4BE00AC7CB0DB028D967E84CDs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib15876CCD278BBF31784B4215CD49C317s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibC5024034426ABF34039E0FE95CD405AFs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibBF61D8DBA1F5029B7D9BE7F151C306F1s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibC1B3C814D1F35711B535E7A5CA58BBF7s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib3DF6C1EDFF7B174300E1A38A6322CD6Ds1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibAA2BE74E67C171F4EBA76BC111625DCCs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib5517AB38B2061F4C83C204A36FC05BA8s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib4017D9A6F64D957294501B8B10481D3Bs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib160C54B642BE2077526C37201FB5BBB2s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib65BE52F0F3035DA942EF7243A6B5F9E5s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib2B222CD1921E7391A41BBFC6F9C96FE9s1

J. Engelfriet, H.J. Hoogeboom and B. Samwel Theoretical Computer Science 850 (2021) 40–97
[35] A. Kühnemann, H. Vogler, Synthesized and inherited functions – a new computational model for syntax-directed semantics, Acta Inform. 31 (1994)
431–477.

[36] S. Maneth, The macro tree transducer hierarchy collapses for functions of linear size increase, in: P.K. Pandya, J. Radhakrishnan (Eds.), Proc. FSTTCS’03,
in: Lecture Notes in Computer Science, vol. 2914, Springer-Verlag, 2003, pp. 326–337.

[37] S. Maneth, A. Berlea, T. Perst, H. Seidl, XML type checking with macro tree transducers, in: Proc. PODS’05, ACM Press, 2005, pp. 283–294, Technical
Report TUM-I0407 of the Technische Universität München (2004) is available at https://www.researchgate .net /publication /221559877.

[38] S. Maneth, F. Neven, Structured document transformation based on XSL, in: Proc. DBPL’99, in: Lecture Notes in Computer Science, vol. 1949, Springer-
Verlag, 2000, pp. 80–98.

[39] M. Marx, Conditional XPath, ACM Trans. Database Syst. 30 (2005) 929–959.
[40] M. Marx, Navigation in XML trees, in: The Logic in Computer Science Column, Bull. Eur. Assoc. Theor. Comput. Sci. 88 (February 2006) 126–140.
[41] T. Milo, D. Suciu, V. Vianu, Typechecking for XML transformers, J. Comput. Syst. Sci. 66 (2003) 66–97.
[42] A. Møller, M.I. Schwartzbach, The design space of type checkers for XML transformation languages, in: Proc. ICDT’05, in: Lecture Notes in Computer

Science, vol. 3363, Springer-Verlag, 2005, pp. 17–36.
[43] A. Muscholl, M. Samuelides, L. Segoufin, Complementing deterministic tree-walking automata, Inf. Process. Lett. 99 (2006) 33–39.
[44] L. Muzamel, Pebble alternating tree-walking automata and their recognizing power, Acta Cybern. 18 (2008) 427–450.
[45] F. Neven, Automata, logic, and XML, in: J.C. Bradfield (Ed.), Proc. CSL’02, in: Lecture Notes in Computer Science, vol. 2471, Springer-Verlag, 2002,

pp. 2–26.
[46] F. Neven, T. Schwentick, Automata- and logic-based pattern languages for tree-structured data, in: Semantics in Databases 2001, in: Lecture Notes in

Computer Science, vol. 2582, Springer-Verlag, 2003, pp. 160–178.
[47] T. Perst, H. Seidl, Macro forest transducers, Inf. Process. Lett. 89 (2004) 141–149.
[48] M. Samuelides, L. Segoufin, Complexity of pebble tree-walking automata, in: E. Csuhaj-Varjú, Z. Ésik (Eds.), Proc. FCT’07, in: Lecture Notes in Computer

Science, vol. 4639, Springer-Verlag, 2007, pp. 458–469.
[49] B. Samwel, Pebble scope and the power of pebble tree transducers, M.Sc. Thesis, LIACS, Leiden University, 2006.
[50] T. Schwentick, Automata for XML – a survey, J. Comput. Syst. Sci. 73 (2007) 289–315.
[51] G. Slutzki, Alternating tree automata, Theor. Comput. Sci. 41 (1985) 305–318.
[52] B. ten Cate, The expressivity of XPath with transitive closure, in: Proc. PODS’06, ACM Press, 2006, pp. 328–337.
[53] B. ten Cate, L. Segoufin, Transitive closure logic, nested tree walking automata, and XPath, J. ACM 57 (3) (2010) 18.
[54] J.W. Thatcher, J.B. Wright, Generalized finite automata theory with an application to a decision problem of second-order logic, Math. Syst. Theory 2

(1968) 57–81.
97

http://refhub.elsevier.com/S0304-3975(20)30613-7/bibC3DE120A66AFA30A8C94BD37982282BEs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibC3DE120A66AFA30A8C94BD37982282BEs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib39C63DDB96A31B9610CD976B896AD4F0s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib39C63DDB96A31B9610CD976B896AD4F0s1
https://www.researchgate.net/publication/221559877
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibAFB2D2911BB60AD3BF3A027597ED30ADs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibAFB2D2911BB60AD3BF3A027597ED30ADs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib7B60267428056C1548A685CE02DDC3D2s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib2D5B8A7E9423B0ABA165AE7A82D402CFs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibACDCDC63257BC21E48CD28FBB697A10Cs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib9D61B37CC2A7044511D49A3FCEE23F68s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib9D61B37CC2A7044511D49A3FCEE23F68s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibE41443B7ADB55FF7325AC58675DC34A3s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib19D225054113CE7D6F08147D0F95D696s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibF2C78D297A286BFEEC525B588860FE41s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibF2C78D297A286BFEEC525B588860FE41s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib5D082901148D2F5E34EE343CF51E7FB2s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib5D082901148D2F5E34EE343CF51E7FB2s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib55AB009062F6409C8651CF4F07F09F25s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib0FF13108268724AAB93D87FD022ED79Es1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib0FF13108268724AAB93D87FD022ED79Es1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bibBA0E0CDE1BF72C28D435C89A66AFC61As1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib6EC9B0D9CF371BD211F26FEC07BC7300s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib95D0A62A0AD3136704C46DBD908B6BAFs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib9AA941F77971FBAD190D0CDE2620D5E6s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib0A88E8244C6BDCC21951FBF675006F1Bs1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib36AA9A02B1278CC86BCD4F29641BBC50s1
http://refhub.elsevier.com/S0304-3975(20)30613-7/bib36AA9A02B1278CC86BCD4F29641BBC50s1

	XML navigation and transformation by tree-walking automata and transducers with visible and invisible pebbles
	1 Introduction
	2 Preliminaries
	3 Automata and transducers
	4 Decomposition
	5 Typechecking
	6 Trees, tests and trips
	7 The power of the I-PTT
	8 Look-ahead tests
	9 Document navigation
	10 Pattern matching
	11 Pebble forest transducers
	12 Document transformation
	13 A TL program in XSLT
	14 Data complexity
	15 Variations of decomposition
	16 Conclusion
	Declaration of competing interest
	References

